Combinatorial Chemistry & High Throughput Screening

Author(s): Sercan Yıldırım*, Gökhan Demirdaş, Mert Fidan and Ahmet Yaşar

DOI: 10.2174/1386207323666200709171504

Simple and Fast Determination of Terbinafine in Human Urine by Dilute and Shoot HPLC-DAD Using a Core-Shell Column

Page: [342 - 351] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Terbinafine is an allylamine antifungal that is effective against many fungi, dermatophytes and moulds. Analytical methods are required for the determination of terbinafine in biological fluids to perform therapeutic drug monitoring and pharmacokinetic studies.

Objective: The aim of this study was to develop and validate a novel and fast method combining dilute and shoot approach and high-performance liquid chromatography coupled with photodiode array detection for the determination of terbinafine in human urine.

Methods: Chromatographic parameters including mobile phase composition, pH, flow rate and injection volume were assessed and optimized. The separation of terbinafine and naproxen (internal standard) was achieved within 3 min using a C18 core-shell column (Raptor ARC-18, 100 x 4.6 mm, 2.7 μm) under isocratic conditions. Samples were eluted from the column at the flow rate of 1.4 mL/min using a mobile phase containing 0.2% triethylamine in water (pH 3.4 with formic acid): acetonitrile (45:55, v/v).

Results: The presented technique was linear in the range of 25-2000 ng/mL. Intra- and inter-day reproducibility at four quality control levels (25, 200, 750 and 1500 ng/mL) were less than 7%, with relative errors ranging from -5.40% to 5.91%. The limit of detection was 12.60 ng/mL. The developed method has three main advantages compared to existing methods: simplicity and greenness of sample preparation, use of core-shell column and short analysis time.

Conclusion: The results of this study indicate that the combination of dilute and shoot approach and core-shell column can be regarded as an advantageous application for the fast determination of terbinafine in the urine.

Keywords: Core-shell columns, dilute and shoot approach, fast analysis, high-performance liquid chromatography, terbinafine, urine.

[1]
Mühlbacher, J.M. Naftifine: a topical allylamine antifungal agent. Clin. Dermatol., 1991, 9(4), 479-485.
[http://dx.doi.org/10.1016/0738-081X(91)90076-W] [PMID: 1822408]
[2]
Stütz, A.; Petranyi, G. Synthesis and antifungal activity of (E)-N-(6,6-dimethyl-2-hepten-4-ynyl)-N-methyl-1-naphtha lenemethanamine (SF 86-327) and related allylamine derivatives with enhanced oral activity. J. Med. Chem., 1984, 27(12), 1539-1543.
[http://dx.doi.org/10.1021/jm00378a003] [PMID: 6502589]
[3]
Grayson, M.L., Ed.; Kucers’ the Use of Antibiotics : A Clinical Review of Antibacterial, Antifungal, Antiparasitic and Antiviral Drugs, 7th ed; CRC Press: Boca Raton, 2017, pp. 2709-2720.
[4]
Zehender, H.; Denouël, J.; Roy, M.; Le Saux, L.; Schaub, P. Simultaneous determination of terbinafine (Lamisil) and five metabolites in human plasma and urine by high-performance liquid chromatography using on-line solid-phase extraction. J. Chromatogr. B Biomed. Appl., 1995, 664(2), 347-355.
[http://dx.doi.org/10.1016/0378-4347(94)00483-L] [PMID: 7780587]
[5]
Yeganeh, M.H.; McLachlan, A.J. Determination of terbinafine in tissues. Biomed. Chromatogr., 2000, 14(4), 261-268.
[http://dx.doi.org/10.1002/1099-0801(200006)14:4<261:AID-BMC983>3.0.CO;2-X] [PMID: 10861738]
[6]
Gopal, P.N.V.; Hemakumar, A.V.; Padma, S.V.N. Reverse phase HPLC method for the analysis of terbinafine in pharmaceutical dosage forms. Asian J. Chem., 2008, 20, 551-555.
[7]
Matysová, L.; Solich, P.; Marek, P.; Havlíková, L.; Nováková, L.; Sícha, J. Separation and determination of terbinafine and its four impurities of similar structure using simple RP-HPLC method. Talanta, 2006, 68(3), 713-720.
[http://dx.doi.org/10.1016/j.talanta.2005.05.013] [PMID: 18970380]
[8]
Kužner, J.; Kozuh Erzen, N.; Drobnič-Košorok, M. Determination of terbinafine hydrochloride in cat hair by two chromatographic methods. Biomed. Chromatogr., 2001, 15(8), 497-502.
[http://dx.doi.org/10.1002/bmc.108] [PMID: 11748682]
[9]
Tagliari, M.P.; Kuminek, G.; Borgmann, S.H.M.; Bertol, C.D.; Cardoso, S.G.; Stulzer, H.K. Terbinafine: optimization of a LC method for quantitative analysis in pharmaceutical formulations and its application for a tablet dissolution test. Quim. Nova, 2010, 33, 1790-1793.
[http://dx.doi.org/10.1590/S0100-40422010000800029]
[10]
Cox, S.; Hayes, J.; Hamill, M.; Martin, A.; Pistole, N.; Yarbrough, J.; Souza, M. Determining terbinafine in plasma and saline using HPLC. J. Liq. Chromatogr. Relat. Technol., 2015, 38, 607-612.
[http://dx.doi.org/10.1080/10826076.2014.922479]
[11]
Cardoso, S.G.; Schapoval, E.E.S. High-performance liquid chromatographic assay of terbinafine hydrochloride in tablets and creams. J. Pharm. Biomed. Anal., 1999, 19(5), 809-812.
[http://dx.doi.org/10.1016/S0731-7085(98)00119-8] [PMID: 10698545]
[12]
Ünal, D.Ö. HPLC-UV method transfer for UPLC in bioanalytical analysis: determination of terbinafine from human plasma. J. Fac. Pharm. İstanbul, 2013, 41, 56-65..
[13]
Patel, M.M.; Patel, H.D. Development and validation of RP-HPLC method for simultaneous estimation of terbinafine hydrochloride and mometasone furoate in combined dosage form. Int. J. Pharm. Pharm. Sci., 2014, 6, 106-109.
[14]
Baranowska, I.; Markowski, P.; Baranowski, J. Development and validation of an HPLC method for the simultaneous analysis of 23 selected drugs belonging to different therapeutic groups in human urine samples. Anal. Sci., 2009, 25(11), 1307-1313.
[http://dx.doi.org/10.2116/analsci.25.1307] [PMID: 19907087]
[15]
Bhadoriya, A.; Shah, P.A.; Shrivastav, P.S.; Bharwad, K.D.; Singhal, P. Determination of terbinafine in human plasma using UPLC-MS/MS: Application to a bioequivalence study in healthy subjects. Biomed. Chromatogr., 2019, 33(8)e4543
[http://dx.doi.org/10.1002/bmc.4543] [PMID: 30933360]
[16]
Gurule, S.; Khuroo, A.; Monif, T.; Goswami, D.; Saha, A. Rational design for variability minimization in bioanalytical method validation: illustration with LC-MS/MS assay method for terbinafine estimation in human plasma. Biomed. Chromatogr., 2010, 24(11), 1168-1178.
[http://dx.doi.org/10.1002/bmc.1423] [PMID: 20954207]
[17]
Brignol, N.; Bakhtiar, R.; Dou, L.; Majumdar, T.; Tse, F.L.S. Quantitative analysis of terbinafine (Lamisil) in human and minipig plasma by liquid chromatography tandem mass spectrometry. Rapid Commun. Mass Spectrom., 2000, 14(3), 141-149.
[http://dx.doi.org/10.1002/(SICI)1097-0231(20000215)14:3<141:A ID-RCM856>3.0.CO;2-I] [PMID: 10637419]
[18]
Dotsikas, Y.; Apostolou, C.; Kousoulos, C.; Tsatsou, G.; Loukas, Y.L. An improved high-throughput liquid chromatographic/tandem mass spectrometric method for terbinafine quantification in human plasma, using automated liquid-liquid extraction based on 96-well format plates. Biomed. Chromatogr., 2007, 21(2), 201-208.
[http://dx.doi.org/10.1002/bmc.738] [PMID: 17221909]
[19]
de Oliveira, C.H.; Barrientos-Astigarraga, R.E.; de Moraes, M.O.; Bezerra, F.A.F.; de Moraes, M.E.A.; de Nucci, G. Terbinafine quantification in human plasma by high-performance liquid chromatography coupled to electrospray tandem mass spectrometry: application to a bioequivalence study. Ther. Drug Monit., 2001, 23(6), 709-716.
[http://dx.doi.org/10.1097/00007691-200112000-00019] [PMID: 11802108]
[20]
Baranowska, I.; Wilczek, A.; Baranowski, J. Rapid UHPLC method for simultaneous determination of vancomycin, terbinafine, spironolactone, furosemide and their metabolites: application to human plasma and urine. Anal. Sci., 2010, 26(7), 755-759.
[http://dx.doi.org/10.2116/analsci.26.755] [PMID: 20631435]
[21]
Magiera, S.; Hejniak, J.; Baranowski, J. Comparison of different sorbent materials for solid-phase extraction of selected drugs in human urine analyzed by UHPLC-UV. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 958, 22-28.
[http://dx.doi.org/10.1016/j.jchromb.2014.03.014] [PMID: 24686236]
[22]
Koyuturk, S.; Can, N.O.; Atkosar, Z.; Arli, G. A novel dilute and shoot HPLC assay method for quantification of irbesartan and hydrochlorothiazide in combination tablets and urine using second generation C18-bonded monolithic silica column with double gradient elution. J. Pharm. Biomed. Anal., 2014, 97, 103-110.
[http://dx.doi.org/10.1016/j.jpba.2014.04.026] [PMID: 24876066]
[23]
Sanchis, Y.; Coscollà, C.; Yusà, V. Analysis of four parabens and bisphenols A, F, S in urine, using dilute and shoot and liquid chromatography coupled to mass spectrometry. Talanta, 2019, 202, 42-50.
[http://dx.doi.org/10.1016/j.talanta.2019.04.048] [PMID: 31171203]
[24]
Rodriguez, A.; Gomila, R.M.; Martorell, G.; Costa-Bauza, A.; Grases, F. Quantification of xanthine- and uric acid-related compounds in urine using a “dilute-and-shoot” technique coupling ultra-high-performance liquid chromatography and high-resolution Orbitrap mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1067, 53-60.
[http://dx.doi.org/10.1016/j.jchromb.2017.09.047] [PMID: 28992566]
[25]
Li, X.S.; Li, S.; Kellermann, G. A simple dilute and shoot approach incorporated with pentafluorophenyl (PFP) column based LC-MS/MS assay for the simultaneous determination of trimethylamine N-oxide and trimethylamine in spot urine samples with high throughput. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1067, 61-70.
[http://dx.doi.org/10.1016/j.jchromb.2017.09.049] [PMID: 29017075]
[26]
Deventer, K.; Pozo, O.J.; Verstraete, A.G.; Van Eenoo, P. dilute-and-shoot-liquid chromatography-mass spectrometry for urine analysis in doping control and analytical toxicology. TrAC -. Trends Analyt. Chem, 2014, 55, 1-13.
[http://dx.doi.org/10.1016/j.trac.2013.10.012]
[27]
Sulyok, M.; Stadler, D.; Steiner, D.; Krska, R. Validation of an LC-MS/MS-based dilute-and-shoot approach for the quantification of > 500 mycotoxins and other secondary metabolites in food crops: challenges and solutions. Anal. Bioanal. Chem., 2020, 412(11), 2607-2620.
[http://dx.doi.org/10.1007/s00216-020-02489-9] [PMID: 32078002]
[28]
Petrarca, M.H.; Meinhart, A.D.; Godoy, H.T. Dilute-and-shoot liquid chromatography approach for simple and high-throughput analysis of 5-hydroxymethylfurfural in fruit-based baby foods. Food Anal. Methods, 2020, 13, 942-951.
[http://dx.doi.org/10.1007/s12161-020-01713-7]
[29]
Avataneo, V.; De Nicolò, A.; Rabbia, F.; Sciandra, M.; Tosello, F.; Cusato, J.; Perlo, E.; Fatiguso, G.; Allegra, S.; Favata, F.; Mulatero, P.; Veglio, F.; Di Perri, G.; D’Avolio, A. A simple UHPLC-PDA method with a fast dilute-and-shot sample preparation for the quantification of canrenone and its prodrug spironolactone in human urine samples. J. Pharmacol. Toxicol. Methods, 2018, 94(Pt 2), 29-35.
[http://dx.doi.org/10.1016/j.vascn.2018.08.003] [PMID: 30165207]
[30]
Armenta, S.; Garrigues, S.; Esteve-Turrillas, F.A.; de la Guardia, M. Green extraction techniques in green analytical chemistry. TrAC -. Trends Analyt. Chem, 2019, 116, 248-253.
[http://dx.doi.org/10.1016/j.trac.2019.03.016]
[31]
Kaplitz, A.S.; Kresge, G.A.; Selover, B.; Horvat, L.; Franklin, E.G.; Godinho, J.M.; Grinias, K.M.; Foster, S.W.; Davis, J.J.; Grinias, J.P. High-throughput and ultrafast liquid chromatography. Anal. Chem., 2020, 92(1), 67-84.
[http://dx.doi.org/10.1021/acs.analchem.9b04713] [PMID: 31639301]
[32]
Kirkland, J.J.; Schuster, S.A.; Johnson, W.L.; Boyes, B.E. Fused-core particle technology in high-performance liquid chromatography: An overview. J. Pharm. Anal., 2013, 3(5), 303-312.
[http://dx.doi.org/10.1016/j.jpha.2013.02.005] [PMID: 29403832]
[33]
Borges, E.M.; Rostagno, M.A.; Meireles, M.A.A. Sub-2 µm fully porous and partially porous (core-shell) stationary phases for reversed phase liquid chromatography. RSC Advances, 2014, 4, 22875-22887.
[http://dx.doi.org/10.1039/C3RA45418E]
[34]
Guiochon, G.; Gritti, F. Shell particles, trials, tribulations and triumphs. J. Chromatogr. A, 2011, 1218(15), 1915-1938.
[http://dx.doi.org/10.1016/j.chroma.2011.01.080] [PMID: 21353228]
[35]
Hädener, M.; König, S.; Weinmann, W. Quantitative determination of CBD and THC and their acid precursors in confiscated cannabis samples by HPLC-DAD. Forensic Sci. Int., 2019, 299, 142-150.
[http://dx.doi.org/10.1016/j.forsciint.2019.03.046] [PMID: 31005710]
[36]
Janus, A.; Goulas, A.; Pelfrêne, A.; Douay, F.; Waterlot, C. Determination of PAHs by ultra fast liquid chromatography using a core-shell technology - application to their determination after using biochar as adsorbent. Meas. J. Int. Meas. Confed., 2017, 106, 137-142.
[http://dx.doi.org/10.1016/j.measurement.2017.04.021]
[37]
Sáez, V.; Gayoso, C.; Riquelme, S.; Pérez, J.; Vergara, C.; Mardones, C.; von Baer, D. C18 core-shell column with in-series absorbance and fluorescence detection for simultaneous monitoring of changes in stilbenoid and proanthocyanidin concentrations during grape cane storage. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1074-1075, 70-78.
[http://dx.doi.org/10.1016/j.jchromb.2017.12.028] [PMID: 29331860]
[38]
Yıldırım, S.; Kadıoğlu, A.; Sağlam, A.; Yaşar, A.; Sellitepe, H.E. Fast determination of anthocyanins and free pelargonidin in fruits, fruit juices, and fruit wines by high-performance liquid chromatography using a core-shell column. J. Sep. Sci., 2016, 39(20), 3927-3935.
[http://dx.doi.org/10.1002/jssc.201600661] [PMID: 27550473]
[39]
Yıldırım, S.; Yaşar, A. A core-shell column approach to fast determination of synthetic dyes in foodstuffs by high-performance liquid chromatography. Food Anal. Methods, 2018, 11, 1581-1590.
[http://dx.doi.org/10.1007/s12161-017-1138-1]
[40]
Yıldırım, S.; Ulaş Çolak, N.; Yaşar, A. Application of dispersive liquid-liquid microextraction for the determination of donepezil in urine by HPLC using a core–shell column. J. Liq. Chromatogr. Relat. Technol., 2018, 41, 66-72.
[http://dx.doi.org/10.1080/10826076.2017.1373669]
[41]
Barut, B.B.; Erkmen, C.; Gumustas, A.; Gumustas, M.; Ozkan, S.A.; Uslu, B. In the context of superficially porous silica particles: simultaneous determination of dutasteride and tamsulosin from biological samples. J. Iran. Chem. Soc,2020.
[42]
Machado, S.; Fernandes, S.R.; Chaves, L.L.; Lima, S.A.C.; Silva, E.M.P.; Barreiros, L.; Reis, S.; Segundo, M.A. Chromatographic method for the simultaneous quantification of dapsone and clofazimine in nanoformulations. J. Sep. Sci., 2018, 41(17), 3382-3388.
[http://dx.doi.org/10.1002/jssc.201800427] [PMID: 30006947]
[43]
U.S. Department of Health and Human Services Food and Drug administration Center for Drug evaluation and research (CDER). Bioanalytical Method Validation Guidance for Industry., https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf
[44]
Center for Drug Evaluation and Research (CDER). Reviewer Guidance, Validation of Chromatographic Methods,. https://www.fda.gov/media/75643/download
[45]
Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC -. Trends Analyt. Chem, 2013, 50, 78-84.
[http://dx.doi.org/10.1016/j.trac.2013.04.010]
[46]
Welch, C.J.; Wu, N.; Biba, M.; Hartman, R.; Brkovic, T.; Gong, X.; Helmy, R.; Schafer, W.; Cuff, J.; Pirzada, Z.; Zhou, L. Greening analytical chromatography. TrAC -. Trends Analyt. Chem, 2010, 29, 667-680.
[http://dx.doi.org/10.1016/j.trac.2010.03.008]
[47]
Płotka, J.; Tobiszewski, M.; Sulej, A.M.; Kupska, M.; Górecki, T.; Namieśnik, J. Green chromatography. J. Chromatogr. A, 2013, 1307, 1-20.
[http://dx.doi.org/10.1016/j.chroma.2013.07.099] [PMID: 23932374]
[48]
Delgado-Povedano, M.M.; de Castro, M.D.L. The ‘in medium virtus’ assessment of green analytical chemistry. Curr. Opin. Green Sustain. Chem., 2019, 19, 8-14.
[http://dx.doi.org/10.1016/j.cogsc.2019.02.008]
[49]
Snyder, L.R.; Kirkland, J.J.; Dolan, J.W. Introduction to Modern Liquid Chromatography, 3rd ed; John Wiley and Sons: New York, 2010, pp. 309-317.
[50]
European Pharmacopoeia, 10th ed; Council of Europe, 2020.