Protein-protein Interaction and Molecular Dynamics of Iturin A Gene on Effector Proteins of Phytophthora infestans

Page: [259 - 268] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Aim And Objectives: Phytophthora infestans (Mont.) de Bary, the fungal pathogen causes late blight, which results in devastating economic loss among the Solanaceae. The bacillus lipopeptides show the antagonistic activity against the many plant pathogens, among bacillus lipopeptides reported as the antifungal gene. Hence, to understand the in silico antifungal activity, we have selected gene iturin A (AXN89987) produced by Bacillus spp to check the molecular dynamics study with the effector proteins of the P. infestanse. In this concern, known effector proteins of P. infestans were subjected to the protein-protein interaction followed by simulation.

Materials and Methods: Iturin A gene was amplified using the soil bacterium Bacillus subtilis with gene-specific primers, cloned into pTZ 57R/T vector and confirmed by sequencing. To get better insights, the protein model was developed for Iturin A using Modeller 9.17, using PDB structure of ID 4MRT (Phosphopantetheine transferase Sfp) and 1QR0 (4'-phosphopantetheinyl moiety of coenzyme A) as a template, it shared the identity 72% and expected P-value: 3e-121, respectively. The model quality was assessed using ProSA and PROCHECK programs.

Results: The potency of modelled protein against effector proteins of P. infestans were evaluated in silico using the HADDOCK server and the results showed the high affinity of towards the effector protein Host ATG8 (PDB-5L83). Finally, the simulation was performed to the docked conformation of with Host ATG8 to further understand the stability of the complex using the Desmond program.

Conclusion: Altogether, the protein-protein interaction and simulation study propose a new methodology and to uncover possible antifungal activity of iturin A against effector proteins of P. infestans.

Keywords: Bacillus, Phytophthora infestans, iturin A, protein interaction, HADDOCK, modeller v9.17.

[1]
Bourke, A. Potato blight in Europe in 1845: the scientific controversy Lucas JA, Shattock, R.C., Shaw, D.S., Cooke, L.R., (eds) Phytophthora; Cambridge University Press, Cambridge, , 1991; pp. 12-24.
[2]
Cavaglieri, L.; Orlando, J.; Etcheverry, M. In vitro influence of bacterial mixtures on Fusarium verticillioides growth and fumonisin B1 production: effect of seeds treatment on maize root colonization. Lett. Appl. Microbiol., 2005, 41(5), 390-396.
[http://dx.doi.org/10.1111/j.1472-765X.2005.01785.x] [PMID: 16238641]
[3]
Boland, G.J. Stability analysis for evaluating the influence of environment on chemical and biological control of white mold (Sclerotinia sclerotiorum) of bean. Biol. Control, 1997, 9, 7-14.
[http://dx.doi.org/10.1006/bcon.1997.0515]
[4]
Ahimou, F.; Jacques, P.; Deleu, M. Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme Microb. Technol., 2000, 27(10), 749-754.
[http://dx.doi.org/10.1016/S0141-0229(00)00295-7]
[5]
Bais, H.P.; Fall, R.; Vivanco, J.M. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol., 2004, 134(1), 307-319.
[http://dx.doi.org/10.1104/pp.103.028712] [PMID: 14684838]
[6]
Raaijmakers, J.M.; Vlami, M.; de Souza, J.T. Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek, 2002, 81(1-4), 537-547.
[http://dx.doi.org/10.1023/A:1020501420831] [PMID: 12448749]
[7]
Hossain, M.J.; Ran, C.; Liu, K.; Ryu, C.M.; Rasmussen-Ivey, C.R.; Williams, M.A.; Hassan, M.K.; Choi, S.K.; Jeong, H.; Newman, M.; Kloepper, J.W.; Liles, M.R. Deciphering the conserved genetic loci implicated in plant disease control through comparative genomics of Bacillus amyloliquefaciens subsp. plantarum. Front. Plant Sci., 2015, 6, 631.
[http://dx.doi.org/10.3389/fpls.2015.00631] [PMID: 26347755]
[8]
Berg, G.; Fritze, A.; Roskot, N.; Smalla, K. Evaluation of potential biocontrol rhizobacteria from different host plants of Verticillium dahliae Kleb. J. Appl. Microbiol., 2001, 91(6), 963-971.
[http://dx.doi.org/10.1046/j.1365-2672.2001.01462.x] [PMID: 11851803]
[9]
Cazorla, F.M.; Romero, D.; Pérez-García, A.; Lugtenberg, B.J.J.; Vicente, Ad.; Bloemberg, G. Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. J. Appl. Microbiol., 2007, 103(5), 1950-1959.
[http://dx.doi.org/10.1111/j.1365-2672.2007.03433.x] [PMID: 17953605]
[10]
Li, X-Y.; Yang, J-J.; Mao, Z-C.; Ho, H-H.; Wu, Y.X.; He, Y.Q. Enhancement of biocontrol activities and cyclic lipopeptides production by chemical mutagenesis of Bacillus subtilis xf-1, a biocontrol agent of Plasmodiophora brassicae and Fusarium solani. Indian J. Microbiol., 2014, 54(4), 476-479.
[http://dx.doi.org/10.1007/s12088-014-0471-y] [PMID: 25320450]
[11]
Wawra, S.; Trusch, F.; Matena, A.; Apostolakis, K.; Linne, U.; Zhukov, I.; Stanek, J.; Koźmiński, W.; Davidson, I.; Secombes, C.J.; Bayer, P.; van West, P. The RxLR motif of the host targeting effector AVR3a of Phytophthora infestans is cleaved before secretion. Plant Cell, 2017, 29(6), 1184-1195.
[http://dx.doi.org/10.1105/tpc.16.00552] [PMID: 28522546]
[12]
Boutemy, L.S.; King, S.R.; Win, J.; Hughes, R.K.; Clarke, T.A.; Blumenschein, T.M.; Kamoun, S.; Banfield, M.J. Structures of Phytophthora RXLR effector proteins: a conserved but adaptable fold underpins functional diversity. J. Biol. Chem., 2011, 286(41), 35834-35842.
[http://dx.doi.org/10.1074/jbc.M111.262303] [PMID: 21813644]
[13]
Maqbool, A.; Hughes, R.K.; Dagdas, Y.F.; Tregidgo, N.; Zess, E.; Belhaj, K.; Round, A.; Bozkurt, T.O.; Kamoun, S.; Banfield, M.J. Structural basis of host autophagy-related protein 8 (ATG8) binding by the irish potato famine pathogen effector protein PexRD54. J. Biol. Chem., 2016, 291(38), 20270-20282.
[http://dx.doi.org/10.1074/jbc.M116.744995] [PMID: 27458016]
[14]
Cyril, D.; Rolf, B.; Alexandre, M.J.J.B. HADDOCK: A Protein−Protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc., 2003, 125(7)
[15]
Laskowski, R.A.; Swindells, M.B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 2011, 51(10), 2778-2786.
[http://dx.doi.org/10.1021/ci200227u] [PMID: 21919503]
[16]
Tjaart, A.P.; de Beer Karel, B.; Janet, M.; Thornton, R.A. PDBsum additions. Nucleic Acids Res., 2014, 42(D1), D292-D296.
[17]
Jorgensen, J.H.; Swenson, J.M.; Tenover, F.C.; Barry, A.; Ferraro, M.J.; Murray, P.R.; Reller, L.B. Development of interpretive criteria and quality control limits for macrolide and clindamycin susceptibility testing of Streptococcus pneumoniae. J. Clin. Microbiol., 1996, 34(11), 2679-2684.
[http://dx.doi.org/10.1128/JCM.34.11.2679-2684.1996] [PMID: 8897164]
[18]
Martyna, G.J.; Klein, M.L.; Tuckerman, M. Nosé–Hoover. chains: The canonical ensemble via continuous dynamics. J. Chem. Phys., 1992, 97, 2635.
[http://dx.doi.org/10.1063/1.463940]
[19]
Martyna, G.J.; Tobias, D.J.; Klein, M.L. Constant pressure molecular dynamics algorithms. J. Chem. Phys., 1994, 101, 4177.
[http://dx.doi.org/10.1063/1.467468]
[20]
Humphreys, D.D.; Friesner, R.A.; Berne, B.J. A Multiple-time-step molecular dynamicsalgorithm for macromolecules. J. Chem. Phys., 1994, 98, 6885-6892.
[http://dx.doi.org/10.1021/j100078a035]
[21]
Sambrook, J.; Russell, R.W. Molecular cloning: A laboratory manual, 3rd; Cold spring harbor laboratory press, cold spring harbor, N.Y,; , 2001.