Combinatorial Chemistry & High Throughput Screening

Author(s): Çiğdem K. Dindar, Cem Erkmen, Bengi Uslu* and Nilgün G. Göğer*

DOI: 10.2174/1386207323666200720101835

The Development of Spectrophotometric and Validated Stability- Indicating RP-HPLC Methods for Simultaneous Determination of Ephedrine HCL, Naphazoline HCL, Antazoline HCL, and Chlorobutanol in Pharmaceutical Pomade Form

Page: [1090 - 1099] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Allergic rhinitis, acute nasal congestion and sinusitis are one of the most common health problems and have a major effect on the quality of life. Several medications are used to improve the symptoms of such diseases in humans. Pharmaceutical pomade form containing Ephedrine (EPD) HCl, Naphazoline (NPZ) HCl, Antazoline (ANT) HCl, and Chlorobutanol (CLO) is one of them.

Objective: For these reasons, this study includes the development of spectrophotometric and chromatographic methods for the determination of EPD HCl, NPZ HCl, ANT HCl, and CLO active agents in the pharmaceutical pomade.

Method: In the spectrophotometric method, third-order derivative of the amplitudes at 218 nm n=5 and the first-order derivative of the amplitudes 254 nm n=13 was selected for the determination of EPD, ANT, respectively while NPZ was determined by the second derivative at 234 nm and n=21. Colorimetric detection was applied for assay analysis of CLO at 540 nm. Furthermore, a reverse phase high performance liquid chromatographic (RP- HPLC) method has been developed and optimized by using Agilent Zorbax Eclipse XDB C18 (75 mm x 3.0 mm, 3.5μm) column. The column temperature was 40°C, binary gradient elution was used and the mobile phase consisted of 15 mM phosphate buffer in distilled water (pH 3.0) and methanol, and the flow rate was 0.6 mL min-1 and the UV detector was detected at 210 nm. The linear operating range was obtained as 11.97-70, 0.59-3, 2.79-30, and 2.92-200 μg mL-1 for EPD HCl, NPZ HCl, ANT HCl, and CLO respectively.

Results: The LOD values were found to be 3.95, 0.19, 0.92 and 0.96 μg mL-1 for EPD HCl, NPZ HCl, ANT HCl, and CLO in the spectrophotometric method, respectively. The linear ranges in the RP-HPLC method were 8.2-24.36 μg mL-1, 0.083 - 0.75 μg/mL, 2.01-7.5 μg mL-1 and 2.89-24.4 μg mL-1 for EPD HCl, NPZ HCl, ANT HCl, and CLO, respectively. The LOD values in the validation studies were 2.7, 0.025, 0.66 and 0.86 μg mL-1 for EPD HCl, NPZ HCl, ANT HCl, and CLO in RP-HPLC method respectively.

Conclusion: The results of the spectrophotometric and chromatographic methods were compared and no differences were found between the two methods.

Keywords: Antazoline, chlorobutanol, ephedrine, determination, naphazoline, RP-HPLC, UV-derivative spectrophotometry, validation.

[1]
Paiva Ferreira, L. K. D.; Paiva Ferreira, L. A. M.; Monteiro, T. M.; Bezerra, G. C.; Bernardo, L. R.; Piuvezam, M. R. Combined Allergic Rhinitis and Asthma Syndrome (CARAS). International Immunopharmacology. Elsevier B.V., 2019 1 September;
[http://dx.doi.org/10.1016/j.intimp.2019.105718.]
[2]
Mandhane, S.N.; Shah, J.H.; Thennati, R. Allergic rhinitis: an update on disease, present treatments and future prospects. Int. Immunopharmacol., 2011, 11(11), 1646-1662.
[http://dx.doi.org/10.1016/j.intimp.2011.07.005] [PMID: 21784174]
[3]
Kar, M.; Bayar Muluk, N.; Bafaqeeh, S. A.; Cingi, C. Consensus on the methodology for experimental studies in allergic rhinitis. Int. J. Pediatric Otorhinolaryngol., Elsevier Ireland Ltd, , 2019, 1, 68-71.
[http://dx.doi.org/10.1016/j.ijporl.2019.03.009]
[4]
May, J. R.; Dolen, W. K. Management of allergic rhinitis: A review for the community pharmacist.Clin. Therapeutics. Excerpta Medica Inc, 2017, 1, 2410-2419.
[http://dx.doi.org/10.1016/j.clinthera.2017.10.006]
[5]
Bousquet, J.; Van Cauwenberge, P.; Khaltaev, N. Aria Workshop Group. World Health Organization. Allergic rhinitis and its impact on asthma. J. Allergy Clin. Immunol., 2001, 108(5)(Suppl.), S147-S334.
[http://dx.doi.org/10.1067/mai.2001.118891] [PMID: 11707753]
[6]
Shaikh, W. A.; Bombay, I. Ephedrine-saline nasal wash in allergie rhinitis abbreviations used methods Patients, 1995,96, 597-600.
[7]
Kemp, A.S. Allergic rhinitis. Paediatr. Respir. Rev., 2009, 10(2), 63-68.
[http://dx.doi.org/10.1016/j.prrv.2009.02.002] [PMID: 19410204]
[8]
Deventer, K.; Pozo, O.J.; Van Eenoo, P.; Delbeke, F.T. Development and validation of an LC-MS/MS method for the quantification of ephedrines in urine. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(4), 369-374.
[http://dx.doi.org/10.1016/j.jchromb.2008.12.032] [PMID: 19144576]
[9]
Gumustas, M.; Alshana, U.; Ertas, N.; Goger, N.G.; Ozkan, S.A.; Uslu, B. Determination of antazoline and tetrahydrozoline in ophthalmic solutions by capillary electrophoresis and stability-indicating HPLC methods. J. Pharm. Biomed. Anal., 2016, 124, 390-398.
[http://dx.doi.org/10.1016/j.jpba.2016.02.032] [PMID: 26952922]
[10]
Sayed, N. el deen; Hegazy, M.; Abdelkawy, M.; Abdelfatah, R. Spectrophotometric, chemometric and chromatographic determination of naphazoline hydrochloride and chlorpheniramine maleate in the presence of naphazoline hydrochloride alkaline degradation product. Bull. Fac. Pharm. Cairo Univ., 2013, 51(1), 57-68.
[http://dx.doi.org/10.1016/j.bfopcu.2012.10.002]
[11]
Fischer, M. Effects of chlorobutanol on primary and secondary endings of isolated cat muscle spindles; , 2000, Vol. 854, .
[12]
Nováková, L.; Solich, P. A comparison of performance of various analytical columns in pharmaceutical analysis: conventional C18 and high throughput C18 zorbax columns. J. Chromatogr. A, 2005, 1088(1-2), 24-31.
[http://dx.doi.org/10.1016/j.chroma.2004.12.039] [PMID: 16130729]
[13]
Rehm, C.R.; Mader, W.J. A colorimetric assay for chlorobutanol. J Am Pharm Assoc Am Pharm Assoc, 1957, 46(10), 621-623.
[http://dx.doi.org/10.1002/jps.3030461015] [PMID: 13491469]
[14]
I.C.H. Harmonized Tripartite Guidelines, Q2(R1) Validation of analytical procedures: Text and Methodology.ICH; Geneva, Switzerland, 2005.
[15]
Aboul-Enein, H.Y.; Goger, N.G.; Turkalp, A. Quantitative determination of fluconazole in syrups by first order derivative spectrophotometry. Anal. Lett., 2002, 35(7), 1193-1204.
[http://dx.doi.org/10.1081/AL-120005972]
[16]
Giebułtowicz, J.; Piotrowski, R.; Baran, J.; Kułakowski, P.; Wroczyński, P. Application of a novel liquid chromatography/tandem mass spectrometry method for the determination of antazoline in human plasma: Result of ELEPHANT-I [ELEctrophysiological, pharmacokinetic and hemodynamic effects of PHenazolinum (ANTazoline mesylate)] human pharmacokinetic study. J. Pharm. Biomed. Anal., 2016, 123, 113-119.
[http://dx.doi.org/10.1016/j.jpba.2016.01.060] [PMID: 26895496]
[17]
Saito, T.; Morita, S.; Kishiyama, I.; Miyazaki, S.; Nakamoto, A.; Nishida, M.; Namera, A.; Nagao, M.; Inokuchi, S. Simultaneous determination of dibucaine and naphazoline in human serum by monolithic silica spin column extraction and liquid chromatography-mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 872(1-2), 186-190.
[http://dx.doi.org/10.1016/j.jchromb.2008.07.007] [PMID: 18657485]
[18]
Baharfar, M.; Yamini, Y.; Seidi, S.; Karami, M. Quantitative analysis of clonidine and ephedrine by a microfluidic system: On-chip electromembrane extraction followed by high performance liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1068-1069, 313-321.
[http://dx.doi.org/10.1016/j.jchromb.2017.10.062] [PMID: 29127057]
[19]
Li, X.; Chu, Y.; Ke, Y.; Wang, L.; Yu, T.; Hao, L. Determination of antazoline hydrochloride in Beagle dog plasma by HPLC-UV and its application to pharmacokinetics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 929, 97-101.
[http://dx.doi.org/10.1016/j.jchromb.2013.04.021] [PMID: 23669609]
[20]
Abdel-Halim, L.M.; Abd-El Rahman, M.K.; Ramadan, N.K.; El Sanabary, H.F.A.; Salem, M.Y. Comparative study between recent methods manipulating ratio spectra and classical methods based on two-wavelength selection for the determination of binary mixture of antazoline hydrochloride and tetryzoline hydrochloride. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 159, 98-105.
[http://dx.doi.org/10.1016/j.saa.2016.01.014] [PMID: 26836449]
[21]
Zhu, S.; Liu, Y. Spectroscopic analyses on interaction of Naphazoline hydrochloride with bovine serum albumin. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 98, 142-147.
[http://dx.doi.org/10.1016/j.saa.2012.08.040] [PMID: 22995546]
[22]
Chocholouš, P.; Satínský, D.; Solich, P. Fast simultaneous spectrophotometric determination of naphazoline nitrate and methylparaben by sequential injection chromatography. Talanta, 2006, 70(2), 408-413.
[http://dx.doi.org/10.1016/j.talanta.2006.02.065] [PMID: 18970784]
[23]
Amiss, T.J.; Smoak, I.W. Determination of chlorobutanol in mouse serum; urine and embryos by capillary gas chromatography with electron capture detection, , 1995; Vol 673, .
[24]
Oliveira, T.da C.; Freitas, J.M.; Munoz, R.A.; Richter, E.M. A batch injection analysis system with square-wave voltammetric detection for fast and simultaneous determination of naphazoline and zinc. Talanta, 2016, 152, 308-313.
[http://dx.doi.org/10.1016/j.talanta.2016.02.031] [PMID: 26992525]
[25]
Khudaish, E.A.; Myint, M.T.Z.; Rather, J.A. A Solid-State Sensor Based on Poly(2,4,6-Triaminopyrimidine) Grafted with Electrochemically Reduced Graphene Oxide: Fabrication, Characterization, Kinetics and Potential Analysis on Ephedrine. Microchem. J., 2019, 147, 444-453.
[http://dx.doi.org/10.1016/j.microc.2019.03.041]
[26]
Uekusa, K.; Ono, T.; Hayashida, M.; Nihira, M.; Ohno, Y. GC/MS analysis of an herbal dietary supplement containing ephedrine. Leg. Med. (Tokyo), 2009, 11(Suppl. 1), S573-S575.
[http://dx.doi.org/10.1016/j.legalmed.2009.01.096] [PMID: 19269227]
[27]
Spyridaki, M-H.E.; Tsitsimpikou, C.J.; Siskos, P.A.; Georgakopoulos, C.G. Determination of ephedrines in urine by gas chromatography-mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl., 2001, 758(2), 311-314.
[http://dx.doi.org/10.1016/S0378-4347(01)00174-8] [PMID: 11486842]
[28]
Marchesini, A.F.; Williner, M.R.; Mantovani, V.E.; Robles, J.C.; Goicoechea, H.C. Simultaneous determination of naphazoline, diphenhydramine and phenylephrine in nasal solutions by capillary electrophoresis. J. Pharm. Biomed. Anal., 2003, 31(1), 39-46.
[http://dx.doi.org/10.1016/S0731-7085(02)00600-3] [PMID: 12560047]
[29]
Li, G.; Zhang, Z.; Chen, X.; Hu, Z.; Zhao, Z.; Hooper, M. Analysis of ephedrine in ephedra callus by acetonitrile modified capillary zone electrophoresis. Talanta, 1999, 48(5), 1023-1029.
[http://dx.doi.org/10.1016/S0039-9140(98)00311-7] [PMID: 18967545]
[30]
Dijiba, Y.K.; Zhang, A.; Niemczyk, T.M. Determinations of ephedrine in mixtures of ephedrine and pseudoephedrine using diffuse reflectance infrared spectroscopy. Int. J. Pharm., 2005, 289(1-2), 39-49.
[http://dx.doi.org/10.1016/j.ijpharm.2004.09.027] [PMID: 15652197]
[31]
Xia, H.; Wu, H.L.; Gu, H.W.; Yin, X.L.; Fang, H.; Yu, R.Q. Simultaneous determination of naphazoline and pyridoxine in eye drops using excitation-emission matrix fluorescence coupled with second-order calibration method based on alternating trilinear decomposition Algorithm. Chin. Chem. Lett., 2015, 26(12), 1446-1449.
[http://dx.doi.org/10.1016/j.cclet.2015.07.015]