Combinatorial Chemistry & High Throughput Screening

Author(s): Hasan Işık, Gökçe Öztürk, Fatma Ağın* and Dilek Kul

DOI: 10.2174/1386207323666200709170450

Electroanalytical Analysis of Guaifenesin on Poly(Acridine Orange) Modified Glassy Carbon Electrode and its Determination in Pharmaceuticals and Serum Samples

Page: [376 - 385] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Electroanalytical methods are very functional to detect drugs in pharmaceuticals (tablets, syrups, suppositories, creams, and ointments) and biological samples.

Objective: This study is aimed to make selective, sensitive, simple, fast, and low cost electrochemical analysis of expectorant drug guaifenesin in pharmaceuticals and serum samples.

Methods: Differential pulse adsorptive stripping voltammetric method for determination of guaifenesin on a poly(acridine orange) modified glassy carbon electrode has been developed. Glassy carbon electrode was modified with electropolymerization of the acridine orange monomer for the sensitive determination of guaifenesin. Guaifenesin provided highly reproducible and welldefined irreversible oxidation peaks at +1.125 V and +1.128 V (vs. Ag/AgCl) in the selected supporting electrolyte and human serum samples, respectively.

Results: Under optimized conditions, linear response of peak current on the concentration of guaifenesin has been obtained in the ranges of 2.00×10-7 to 1.00×10-4 M in Britton Robinson buffer solution at pH 7.0 and 4.00×10-7 to 1.00×10-4 M in serum samples. The precision of the method was detected by intraday and inter-day repeatability studies in the supporting electrolyte and serum samples media.

Conclusion: The analytical applicability of the proposed method exhibited satisfying determination results for guaifenesin from pharmaceutical dosage forms (syrup) and human serum samples without any pre-separation procedures.

Keywords: Differential pulse adsorptive stripping voltammetry, electro-oxidation, guaifenesin, expectorant, poly(acridine orange) modified glassy carbon electrode, voltammetry.

[1]
Albrecht, H.H.; Dicpinigaitis, P.V.; Guenin, E.P. Role of guaifenesin in the management of chronic bronchitis and upper respiratory tract infections. Multidiscip. Respir. Med., 2017, 12, 31.
[http://dx.doi.org/10.1186/s40248-017-0113-4] [PMID: 29238574]
[2]
Balsamo, R.; Lanata, L.; Egan, C.G. Mucoactive drugs. Eur. Respir. Rev., 2010, 19(116), 127-133.
[http://dx.doi.org/10.1183/09059180.00003510] [PMID: 20956181]
[3]
Sweetman, S.C. Martindale: The Complete Drug Reference, 36th ed; Pharmaceutical press: London, 2009.
[4]
Vais, D.R.; Sattarahmady, N.; Karimian, K.; Heli, H. Green electrodeposition of gold hierarchical dendrites of pyramidal nanoparticles and determination of azathioprine. Sens. Actuators B Chem., 2015, 2015(215), 113-118.
[5]
Gupta, V.K.; Jain, R.; Radhapyari, K.; Jadon, N.; Agarwal, S. Voltammetric techniques for the assay of pharmaceuticals--a review. Anal. Biochem., 2011, 408(2), 179-196.
[http://dx.doi.org/10.1016/j.ab.2010.09.027] [PMID: 20869940]
[6]
Xu, Q.; Yuan, A.J.; Zhang, R.; Bian, X.; Chen, D.; Hu, X. Application of electrochemical methods for pharmaceutical and drug analysis. Curr. Pharm. Anal., 2009, 5(2), 144-155.
[http://dx.doi.org/10.2174/157341209788172889]
[7]
Özkan, S.A.; Uslu, B.; Aboul-Enein, H.Y. Analysis of pharmaceuticals and biological fluids using modern electroanalytical techniques. Crit. Rev. Anal. Chem., 2003, 33(3), 155-181.
[http://dx.doi.org/10.1080/713609162]
[8]
Vasudevan, M.; Ravisankar, S.; Sathiyanarayanan, A.; Chandan, R.S. Simultaneous estimation of phenylpropanolamine HCl, guaiphenesin and diphenylpyraline HCl in syrups by LC. J. Pharm. Biomed. Anal., 2000, 24(1), 25-31.
[http://dx.doi.org/10.1016/S0731-7085(00)00385-X] [PMID: 11108536]
[9]
Wilcox, M.L.; Stewart, J.T. HPLC determination of guaifenesin with selected medications on underivatized silica with an aqueous-organic mobile phase. J. Pharm. Biomed. Anal., 2000, 23(5), 909-916.
[http://dx.doi.org/10.1016/S0731-7085(00)00359-9] [PMID: 11022915]
[10]
Chen, X.; Huang, J.; Kong, Z.; Zhong, D. Sensitive liquid chromatography-tandem mass spectrometry method for the simultaneous determination of paracetamol and guaifenesin in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2005, 817(2), 263-269.
[http://dx.doi.org/10.1016/j.jchromb.2004.12.011] [PMID: 15686994]
[11]
Patil, H.; Sonawane, S.; Gide, P. Determination of guaifenesin from spiked human plasma using RP-HPLC with UV detection. J. Anal. Chem., 2014, 69(4), 390-394.
[http://dx.doi.org/10.1134/S1061934814040030]
[12]
Sharaf, M.H.M.; Stiff, D.D. Determination of guaifenesin in human serum by capillary gas chromatography and electron capture detection. J. Pharm. Biomed. Anal., 2004, 35(4), 801-806.
[http://dx.doi.org/10.1016/j.jpba.2004.01.028] [PMID: 15193724]
[13]
Singh, D.P.; Dutta, L.; Singh, O.; Mishra, S.; Khuroo, A.; Monif, T.; Ahmed, A.; Yadav, N. Selective, sensitive, and rapid liquid chromatography tandem mass spectrometry method for determination of guaifenesin in human plasma. Clin. Res. Regul. Aff., 2010, 27(4), 121-127.
[http://dx.doi.org/10.3109/10601333.2010.513387]
[14]
Rele, R.V. Simultaneous UV-spectrophotometric for validation of acetaminophen and guaiphenesin by AUC method in pharmaceutical dosages. Res. J. Chem. Sci., 2016, 6(5), 6-10.
[15]
Abdallah, O.M. Sensitive spectrophotometric method for quantitation of guaifenesin and dropropizine in their dosage forms. Int. J. Anal. Chem., 2010, 2010(2)704564
[http://dx.doi.org/10.1155/2010/704564] [PMID: 20671996]
[16]
Hadi, M. Electrochemical determination of guaifenesin in a pharmaceutical formulation and human urine based on an anodized nanocrystalline graphite-like pyrolytic carbon film electrode. Anal. Methods, 2015, 7(20), 8778-8785.
[http://dx.doi.org/10.1039/C5AY02142A]
[17]
Gholivand, M.B.; Khodadadian, M. Simultaneous voltammetric determination of theophylline and guaifenesin using a multiwalled carbon nanotube‐ionic liquid modified glassy carbon electrode. Electroanalysis, 2014, 26(9), 1975-1983.
[http://dx.doi.org/10.1002/elan.201400218]
[18]
Gholivand, M.B.; Azadbakht, A.; Pashabadi, A. An electrochemical sensor based on carbon nanotube bimetallic Au‐Pt inorganic‐organic nanofiber hybrid nanocomposite electrode applied for detection of guaifenesin. Electroanalysis, 2011, 23(12), 2771-2779.
[http://dx.doi.org/10.1002/elan.201100381]
[19]
Tapsoba, I.; Belgaied, J.E.; Boujlel, K. Voltammetric assay of Guaifenesin in pharmaceutical formulation. J. Pharm. Biomed. Anal., 2005, 38(1), 162-165.
[http://dx.doi.org/10.1016/j.jpba.2004.11.056] [PMID: 15907635]
[20]
Boguslavsky, L.; Kalash, H.; Xu, Z.; Beckles, D.; Geng, L.; Skotheim, T.; Laurinavicius, V.; Lee, H.S. Thin film bienzyme amperometric biosensors based on polymeric redox mediators with electrostatic bipolar protecting layer. Anal. Chim. Acta, 1995, 311(1), 15-21.
[http://dx.doi.org/10.1016/0003-2670(95)00168-Y]
[21]
Raj, C.R.; Chakraborty, S. Carbon nanotubes-polymer-redox mediator hybrid thin film for electrocatalytic sensing. Biosens. Bioelectron., 2006, 22(5), 700-706.
[http://dx.doi.org/10.1016/j.bios.2006.02.018] [PMID: 16584882]
[22]
Wang, Y.; Hu, S. A novel nitric oxide biosensor based on electropolymerization poly(toluidine blue) film electrode and its application to nitric oxide released in liver homogenate. Biosens. Bioelectron., 2006, 22(1), 10-17.
[http://dx.doi.org/10.1016/j.bios.2005.11.012] [PMID: 16384698]
[23]
Guo, S.; Zhu, Q.; Yang, B.; Wang, J.; Ye, B. Determination of caffeine content in tea based on poly(safranine T) electroactive film modified electrode. Food Chem., 2011, 129(3), 1311-1314.
[http://dx.doi.org/10.1016/j.foodchem.2011.05.095] [PMID: 25212372]
[24]
Lin, K.C.; Yin, C.Y.; Chen, S.M. An electrochemical biosensor for determination of hydrogen peroxide using nanocomposite of poly(methylene blue) and FAD hybrid film. Sens. Actuators B Chem., 2011, 157(1), 202-210.
[25]
Chitravathi, S.; Kumara Swamy, B.E.; Mamatha, G.P.; Sherigara, B.S. Electrochemical ehaviour of poly (naphthol green B)-film modified carbon paste electrode and its application for the determination of dopamine and uric acid. J. Electroanal. Chem. (Lausanne Switz.), 2012, 2012(667), 66-75.
[http://dx.doi.org/10.1016/j.jelechem.2011.11.017]
[26]
Liu, X.; Luo, L.; Ding, Y.; Kang, Z.; Ye, D. Simultaneous determination of L-cysteine and L-tyrosine using Au-nanoparticles/poly-eriochrome black T film modified glassy carbon electrode. Bioelectrochemistry, 2012, 86(86), 38-45.
[http://dx.doi.org/10.1016/j.bioelechem.2012.01.008] [PMID: 22360849]
[27]
Reddaiah, K.; Reddy, M.M.; Raghu, P.; Reddy, T.M. An electrochemical sensor based on poly (solochrome dark blue) film coated electrode for the determination of dopamine and simultaneous separation in the presence of uric acid and ascorbic acid: a voltammetric method. Colloids Surf. B Biointerfaces, 2013, 106(106), 145-150.
[http://dx.doi.org/10.1016/j.colsurfb.2013.01.025] [PMID: 23434704]
[28]
Kul, D.; Brett, C.M.A. Electrochemical investigation and determination of levodopa on poly(Nile blue‐a)/multiwalled carbon nanotube modified glassy carbon electrodes. Electoranalysis, 2014, 26(6), 1320-1325.
[http://dx.doi.org/10.1002/elan.201400071]
[29]
Dicu, D.; Muresan, L.M.; Popescu, I.C.; Cristea, C.; Silberg, I.A.; Brouant, P. Modified electrodes with new phenothiazine derivatives for electrocatyltic oxidation of NADH. Electrochim. Acta, 2000, 45(24), 3951-3957.
[http://dx.doi.org/10.1016/S0013-4686(00)00485-0]
[30]
Ghica, M.E.; Pauliukaite, R.; Marchand, N.; Devic, E.; Brett, C.M.A. An improved biosensor for acetaldehyde determination using a bienzymatic strategy at poly(neutral red) modified carbon film electrodes. Anal. Chim. Acta, 2007, 591(1), 80-86.
[http://dx.doi.org/10.1016/j.aca.2007.03.047] [PMID: 17456427]
[31]
Pauliukaite, R.; Ghica, M.E.; Barsan, M.; Brett, C.M.A. Characterisation of poly(neutral red) modified carbon film electrodes; application as a redox mediator for biosensors. J. Solid State Electrochem., 2007, 11(7), 899-908.
[http://dx.doi.org/10.1007/s10008-007-0281-9]
[32]
Sun, W.; Wang, Y.; Gong, S.; Cheng, Y.; Shi, F.; Sun, Z. Application of poly(acridine orange) and graphene modified carbon/ionic liquid paste electrode for the sensitive electrochemical detection of rutin. Electrochim. Acta, 2013, 2013(109), 298-304.
[http://dx.doi.org/10.1016/j.electacta.2013.07.124]
[33]
Wang, Z.; Xia, J.; Zhu, L.; Zhang, F.; Guo, X.; Li, Y.; Xia, Y. The fabrication of poly (acridine orange)/graphene modified electrode with electrolysis micelle disruption method for selective determination of uric acid. Sens. Actuators B Chem., 2012, 161(1), 131-136.
[34]
Zhang, Y. Voltammetric ehaviour of dobutamine at poly(acridine orange) film modified electrode and its determination by adsorptive stripping voltammetry. Anal. Lett., 2004, 37(10), 2031-2042.
[http://dx.doi.org/10.1081/AL-200026666]
[35]
Kul, D.; Doğan-Topal, B.; Özkan, S.A.; Uslu, B. Poly(acridine orange)-modified glassy carbon electrodes: electrosynthesis, characterisation and sensor application with uric acid. J. Appl. Electrochem., 2014, 44(7), 831-840.
[http://dx.doi.org/10.1007/s10800-014-0691-1]
[36]
Ozkan, S.A.; Dogan, B.; Uslu, B. Voltammetric analysis of the novel atypical antipsychotic drug quetiapine in human serum and urine. Mikrochim. Acta, 2006, 153, 27-35.
[http://dx.doi.org/10.1007/s00604-005-0457-x]
[37]
Zhang, Y.; Zhuang, H. Poly (acridine orange) film modified electrode for the determination 1-naphthol in the presence of 2-naphthol. Electrochim. Acta, 2009, 54(28), 7364-7369.
[http://dx.doi.org/10.1016/j.electacta.2009.07.067]
[38]
Ghica, M.E.; Brett, C.M.A. Poly(brilliant cresyl blue) modified glassy carbon electrodes: Electrosynthesis, characterisation and application in biosensors. J. Electroanal. Chem. (Lausanne Switz.), 2009, 629(1-2), 35-42.
[http://dx.doi.org/10.1016/j.jelechem.2009.01.019]
[39]
Bozal-Palabıyık, B.; Uslu, B. Comparative study for voltammetric investigation and trace determination of pramipexole at bare and carbon nanotube-modified glassy carbon electrodes. Ionics, 2016, 22(12), 2519-2528.
[http://dx.doi.org/10.1007/s11581-016-1774-2]
[40]
Laviron, E.; Roullier, L.; Degrand, C. A multilayer model for the study of space distributed redox modified electrodes: Part II. Theory and application of linear potential sweep voltammetry for a simple reaction. J. Electroanal. Chem. Interfacial Electrochem., 1980, 112(1), 11-23.
[http://dx.doi.org/10.1016/S0022-0728(80)80003-9]
[41]
Riley, C.M.; Rosanske, T.W. Development and validation of analytical methods, 1st ed; Elsevier Science Ltd.: New York, 1996.
[42]
Ermer, J.; Miller, J.H. Method validation in pharmaceutical analysis, 2005.