Targeting NUPR1 for Cancer Treatment: A Risky Endeavor

Page: [768 - 778] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

NUPR1 is a transcription factor that has attracted great attention because of its various roles in cancer. Several studies were carried out to determine its molecular targets and mechanism of action to develop novel therapies against cancer. Here, we shed light on the role of NUPR1 in different types of cancer. NUPR1 regulates a complex network of pathways that may be affected by its silencing, which can cause varying effects. Its role in some types of cancer has been reported but remains incompletely understood, whereas its roles in other types of cancers have not been reported yet. Therefore, targeting NUPR1 for cancer treatment remains challenging and risky.

Keywords: NUPR1, Com-1, p8, stress protein, cancer progression, cancer inhibition, chemoresistance.

Graphical Abstract

[1]
Emma, M.R.; Iovanna, J.L.; Bachvarov, D.; Puleio, R.; Loria, G.R.; Augello, G.; Candido, S.; Libra, M.; Gulino, A.; Cancila, V.; McCubrey, J.A.; Montalto, G.; Cervello, M. NUPR1, a new target in liver cancer: implication in controlling cell growth, migration, invasion and sorafenib resistance. Cell Death Dis., 2016, 7(6) e2269
[http://dx.doi.org/10.1038/cddis.2016.175 ] [PMID: 27336713]
[2]
Goruppi, S.; Kyriakis, J.M. The pro-hypertrophic basic helix-loop-helix protein p8 is degraded by the ubiquitin/proteasome system in a protein kinase B/Akt- and glycogen synthase kinase-3-dependent manner, whereas endothelin induction of p8 mRNA and renal mesangial cell hypertrophy require NFAT4. J. Biol. Chem., 2004, 279(20), 20950-20958.
[http://dx.doi.org/10.1074/jbc.M312401200 ] [PMID: 15016802]
[3]
Encinar, J.A.; Mallo, G.V.; Mizyrycki, C.; Giono, L.; González-Ros, J.M.; Rico, M.; Cánepa, E.; Moreno, S.; Neira, J.L.; Iovanna, J.L. Human p8 is a HMG-I/Y-like protein with DNA binding activity enhanced by phosphorylation. J. Biol. Chem., 2001, 276(4), 2742-2751.
[http://dx.doi.org/10.1074/jbc.M008594200 ] [PMID: 11056169]
[4]
Urrutia, R.; Velez, G.; Lin, M.; Lomberk, G.; Neira, J.L.; Iovanna, J. Evidence supporting the existence of a NUPR1-like family of helix-loop-helix chromatin proteins related to, yet distinct from, AT hook-containing HMG proteins. J. Mol. Model., 2014, 20(8), 2357.
[http://dx.doi.org/10.1007/s00894-014-2357-7 ] [PMID: 25056123]
[5]
Mallo, G.V.; Fiedler, F.; Calvo, E.L.; Ortiz, E.M.; Vasseur, S.; Keim, V.; Morisset, J.; Iovanna, J.L. Cloning and expression of the rat p8 cDNA, a new gene activated in pancreas during the acute phase of pancreatitis, pancreatic development, and regeneration, and which promotes cellular growth. J. Biol. Chem., 1997, 272(51), 32360-32369.
[http://dx.doi.org/10.1074/jbc.272.51.32360 ] [PMID: 9405444]
[6]
Vasseur, S.; Vidal Mallo, G.; Fiedler, F.; Bödeker, H.; Cánepa, E.; Moreno, S.; Iovanna, J.L. Cloning and expression of the human p8, a nuclear protein with mitogenic activity. Eur. J. Biochem., 1999, 259(3), 670-675.
[http://dx.doi.org/10.1046/j.1432-1327.1999.00092.x ] [PMID: 10092851]
[7]
Jiang, W.G.; Davies, G.; Martin, T.A.; Kynaston, H.; Mason, M.D.; Fodstad, O. Com-1/p8 acts as a putative tumour suppressor in prostate cancer. Int. J. Mol. Med., 2006, 18(5), 981-986.
[http://dx.doi.org/10.3892/ijmm.18.5.981 ] [PMID: 17016631]
[8]
Jung, S.H.; Lee, A.; Yim, S.H.; Hu, H.J.; Choe, C.; Chung, Y.J. Simultaneous copy number gains of NUPR1 and ERBB2 predicting poor prognosis in early-stage breast cancer. BMC Cancer, 2012, 12, 382.
[http://dx.doi.org/10.1186/1471-2407-12-382 ] [PMID: 22938721]
[9]
Jiang, W.G.; Davies, G.; Fodstad, O. Com-1/P8 in oestrogen regulated growth of breast cancer cells, the ER-β connection. Biochem. Biophys. Res. Commun., 2005, 330(1), 253-262.
[http://dx.doi.org/10.1016/j.bbrc.2005.02.157 ] [PMID: 15781258]
[10]
Vincent, A.J.; Ren, S.; Harris, L.G.; Devine, D.J.; Samant, R.S.; Fodstad, O.; Shevde, L.A. Cytoplasmic translocation of p21 mediates NUPR1-induced chemoresistance: NUPR1 and p21 in chemoresistance. FEBS Lett., 2012, 586(19), 3429-3434.
[http://dx.doi.org/10.1016/j.febslet.2012.07.063 ] [PMID: 22858377]
[11]
Clark, D.W.; Mitra, A.; Fillmore, R.A.; Jiang, W.G.; Samant, R.S.; Fodstad, O.; Shevde, L.A. NUPR1 interacts with p53, transcriptionally regulates p21 and rescues breast epithelial cells from doxorubicin-induced genotoxic stress. Curr. Cancer Drug Targets, 2008, 8(5), 421-430.
[http://dx.doi.org/10.2174/156800908785133196 ] [PMID: 18690848]
[12]
Ree, A.H.; Tvermyr, M.; Engebraaten, O.; Rooman, M.; Røsok, O.; Hovig, E.; Meza-Zepeda, L.A.; Bruland, Ø.S.; Fodstad, O. Expression of a novel factor in human breast cancer cells with metastatic potential. Cancer Res., 1999, 59(18), 4675-4680.
[PMID: 10493524]
[13]
Ree, A. H.; Pacheco, M. M.; Tvermyr, M.; Fodstad, Ø.; Brentani, M. M. Expression of a novel factor , COM1 , in early tumor progression of breast cancer expression of a novel factor , Com1 , in early tumor progression of breast cancer 1,. 2000. 6(3), 1778-1783.
[14]
Cano, C.E.; Sandí, M.J.; Hamidi, T.; Calvo, E.L.; Turrini, O.; Bartholin, L.; Loncle, C.; Secq, V.; Garcia, S.; Lomberk, G.; Kroemer, G.; Urrutia, R.; Iovanna, J.L. Homotypic cell cannibalism, a cell-death process regulated by the nuclear protein 1, opposes to metastasis in pancreatic cancer. EMBO Mol. Med., 2012, 4(9), 964-979.
[http://dx.doi.org/10.1002/emmm.201201255 ] [PMID: 22821859]
[15]
Hamidi, T.; Cano, C.E.; Grasso, D.; Garcia, M.N.; Sandi, M.J.; Calvo, E.L.; Dagorn, J.C.; Lomberk, G.; Urrutia, R.; Goruppi, S.; Carracedo, A.; Velasco, G.; Iovanna, J.L. Nupr1-aurora kinase A pathway provides protection against metabolic stress-mediated autophagic-associated cell death. Clin. Cancer Res., 2012, 18(19), 5234-5246.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0026 ] [PMID: 22899799]
[16]
Cano, C.E.; Iovanna, J.L. Stress proteins and pancreatic cancer metastasis. ScWorld J, 2010, 10, 1958-1966.
[http://dx.doi.org/10.1100/tsw.2010.186 ] [PMID: 20890585]
[17]
Grasso, D.; Bintz, J.; Lomberk, G.; Molejon, M.I.; Loncle, C.; Garcia, M.N.; Lopez, M.B.; Urrutia, R.; Iovanna, J.L. Pivotal role of the chromatin protein Nupr1 in Kras-induced senescence and transformation. Sci. Rep., 2015, 5, 17549.
[http://dx.doi.org/10.1038/srep17549 ] [PMID: 26617245]
[18]
Malicet, C.; Hoffmeister, A.; Moreno, S.; Closa, D.; Dagorn, J.C.; Vasseur, S.; Iovanna, J.L. Interaction of the stress protein p8 with Jab1 is required for Jab1-dependent p27 nuclear-to-cytoplasm translocation. Biochem. Biophys. Res. Commun., 2006, 339(1), 284-289.
[http://dx.doi.org/10.1016/j.bbrc.2005.11.018 ] [PMID: 16300740]
[19]
Malicet, C.; Lesavre, N.; Vasseur, S.; Iovanna, J.L. p8 inhibits the growth of human pancreatic cancer cells and its expression is induced through pathways involved in growth inhibition and repressed by factors promoting cell growth. Mol. Cancer, 2003, 2, 37.
[http://dx.doi.org/10.1186/1476-4598-2-37 ] [PMID: 14613582]
[20]
Du, P.; Ye, L.; Yang, Y.; Jiang, W.G.D.U. Candidate of metastasis 1 regulates in vitro growth and invasion of bladder cancer cells. Int. J. Oncol., 2013, 42(4), 1249-1256.
[http://dx.doi.org/10.3892/ijo.2013.1802 ] [PMID: 23443904]
[21]
Chowdhury, U.R.; Samant, R.S.; Fodstad, O.; Shevde, L.A. Emerging role of nuclear protein 1 (NUPR1) in cancer biology. Cancer Metastasis Rev., 2009, 28(1-2), 225-232.
[http://dx.doi.org/10.1007/s10555-009-9183-x ] [PMID: 19153668]
[22]
Cano, C.E.; Hamidi, T.; Sandi, M.J.; Iovanna, J.L. Nupr1: the Swiss-knife of cancer. J. Cell. Physiol., 2011, 226(6), 1439-1443.
[http://dx.doi.org/10.1002/jcp.22324 ] [PMID: 20658514]
[23]
Vasseur, S.; Mallo, G. V.; Garcia-montero, A.; Ortiz, E. M.; Fiedler, F.; Moreno, S.; Iovanna, J. L. C / EBP β Trans -Acting Factors Involves a C / EBP Cis -Acting Element and Other Regions of the Promoter., , 1999.383, 377-383..
[24]
Jin, H.O.; Seo, S.K.; Woo, S.H.; Choe, T.B.; Hong, S.I.; Kim, J.I.; Park, I.C. Nuclear protein 1 induced by ATF4 in response to various stressors acts as a positive regulator on the transcriptional activation of ATF4. IUBMB Life, 2009, 61(12), 1153-1158.
[http://dx.doi.org/10.1002/iub.271 ] [PMID: 19946894]
[25]
Pedrola, N.; Devis, L.; Llauradó, M.; Campoy, I.; Martinez-Garcia, E.; Garcia, M.; Muinelo-Romay, L.; Alonso-Alconada, L.; Abal, M.; Alameda, F.; Mancebo, G.; Carreras, R.; Castellví, J.; Cabrera, S.; Gil-Moreno, A.; Matias-Guiu, X.; Iovanna, J.L.; Colas, E.; Reventós, J.; Ruiz, A. Nidogen 1 and Nuclear Protein 1: novel targets of ETV5 transcription factor involved in endometrial cancer invasion. Clin. Exp. Metastasis, 2015, 32(5), 467-478.
[http://dx.doi.org/10.1007/s10585-015-9720-7 ] [PMID: 25924802]
[26]
Pommier, R.M.; Gout, J.; Vincent, D.F.; Cano, C.E.; Kaniewski, B.; Martel, S.; Rodriguez, J.; Fourel, G.; Valcourt, U.; Marie, J.C.; Iovanna, J.L.; Bartholin, L. The human NUPR1/P8 gene is transcriptionally activated by transforming growth factor β via the SMAD signalling pathway. Biochem. J., 2012, 445(2), 285-293.
[http://dx.doi.org/10.1042/BJ20120368 ] [PMID: 22738338]
[27]
García-Montero, A.C.; Vasseur, S.; Giono, L.E.; Canepa, E.; Moreno, S.; Dagorn, J.C.; Iovanna, J.L. Transforming growth factor β-1 enhances Smad transcriptional activity through activation of p8 gene expression. Biochem. J., 2001, 357(Pt 1), 249-253.
[http://dx.doi.org/10.1042/bj3570249 ] [PMID: 11415456]
[28]
Kallwellis, K.; Grempler, R.; Günther, S.; Päth, G.; Walther, R. Tumor necrosis factor alpha induces the expression of the nuclear protein p8 via a novel NF kappaB binding site within the promoter. Horm. Metab. Res., 2006, 38(9), 570-574.
[http://dx.doi.org/10.1055/s-2006-950503 ] [PMID: 16981138]
[29]
Päth, G.; Opel, A.; Gehlen, M.; Rothhammer, V.; Niu, X.; Limbert, C.; Romfeld, L.; Hügl, S.; Knoll, A.; Brendel, M.D.; Bretzel, R.G.; Seufert, J. Glucose-dependent expansion of pancreatic β-cells by the protein p8 in vitro and in vivo. Am. J. Physiol. Endocrinol. Metab., 2006, 291(6), E1168-E1176.
[http://dx.doi.org/10.1152/ajpendo.00436.2005 ] [PMID: 16822955]
[30]
Chen, G.; Liu, C.; Xue, Y.; Mao, X.; Xu, K.; Liu, C. Molecular mechanism of pancreatic β-cell adaptive proliferation: studies during pregnancy in rats and in vitro. Endocrine, 2011, 39(2), 118-127.
[http://dx.doi.org/10.1007/s12020-010-9421-6 ] [PMID: 21069579]
[31]
Chen, C.Y.; Wu, S.M.; Lin, Y.H.; Chi, H.C.; Lin, S.L.; Yeh, C.T.; Chuang, W.Y.; Lin, K.H. Induction of nuclear protein-1 by thyroid hormone enhances platelet-derived growth factor A mediated angiogenesis in liver cancer. Theranostics, 2019, 9(8), 2361-2379.
[http://dx.doi.org/10.7150/thno.29628 ] [PMID: 31149049]
[32]
Bratland, A.; Risberg, K.; Maelandsmo, G.M.; Gützkow, K.B.; Olsen, O.E.; Moghaddam, A.; Wang, M-Y.; Hansen, C.M.; Blomhoff, H.K.; Berg, J.P.; Fodstad, O.; Ree, A.H. Expression of a novel factor, com1, is regulated by 1,25-dihydroxyvitamin D3 in breast cancer cells. Cancer Res., 2000, 60(19), 5578-5583.
[PMID: 11034106]
[33]
Ozkaya, A.B.; Ak, H.; Aydin, H.H. High concentration calcitriol induces endoplasmic reticulum stress related gene profile in breast cancer cells. Biochem. Cell Biol., 2017, 95(2), 289-294.
[http://dx.doi.org/10.1139/bcb-2016-0037 ] [PMID: 28177777]
[34]
Goruppi, S.; Bonventre, J.V.; Kyriakis, J.M. Signaling pathways and late-onset gene induction associated with renal mesangial cell hypertrophy. EMBO J., 2002, 21(20), 5427-5436.
[http://dx.doi.org/10.1093/emboj/cdf535 ] [PMID: 12374743]
[35]
Velasco, G.; Sánchez, C.; Guzmán, M. Towards the use of cannabinoids as antitumour agents. Nat. Rev. Cancer, 2012, 12(6), 436-444.
[http://dx.doi.org/10.1038/nrc3247 ] [PMID: 22555283]
[36]
Cai, D.; Huang, E.; Luo, B.; Yang, Y.; Zhang, F.; Liu, C.; Lin, Z.; Xie, W.B.; Wang, H. Nupr1/Chop signal axis is involved in mitochondrion-related endothelial cell apoptosis induced by methamphetamine. Cell Death Dis., 2016, 7(3), e2161-e14.
[http://dx.doi.org/10.1038/cddis.2016.67 ] [PMID: 27031958]
[37]
Yu, S-L.; Lee, D.C.; Baek, S.W.; Cho, D.Y.; Choi, J.G.; Kang, J. Identification of mTOR inhibitor-resistant genes in cutaneous squamous cell carcinoma. Cancer Manag. Res., 2018, 10, 6379-6389.
[http://dx.doi.org/10.2147/CMAR.S174966 ] [PMID: 30568499]
[38]
Lopez, M.B.; Garcia, M.N.; Grasso, D.; Bintz, J.; Molejon, M.I.; Velez, G.; Lomberk, G.; Neira, J.L.; Urrutia, R.; Iovanna, J. Functional characterization of Nupr1L, a novel p53-regulated isoform of the high-mobility group (HMG)-related protumoral protein Nupr1. J. Cell. Physiol., 2015, 230(12), 2936-2950.
[http://dx.doi.org/10.1002/jcp.25022 ] [PMID: 25899918]
[39]
Neira, J.L.; López, M.B.; Sevilla, P.; Rizzuti, B.; Cámara-Artigas, A.; Vidal, M.; Iovanna, J.L. The chromatin nuclear protein NUPR1L is intrinsically disordered and binds to the same proteins as its paralogue. Biochem. J., 2018, 475(14), 2271-2291.
[http://dx.doi.org/10.1042/BCJ20180365 ] [PMID: 29925531]
[40]
Jia, Q.; Zhou, W.; Yao, W.; Yang, F.; Zhang, S.; Singh, R.; Chen, J.; Chen, J.J.; Zhang, Y.; Wei, F.; Zhang, Y.; Jia, H.; Wang, N. Downregulation of YAP-dependent Nupr1 promotes tumor-repopulating cell growth in soft matrices. Oncogenesis, 2016, 5(4), e220-e220.
[http://dx.doi.org/10.1038/oncsis.2016.29 ] [PMID: 27089143]
[41]
Li, J.; Ren, S.; Yao, Y.; Lian, Z.; Dong, B.; Li, T.; Liu, Y.; Xu, Y. Knockdown of NUPR1 inhibits the proliferation of U87 cells in vivo and vitro. Int. J. Clin. Exp. Pathol., 2016, 9(10), 10233-10241.
[42]
Li, J.; Ren, S.; Liu, Y.; Lian, Z.; Dong, B.; Yao, Y.; Xu, Y. Knockdown of NUPR1 inhibits the proliferation of glioblastoma cells via ERK1/2, p38 MAPK and caspase-3. J. Neurooncol., 2017, 132(1), 15-26.
[http://dx.doi.org/10.1007/s11060-016-2337-0 ] [PMID: 28000106]
[43]
Fan, T.; Chen, Y.; He, Z.; Wang, Q.; Yang, X.; Ren, Z.; Zhang, S. Inhibition of ROS/NUPR1-dependent autophagy antagonises repeated cadmium exposure -induced oral squamous cell carcinoma cell migration and invasion. Toxicol. Lett., 2019, 314, 142-152.
[http://dx.doi.org/10.1016/j.toxlet.2019.07.017 ] [PMID: 31319114]
[44]
Narzt, M.S.; Nagelreiter, I.M.; Oskolkova, O.; Bochkov, V.N.; Latreille, J.; Fedorova, M.; Ni, Z.; Sialana, F.J.; Lubec, G.; Filzwieser, M.; Laggner, M.; Bilban, M.; Mildner, M.; Tschachler, E.; Grillari, J.; Gruber, F. A novel role for NUPR1 in the keratinocyte stress response to UV oxidized phospholipids. Redox Biol., 2019, 20(20), 467-482.
[http://dx.doi.org/10.1016/j.redox.2018.11.006 ] [PMID: 30466060]
[45]
Ito, Y.; Yoshida, H.; Motoo, Y.; Iovanna, J.L.; Tomoda, C.; Uruno, T.; Takamura, Y.; Miya, A.; Kobayashi, K.; Matsuzuka, F.; Kuma, K.; Miyauchi, A. Expression of p8 protein in medullary thyroid carcinoma. Anticancer Res., 2005, 25(5), 3419-3423.
[PMID: 16101158]
[46]
Ito, Y.; Yoshida, H.; Motoo, Y.; Miyoshi, E.; Iovanna, J.L.; Tomoda, C.; Uruno, T.; Takamura, Y.; Miya, A.; Kobayashi, K.; Matsuzuka, F.; Matsuura, N.; Kuma, K.; Miyauchi, A. Expression and cellular localization of p8 protein in thyroid neoplasms. Cancer Lett., 2003, 201(2), 237-244.
[http://dx.doi.org/10.1016/j.canlet.2003.07.002 ] [PMID: 14607339]
[47]
Guo, X.; Wang, W.; Hu, J.; Feng, K.; Pan, Y.; Zhang, L.; Feng, Y. Lentivirus-mediated RNAi knockdown of NUPR1 inhibits human nonsmall cell lung cancer growth in vitro and in vivo. Anat. Rec. (Hoboken), 2012, 295(12), 2114-2121.
[http://dx.doi.org/10.1002/ar.22571 ] [PMID: 22961798]
[48]
Mu, Y.; Yan, X.; Li, D.; Zhao, D.; Wang, L.; Wang, X.; Gao, D.; Yang, J.; Zhang, H.; Li, Y.; Sun, Y.; Wei, Y.; Zhang, Z.; Chang, X.; Yao, Z.; Tian, S.; Zhang, K.; Terada, L.S.; Ma, Z.; Liu, Z. NUPR1 maintains autolysosomal efflux by activating SNAP25 transcription in cancer cells. Autophagy, 2017, 8627, 1-17.
[PMID: 29130426]
[49]
Kong, D.K.; Georgescu, S.P.; Cano, C.; Aronovitz, M.J.; Iovanna, J.L.; Patten, R.D.; Kyriakis, J.M.; Goruppi, S. Deficiency of the transcriptional regulator p8 results in increased autophagy and apoptosis, and causes impaired heart function. Mol. Biol. Cell, 2010, 21, 1335-1349.
[http://dx.doi.org/10.1091/mbc.e09-09-0818]
[50]
Deng, Z.H.; Meng, J.; Tang, J.; Hu, G.Y.; Tao, L.J. Fluorofenidone inhibits the proliferation of lung adenocarcinoma cells. J. Cancer, 2017, 8(10), 1917-1926.
[http://dx.doi.org/10.7150/jca.18040 ] [PMID: 28819390]
[51]
Chen, D.; Kluz, T.; Fang, L.; Zhang, X.; Sun, H.; Jin, C.; Costa, M. Hexavalent chromium (Cr(VI)) down-regulates acetylation of histone H4 at lysine 16 through induction of stressor protein Nupr1. PLoS One, 2016, 11(6) e0157317
[http://dx.doi.org/10.1371/journal.pone.0157317 ] [PMID: 27285315]
[52]
Kim, K-S.; Jin, D-I.; Yoon, S.; Baek, S-Y.; Kim, B-S.; Oh, S-O. Expression and roles of NUPR1 in cholangiocarcinoma cells. Anat. Cell Biol., 2012, 45(1), 17-25.
[http://dx.doi.org/10.5115/acb.2012.45.1.17 ] [PMID: 22536548]
[53]
Lee, Y.K.; Jee, B.A.; Kwon, S.M.; Yoon, Y.S.; Xu, W.G.; Wang, H.J.; Wang, X.W.; Thorgeirsson, S.S.; Lee, J.S.; Woo, H.G.; Yoon, G. Identification of a mitochondrial defect gene signature reveals NUPR1 as a key regulator of liver cancer progression. Hepatology, 2015, 62(4), 1174-1189.
[http://dx.doi.org/10.1002/hep.27976 ] [PMID: 26173068]
[54]
Augello, G.; Emma, M.R.; Cusimano, A.; Azzolina, A.; Mongiovì, S.; Puleio, R.; Cassata, G.; Gulino, A.; Belmonte, B.; Gramignoli, R.; Strom, S.C.; McCubrey, J.A.; Montalto, G.; Cervello, M. Targeting HSP90 with the small molecule inhibitor AUY922 (luminespib) as a treatment strategy against hepatocellular carcinoma. Int. J. Cancer, 2019, 144(10), 2613-2624.
[http://dx.doi.org/10.1002/ijc.31963 ] [PMID: 30488605]
[55]
de Conti, A.; Dreval, K.; Tryndyak, V.; Orisakwe, O.E.; Ross, S.A.; Beland, F.A.; Pogribny, I.P. Inhibition of the cell death pathway in nonalcoholic steatohepatitis (NASH)-related hepatocarcinogenesis is associated with histone H4 lysine 16 deacetylation. Mol. Cancer Res., 2017, 15(9), 1163-1172.
[http://dx.doi.org/10.1158/1541-7786.MCR-17-0109 ] [PMID: 28512251]
[56]
Ji, Y.; Wang, Z.; Chen, H.; Zhang, L.; Zhuo, F.; Yang, Q. Serum from chronic hepatitis b patients promotes growth and proliferation via the IGF-II/IGF-IR/MEK/ERK signaling pathway in hepatocellular carcinoma cells. Cell. Physiol. Biochem., 2018, 47(1), 39-53.
[http://dx.doi.org/10.1159/000489744 ] [PMID: 29763915]
[57]
Bak, Y.; Shin, H.J.; Bak, Is.; Yoon, D.Y.; Yu, D.Y.; Hepatitis, B.; Virus, X. Hepatitis B virus X promotes hepatocellular carcinoma development via nuclear protein 1 pathway. Biochem. Biophys. Res. Commun., 2015, 466(4), 676-681.
[http://dx.doi.org/10.1016/j.bbrc.2015.09.082 ] [PMID: 26392315]
[58]
Schoenhals, M.; Jourdan, M.; Seckinger, A.; Klein, B. Forced KLF4 expression increases the generation of mature plasma cells and uncovers a network linked with plasma cell stage. Cell Cycle, 2016, 15(14), 1919-1928.
[59]
Zeng, C.; Li, X.; Li, A.; Yi, B.; Peng, X.; Huang, X.; Chen, J. Knockdown of NUPR1 inhibits the growth of U266 and RPMI8226 multiple myeloma cell lines via activating PTEN and caspase activationdependent apoptosis. Oncol. Rep., 2018, 40(3), 1487-1494.
[http://dx.doi.org/10.3892/or.2018.6544 ] [PMID: 30015974]
[60]
Lee, S.T.; Muench, M.O.; Fomin, M.E.; Xiao, J.; Zhou, M.; de Smith, A.; Martín-Subero, J.I.; Heath, S.; Houseman, E.A.; Roy, R.; Wrensch, M.; Wiencke, J.; Metayer, C.; Wiemels, J.L. Epigenetic remodeling in B-cell acute lymphoblastic leukemia occurs in two tracks and employs embryonic stem cell-like signatures. Nucleic Acids Res., 2015, 43(5), 2590-2602.
[http://dx.doi.org/10.1093/nar/gkv103 ] [PMID: 25690899]
[61]
Zhou, C.; Xu, J.; Lin, J.; Lin, R.; Chen, K.; Kong, J.; Shui, X. Long noncoding RNA FEZF1-AS1 promotes osteosarcoma progression by regulating the MiR-4443/NUPR1 Axis. Oncol. Res., 2018, 26(9), 1335-1343.
[62]
Ishida, M.; Miyamoto, M.; Naitoh, S.; Tatsuda, D.; Hasegawa, T.; Nemoto, T.; Yokozeki, H.; Nishioka, K.; Matsukage, A.; Ohki, M.; Ohta, T. The SYT-SSX fusion protein down-regulates the cell proliferation regulator COM1 in t(x;18) synovial sarcoma. Mol. Cell. Biol., 2007, 27(4), 1348-1355.
[http://dx.doi.org/10.1128/MCB.00658-06 ] [PMID: 17101797]
[63]
Jiang, W.G.; Davies, G.; Kynaston, H.; Mason, M.D.; Fodstad, O. Does the PGC-1/PPARgamma pathway play a role in Com-1/p8 mediated cell growth inhibition in prostate cancer? Int. J. Mol. Med., 2006, 18(6), 1169-1175.
[PMID: 17089023]
[64]
Yin, W.; Wang, P.; Wang, X.; Song, W.; Cui, X.; Yu, H.; Zhu, W. Identification of microRNAs and mRNAs associated with multidrug resistance of human laryngeal cancer Hep-2 cells. Braz. J. Med. Biol. Res., 2013, 46(6), 546-554.
[http://dx.doi.org/10.1590/1414-431X20131662 ] [PMID: 23780424]
[65]
Mohammad, H.P.; Seachrist, D.D.; Quirk, C.C.; Nilson, J.H. Reexpression of p8 contributes to tumorigenic properties of pituitary cells and appears in a subset of prolactinomas in transgenic mice that hypersecrete luteinizing hormone. Mol. Endocrinol., 2004, 18(10), 2583-2593.
[http://dx.doi.org/10.1210/me.2004-0163 ] [PMID: 15243129]
[66]
Binse, I.; Ueberberg, B.; Sandalcioglu, I.E.; Flitsch, J.; Luedecke, D.K.; Mann, K.; Petersenn, S. Expression analysis of GADD45γ, MEG3, and p8 in pituitary adenomas. Horm. Metab. Res., 2014, 46(9), 644-650.
[http://dx.doi.org/10.1055/s-0034-1383566 ] [PMID: 25126861]
[67]
Fish, L.; Zhang, S.; Yu, J.X.; Culbertson, B.; Zhou, A.Y.; Goga, A.; Goodarzi, H. Cancer cells exploit an orphan RNA to drive metastatic progression. Nat. Med., 2018, 24(11), 1743-1751.
[http://dx.doi.org/10.1038/s41591-018-0230-4 ] [PMID: 30397354]
[68]
Grasso, D.; Garcia, M.N.; Hamidi, T.; Cano, C.; Calvo, E.; Lomberk, G.; Urrutia, R.; Iovanna, J.L. Pancreatitis promotes oncogenic Kras(G12D)-induced pancreatic transformation through activation of Nupr1. Mol. Cell. Oncol., 2014, 1(1) e29913
[http://dx.doi.org/10.4161/mco.29913 ] [PMID: 27308320]
[69]
Malicet, C.; Giroux, V.; Vasseur, S.; Dagorn, J.C.; Neira, J.L.; Iovanna, J.L. Regulation of apoptosis by the p8/prothymosin alpha complex. Proc. Natl. Acad. Sci. USA, 2006, 103(8), 2671-2676.
[http://dx.doi.org/10.1073/pnas.0508955103 ] [PMID: 16478804]
[70]
Santofimia-castañ, P.; Lan, W.; Bintz, J.; Ga, O.; Carrier, A.; Lomberk, G.; Neira, J.L.; González, A.; Urrutia, R.; Soubeyran, P.; Iovanna, J. Inactivation of NUPR1 promotes cell death by coupling er-stress responses with necrosis. Sci. Rep., 8(1), 1-16.
[71]
Li, X.; Martin, T.A.; Jiang, W.G. COM-1/p8 acts as a tumour growth enhancer in colorectal cancer cell lines. Anticancer Res., 2012, 32(4), 1229-1237.
[PMID: 22493353]
[72]
Davies, M.L.; Parr, C.; Sanders, A.J.; Fodstad, O.; Jiang, W.G. The transcript expression and protein distribution pattern in human colorectal carcinoma reveal a pivotal role of COM-1/p8 as a tumour suppressor. Cancer Genomics Proteomics, 2010, 7(2), 75-80.
[PMID: 20335521]
[73]
Wang, L.; Jiang, F.; Xia, X.; Zhang, B. LncRNA FAL1 promotes carcinogenesis by regulation of miR-637/NUPR1 pathway in colorectal cancer. Int. J. Biochem. Cell Biol., 2019, 106(106), 46-56.
[http://dx.doi.org/10.1016/j.biocel.2018.09.015 ] [PMID: 30267804]
[74]
Zhong, C.; Yu, J.; Li, D.; Jiang, K.; Tang, Y.; Yang, M.; Shen, H.; Fang, X.; Ding, K.; Zheng, S.; Yuan, Y. Zyxin as a potential cancer prognostic marker promotes the proliferation and metastasis of colorectal cancer cells. J. Cell. Physiol., 2019, 234(9), 15775-15789.
[http://dx.doi.org/10.1002/jcp.28236 ] [PMID: 30697742]
[75]
Schroll, M.M.; LaBonia, G.J.; Ludwig, K.R.; Hummon, A.B. glucose restriction combined with autophagy inhibition and chemotherapy in hct 116 spheroids decreases cell clonogenicity and viability regulated by tumor suppressor genes. J. Proteome Res., 2017, 16(8), 3009-3018.
[http://dx.doi.org/10.1021/acs.jproteome.7b00293 ] [PMID: 28650662]
[76]
Real, N.E.; Castro, G.N.; Darío Cuello-Carrión, F.; Perinetti, C.; Röhrich, H.; Cayado-Gutiérrez, N.; Guerrero-Gimenez, M.E.; Ciocca, D.R. Molecular markers of DNA damage and repair in cervical cancer patients treated with cisplatin neoadjuvant chemotherapy: an exploratory study. Cell Stress Chaperones, 2017, 22(6), 811-822.
[http://dx.doi.org/10.1007/s12192-017-0811-z ] [PMID: 28608263]
[77]
Niessner, H.; Sinnberg, T.; Kosnopfel, C.; Smalley, K.S.M.; Beck, D.; Praetorius, C.; Mai, M.; Beissert, S.; Kulms, D.; Schaller, M.; Garbe, C.; Flaherty, K.T.; Westphal, D.; Wanke, I.; Meier, F. BRAF inhibitors amplify the proapoptotic activity of MEK inhibitors by inducing ER stress in NRAS-mutant melanoma. Clin. Cancer Res., 2017, 23(20), 6203-6214.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0098 ] [PMID: 28724666]
[78]
Neira, J.L.; Palomino-Schätzlein, M.; Ricci, C.; Ortore, M.G.; Rizzuti, B.; Iovanna, J.L. Dynamics of the intrinsically disordered protein NUPR1 in isolation and in its fuzzy complexes with DNA and prothymosin α. Biochim. Biophys. Acta. Proteins Proteomics, 2019, 1867(11) 140252
[http://dx.doi.org/10.1016/j.bbapap.2019.07.005 ] [PMID: 31325636]
[79]
Neira, J.L.; Bintz, J.; Arruebo, M.; Rizzuti, B.; Bonacci, T.; Vega, S.; Lanas, A.; Velázquez-Campoy, A.; Iovanna, J.L.; Abián, O. Identification of a drug targeting an intrinsically disordered protein involved in pancreatic adenocarcinoma. Sci. Rep., 2017, 2017(7), 1-15.
[PMID: 28054562]
[80]
Santofimia-Castaño, P.; Rizzuti, B.; Pey, Á.L.; Soubeyran, P.; Vidal, M.; Urrutia, R.; Iovanna, J.L.; Neira, J.L. Intrinsically disordered chromatin protein NUPR1 binds to the C-terminal region of Polycomb RING1B. Proc. Natl. Acad. Sci. USA, 2017, 114(31), E6332-E6341.
[http://dx.doi.org/10.1073/pnas.1619932114 ] [PMID: 28720707]
[81]
Santofimia-Castaño, P.; Xia, Y.; Lan, W.; Zhou, Z.; Huang, C.; Peng, L.; Soubeyran, P.; Velázquez-Campoy, A.; Abián, O.; Rizzuti, B.; Neira, J.L.; Iovanna, J. Ligand-based design identifies a potent NUPR1 inhibitor exerting anticancer activity via necroptosis. J. Clin. Invest., 2019, 129(6), 2500-2513.
[http://dx.doi.org/10.1172/JCI127223 ] [PMID: 30920390]
[82]
Seshachalam, V.P.; Sekar, K.; Hui, K.M. Insights into the etiology-associated gene regulatory networks in hepatocellular carcinoma from the cancer genome atlas. J. Gastroenterol. Hepatol., 2018, 33(12), 2037-2047.
[http://dx.doi.org/10.1111/jgh.14262 ] [PMID: 29672926]