Design, Synthesis, In vitro and In silico Evaluation of New Hydrazonebased Antitumor Agents as Potent Akt Inhibitors

Page: [1380 - 1392] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: Akt is overexpressed or activated in a variety of human cancers, including gliomas, lung, breast, ovarian, gastric and pancreatic carcinomas. Akt inhibition leads to the induction of apoptosis and inhibition of tumor growth and therefore extensive efforts have been devoted to the discovery of potent antitumor drugs targeting Akt.

Objectives: The objective of this work was to identify potent anticancer agents targeting Akt.

Methods: New hydrazone derivatives were synthesized and investigated for their cytotoxic effects on 5RP7 H-ras oncogene transformed rat embryonic fibroblast and L929 mouse embryonic fibroblast cell lines. Besides, the apoptotic effects of the most active compounds on 5RP7 cell line were evaluated using flow cytometry. Their Akt inhibitory effects were also investigated using a colorimetric assay. In silico docking and Absorption, Distribution, Metabolism and Excretion (ADME) studies were also performed using Schrödinger’s Maestro molecular modeling package.

Results and Discussion: Compounds 3a, 3d, 3g and 3j were found to be effective on 5RP7 cells (with IC50 values of <0.97, <0.97, 1.13±0.06 and <0.97 μg/mL, respectively) when compared with cisplatin (IC50= 1.87±0.15 μg/mL). It was determined that these four compounds significantly induced apoptosis in 5RP7 cell line. Among them, N'-benzylidene-2-[(4-(4-methoxyphenyl)pyrimidin- 2-yl)thio]acetohydrazide (3g) significantly inhibited Akt (IC50= 0.5±0.08 μg/mL) when compared with GSK690693 (IC50= 0.6±0.05 μg/mL). Docking studies suggested that compound 3g showed good affinity to the active site of Akt (PDB code: 2JDO). According to in silico ADME studies, the compound also complies with Lipinski's rule of five and Jorgensen's rule of three.

Conclusion: Compound 3g stands out as a potential orally bioavailable cytotoxic agent and apoptosis inducer targeting Akt.

Keywords: Akt, apoptosis, cancer, hydrazone, molecular docking, pyrimidine.

Graphical Abstract

[1]
Raghavaraju, G.; Liu, H-S. Ha-ras oncogene and anticancer drug resistance. Genomic Med. Biomark. Health Sci., 2011, 3(1), 39-48.
[http://dx.doi.org/10.1016/S2211-4254(11)60006-X]
[2]
Papke, B.; Der, C.J. Drugging RAS: Know the enemy. Science, 2017, 355(6330), 1158-1163.
[http://dx.doi.org/10.1126/science.aam7622] [PMID: 28302824]
[3]
Fernández-Medarde, A.; Santos, E. Ras in cancer and developmental diseases. Genes Cancer, 2011, 2(3), 344-358.
[http://dx.doi.org/10.1177/1947601911411084 ] [PMID: 21779504]
[4]
Gavrilescu, L.C.; Denkers, E.Y. Apoptosis and the balance of homeostatic and pathologic responses to protozoan infection. Infect. Immun., 2003, 71(11), 6109-6115.
[http://dx.doi.org/10.1128/IAI.71.11.6109-6115.2003 ] [PMID: 14573625]
[5]
El-Khattouti, A.; Selimovic, D.; Haikel, Y.; Hassan, M. Crosstalk between apoptosis and autophagy: molecular mechanisms and therapeutic strategies in cancer. J. Cell Death, 2013, 6, 37-55.
[http://dx.doi.org/10.4137/JCD.S11034 ] [PMID: 25278778]
[6]
Mohammad, R.M.; Muqbil, I.; Lowe, L.; Yedjou, C.; Hsu, H-Y.; Lin, L-T.; Siegelin, M.D.; Fimognari, C.; Kumar, N.B.; Dou, Q.P.; Yang, H.; Samadi, A.K.; Russo, G.L.; Spagnuolo, C.; Ray, S.K.; Chakrabarti, M.; Morre, J.D.; Coley, H.M.; Honoki, K.; Fujii, H.; Georgakilas, A.G.; Amedei, A.; Niccolai, E.; Amin, A.; Ashraf, S.S.; Helferich, W.G.; Yang, X.; Boosani, C.S.; Guha, G.; Bhakta, D.; Ciriolo, M.R.; Aquilano, K.; Chen, S.; Mohammed, S.I.; Keith, W.N.; Bilsland, A.; Halicka, D.; Nowsheen, S.; Azmi, A.S. Broad targeting of resistance to apoptosis in cancer. Semin. Cancer Biol., 2015, 35(Suppl.), S78-S103.
[http://dx.doi.org/10.1016/j.semcancer.2015.03.001] [PMID: 25936818]
[7]
Kamal, A.; Faazil, S.; Malik, M.S. Apoptosis-inducing agents: a patent review (2010 - 2013). Expert Opin. Ther. Pat., 2014, 24(3), 339-354.
[http://dx.doi.org/10.1517/13543776.2014.877445] [PMID: 24405450]
[8]
Wong, R.S.Y. Apoptosis in cancer: from pathogenesis to treatment. J. Exp. Clin. Cancer Res., 2011, 30, 87.
[http://dx.doi.org/10.1186/1756-9966-30-87 ] [PMID: 21943236]
[9]
Pore, M.M.; Hiltermann, T.J.N.; Kruyt, F.A.E. Targeting apoptosis pathways in lung cancer. Cancer Lett., 2013, 332(2), 359-368.
[http://dx.doi.org/10.1016/j.canlet.2010.09.012 ] [PMID: 20974517]
[10]
Nitulescu, G.M.; Margina, D.; Juzenas, P.; Peng, Q.; Olaru, O.T.; Saloustros, E.; Fenga, C.; Spandidos, D.Α.; Libra, M.; Tsatsakis, A.M; Akt inhibitors in cancer treatment: The long journey from drug discovery to clinical use (Review). Int. J. Oncol., 2016, 48(3), 869-885.[Review].
[http://dx.doi.org/10.3892/ijo.2015.3306] [PMID: 26698230]
[11]
Roy, N.K.; Bordoloi, D.; Monisha, J.; Padmavathi, G.; Kotoky, J.; Golla, R.; Kunnumakkara, A.B. Specific targeting of Akt kinase isoforms: Taking the precise path for prevention and treatment of cancer. Curr. Drug Targets, 2017, 18(4), 421-435.
[http://dx.doi.org/10.2174/1389450117666160307145236] [PMID: 26953242]
[12]
Cassinelli, G.; Zuco, V.; Gatti, L.; Lanzi, C.; Zaffaroni, N.; Colombo, D.; Perego, P. Targeting the Akt kinase to modulate survival, invasiveness and drug resistance of cancer cells. Curr. Med. Chem., 2013, 20(15), 1923-1945.
[http://dx.doi.org/10.2174/09298673113209990106 ] [PMID: 23410153]
[13]
Morrow, J.K.; Du-Cuny, L.; Chen, L.; Meuillet, E.J.; Mash, E.A.; Powis, G.; Zhang, S. Recent development of anticancer therapeutics targeting Akt. Recent Patents Anticancer Drug Discov., 2011, 6(1), 146-159.
[http://dx.doi.org/10.2174/157489211793980079] [PMID: 21110830]
[14]
Guo, K.; Tang, W.; Zhuo, H.; Zhao, G. Recent advance of Akt inhibitors in clinical trials. ChemistrySelect, 2019, 4, 9040-9044.
[http://dx.doi.org/10.1002/slct.201901293]
[15]
Mathew, B.; Suresh, J.; Ahsan, M.J.; Mathew, G.E.; Usman, D.; Subramanyan, P.N.S.; Safna, K.F.; Maddela, S. Hydrazones as a privileged structural linker in antitubercular agents: a review. Infect. Disord. Drug Targets, 2015, 15(2), 76-88.
[http://dx.doi.org/10.2174/1871526515666150724104411] [PMID: 26205803]
[16]
Narang, R.; Narasimhan, B.; Sharma, S. A review on biological activities and chemical synthesis of hydrazide derivatives. Curr. Med. Chem., 2012, 19(4), 569-612.
[http://dx.doi.org/10.2174/092986712798918789] [PMID: 22204327]
[17]
Kumar, P.; Narasimhan, B. Hydrazides/hydrazones as antimicrobial and anticancer agents in the new millennium. Mini Rev. Med. Chem., 2013, 13(7), 971-987.
[http://dx.doi.org/10.2174/1389557511313070003] [PMID: 23621689]
[18]
Alam, M.S.; Lee, D.U. Synthesis, biological evaluation, drug likeness, and in silico screening of novel benzylidene-hydrazone analogues as small molecule anticancer agents. Arch. Pharm. Res., 2016, 39(2), 191-201.
[http://dx.doi.org/10.1007/s12272-015-0699-z] [PMID: 26694484]
[19]
Han, M.İ.; Bekçi, H.; Uba, A.I.; Yıldırım, Y.; Karasulu, E.; Cumaoğlu, A.; Karasulu, H.Y.; Yelekçi, K.; Yılmaz, Ö.; Küçükgüzel, Ş.G. Synthesis, molecular modeling, in vivo study, and anticancer activity of 1,2,4-triazole containing hydrazide-hydrazones derived from (S)-naproxen. Arch. Pharm. (Weinheim), 2019, 352(6), e1800365
[http://dx.doi.org/10.1002/ardp.201800365] [PMID: 31115928]
[20]
Bak, Y.; Kim, H.; Kang, J.W.; Lee, D.H.; Kim, M.S.; Park, Y.S.; Kim, J.H.; Jung, K.Y.; Lim, Y.; Hong, J.; Yoon, D.Y. A synthetic naringenin derivative, 5-hydroxy-7,4′-diacetyloxyflavanone-N-phenyl hydrazone (N101-43), induces apoptosis through up-regulation of Fas/FasL expression and inhibition of PI3K/Akt signaling pathways in non-small-cell lung cancer cells. J. Agric. Food Chem., 2011, 59(18), 10286-10297.
[http://dx.doi.org/10.1021/jf2017594] [PMID: 21877710]
[21]
Viswanathan, A.; Kute, D.; Musa, A.; Konda Mani, S.; Sipilä, V.; Emmert-Streib, F.; Zubkov, F.I.; Gurbanov, A.V.; Yli-Harja, O.; Kandhavelu, M. 2-(2-(2,4-dioxopentan-3-ylidene)hydrazineyl)benzonitrile as novel inhibitor of receptor tyrosine kinase and PI3K/AKT/mTOR signaling pathway in glioblastoma. Eur. J. Med. Chem., 2019, 166, 291-303.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.021] [PMID: 30731398]
[22]
Kaur, R.; Kaur, P.; Sharma, S.; Singh, G.; Mehndiratta, S.; Bedi, P.M.S.; Nepali, K. Anti-cancer pyrimidines in diverse scaffolds: a review of patent literature. Recent Patents Anticancer Drug Discov., 2015, 10(1), 23-71.
[http://dx.doi.org/10.2174/1574892809666140917104502 ] [PMID: 25230072]
[23]
Prachayasittikul, S.; Pingaew, R.; Worachartcheewan, A.; Sin-thupoom, N.; Prachayasittikul, V.; Ruchirawat, S.; Prachayasittikul, V. Roles of pyridine and pyrimidine derivatives as privileged scaffolds in anticancer agents. Mini Rev. Med. Chem., 2017, 17(10), 869-901.
[http://dx.doi.org/10.2174/1389557516666160923125801] [PMID: 27670581]
[24]
de la Torre, B.G.; Albericio, F. The pharmaceutical industry in 2017. An analysis of FDA drug approvals from the perspective of molecules. Molecules, 2018, 23(3), 533.
[http://dx.doi.org/10.3390/molecules23030533] [PMID: 29495494]
[25]
Altıntop, M.D.; Özdemir, A.; Turan-Zitouni, G.; Ilgın, S.; Atlı, Ö.; İşcan, G.; Kaplancıklı, Z.A. Synthesis and biological evaluation of some hydrazone derivatives as new anticandidal and anticancer agents. Eur. J. Med. Chem., 2012, 58, 299-307.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.011] [PMID: 23142671]
[26]
Turan Zitouni, G.; Altıntop, M.D.; Özdemir, A.; Kaplancıklı, Z.A.; Dikmen, M. Synthesis of some hydrazone derivatives bearing purine moiety as anticancer agents. Turk. J. Pharm. Sci., 2014, 11(1), 55-66.
[27]
Altıntop, M.D.; Akalın Çiftçi, G.; Temel, H.E. Synthesis and evaluation of new benzoxazole derivatives as potential antiglioma agents. Marmara Pharm. J., 2018, 22(4), 547-558.
[28]
Turan-Zitouni, G.; Altıntop, M.D.; Özdemir, A.; Kaplancıklı, Z.A.; Çiftçi, G.A.; Temel, H.E. Synthesis and evaluation of bis-thiazole derivatives as new anticancer agents. Eur. J. Med. Chem., 2016, 107, 288-294.
[http://dx.doi.org/10.1016/j.ejmech.2015.11.002 ] [PMID: 26599534]
[29]
Sever, B.; Akalın Çiftçi, G.; Özdemir, A.; Altıntop, M.D. Design, synthesis and in vitro evaluation of new thiosemicarbazone derivatives as potential anticancer agents. J. Res. Pharm., 2019, 23(1), 16-24.
[30]
Altıntop, M.D.; Sever, B.; Akalın Çiftçi, G.; Özdemir, A. Design, synthesis, and evaluation of a new series of thiazole-based anticancer agents as potent Akt inhibitors. Molecules, 2018, 23(6), 1318.
[http://dx.doi.org/10.3390/molecules23061318 ] [PMID: 29857484]
[31]
Davies, T.G.; Verdonk, M.L.; Graham, B.; Saalau-Bethell, S.; Hamlett, C.C.F.; McHardy, T.; Collins, I.; Garrett, M.D.; Workman, P.; Woodhead, S.J.; Jhoti, H.; Barford, D. A structural comparison of inhibitor binding to PKB, PKA and PKA-PKB chimera. J. Mol. Biol., 2007, 367(3), 882-894.
[http://dx.doi.org/10.1016/j.jmb.2007.01.004] [PMID: 17275837]
[32]
Altıntop, M.D.; Sever, B.; Akalın Çiftçi, G.; Turan-Zitouni, G.; Kaplancıklı, Z.A.; Özdemir, A. Design, synthesis, in vitro and in silico evaluation of a new series of oxadiazole-based anticancer agents as potential Akt and FAK inhibitors. Eur. J. Med. Chem., 2018, 155, 905-924.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.049] [PMID: 29966916]