Synthesis of Thiazolyl-N-phenylmorpholine Derivatives and their Biological Activities

Page: [790 - 805] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Background: Morpholine and thiazole rings are two heterocycles which are wellknown with a wide spectrum of different biological activities, especially antitumor activity.

Objective: The aim of the work is to design and synthesize hybrid heterocyclic compounds of morpholine and thiazole moieties via the reaction of morpholino-thiosemicarbazone derivatives with various α-halocarbonyl compounds and screening their antitumor activity against three tumor cell lines namely, TK-10, MCF-7 and UACC-62.

Methods: An efficient synthesis of a series of N-phenylmorpholine derivatives linked with thiazole moiety was accomplished. The reaction of N-subistituted-2-(N-phenylmorpholine)ethylidene) hydrazine- 1-carbothioamide (thiosemicarbazone derivative) with acetyl and ester-hydrazonoyl chlorides, α-chloroketones, or α-bromoesters afforded the corresponding thiazole derivatives pendent to N-phenylmorpholine moiety in good to excellent yields.

Results: Mass, 1H NMR, 13C NMR, and elemental analysis were used to confirm the structure of all the new derivatives. The antitumor activities of synthesized N-phenylmorpholine-thiazole derivatives were investigated against three tumor cells namely, TK-10, MCF-7 and UACC-62. The results of such investigation indicated that some derivatives showed good potential to inhibit the growth of the two cells of the tested tumor cells. One of the tested compounds, N-ethyl thiosemicarbazone derivative 7 revealed potent growth inhibition of all the three tumor cells.

Conclusion: We have succeeded to synthesize a series of N-phenylmorpholine derivatives pendant to thiazole moiety as antitumor agents.

Keywords: Thiosemicarbazones, morpholine, hydrazonoyl chlorides, thiazoles, α-halocarbonyls, anticancer.

Graphical Abstract

[1]
Achari, B.; Sukhendu, B.M.; Dutta, P.; Chowdhury, C. Perspectives on 1, 4-benzodioxions, 1, 4-benzoxazines and their 2, 3- dihydro derivatives. Synlett, 2004, 14, 2449.
[2]
Duhalde, V.; Lahillie, B.; Camou, F.; Pedeboscq, S.; Pometan, J. P. Proper use of antibiotics: a prospective study on the use of linezolid in a French university hospital. Pometan. Pathologie Biologie, X, 2004, 55(10), 478.
[3]
Marireau, C.; Guilloton, M. kartst, F. In vivo effects of fenpropimorph on the yeast Saccharomyces cerevisiae and determination of the molecular basis of the antifungal property. Antimicrob. Agents Chemother., 1990, 34(6), 989.
[4]
Wyrzykiewicz, E.; Wendzonka, M.B.; Kedzi, B. Synthesis and antimicrobial activity of new (E)-4-[piperidino (40-methylpiperidino-, morpholino-) N-alkoxy]stilbenes. Eur. J. Med. Chem., 2006, 41, 519.
[http://dx.doi.org/10.1016/j.ejmech.2005.11.010] [PMID: 16516352]
[5]
Dixit, P.P.; Nair, P.S.; Patil, V.J.; Jain, S.; Arora, S.K. Synthesis and antibacterial activity of novel (un)substituted benzotriazolyl oxazolidinone derivatives. Bioorg. Med. Chem. Lett., 2005, 15, 3002.
[http://dx.doi.org/10.1016/j.bmcl.2005.04.045] [PMID: 15908210]
[6]
Raparti, V.; Chitre, T.; Bothara, K.; Kumar, V.; Dangre, S.; Khachane, C.; Gore, S. Novel 4-(morpholin-4-yl)-N0-(arylidene) benzohydrazides: synthesis, antimycobacterial activity and QSAR investigations. Eur. J. Med. Chem., 2009, 44, 3954.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.023] [PMID: 19464085]
[7]
Bektas, H.; Demirbas, A.; Demirbas, N.; Alpay Karaoglu, S. Synthesis and biological activity studies of new hybrid moleculescontaining tryptamine moiety. Med. Chem. Res., 2012, 21, 212.
[http://dx.doi.org/10.1007/s00044-010-9531-y]
[8]
Bayrak, H.; Demirbas, A.; Demirbas, N.; Karaoglu, S.A. Synthesis of some new 1,2,4-triazoles starting from isonicotinic acid hydrazide and evaluation of their antimicrobial activities. Eur. J. Med. Chem., 2009, 44(11), 4362-4366.
[http://dx.doi.org/10.1016/j.ejmech.2009.05.022] [PMID: 19647352]
[9]
Bayrak, H.; Demirbas, A.; Karaoglu, S.A.; Demirbas, N. Synthesis of some new 1,2,4-triazoles, their Mannich and Schiff bases and evaluation of their antimicrobial activities. Eur. J. Med. Chem., 2009, 44(3), 1057-1066.
[http://dx.doi.org/10.1016/j.ejmech.2008.06.019] [PMID: 18676062]
[10]
Dixit, P.P.; Patil, V.J.; Nair, P.S.; Jain, S.; Sinha, N.; Arora, S.K. Synthesis of 1-[3-(4-benzotriazol-1/2-yl-3-fluoro-phenyl)-2-oxo-oxazolidin-5-ylmethyl]-3-substituted-thiourea derivatives as antituberculosis agents. Eur. J. Med. Chem., 2006, 41(3), 423-428.
[http://dx.doi.org/10.1016/j.ejmech.2005.12.005] [PMID: 16494970]
[11]
Arshad, F.; Khan, M.F.; Akhtar, W.; Alam, M.M.; Nainwal, L.M.; Kaushik, S.K.; Akhter, M.; Parvez, S.; Hasan, S.M.; Shaquiquzzaman, M. Revealing quinquennial anticancer journey of morpholine: A SAR based review. Eur. J. Med. Chem., 2019, 167, 324-356.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.015] [PMID: 30776694]
[12]
Rudolph, J.; Theis, H.; Hanke, R.; Endermann, R.; Johannsen, L.; Geschke, F. seco-Cyclothialidines: new concise synthesis, inhibitory activity toward bacterial and human DNA topoisomerases, and antibacterial properties. J. Med. Chem., 2001, 44(4), 619-626.
[http://dx.doi.org/10.1021/jm0010623] [PMID: 11170652]
[13]
Quiroga, J.; Hernandez, P.; Insuasty, B.; Abonia, R.; Cobo, J.; Sanchez, A.; Nogueras, M.; Low, J.N. Control of the reaction between 2-aminobenzothiazoles and Mannich bases. Synthesis of pyrido[2,1-b][1,3]benzothiazoles versus [1,3]benzothiazolo[2,3-b]quinazolines. J. Chem. Soc., Perkin Trans. 1, 2002, 4, 555.
[http://dx.doi.org/10.1039/b109676a]
[14]
Patt, W.C.; Hamilton, H.W.; Taylor, M.D.; Ryan, M.J.; Jr, D.G. Taylor, C. J. C. Connolly, A. M. Doherty, S. R. Klutchko, I. B. Sircar, A. Steinbaugh, B. L. Batley, C. A. Painchaud, S. T. Rapundalo, B. M. Michniewicz, S. C. J. Olson. Structure-activity relationships of a series of 2-amino-4-thiazole-containing renin inhibitors. J. Med. Chem., 1992, 35, 2562.
[http://dx.doi.org/10.1021/jm00092a006] [PMID: 1635057]
[15]
Mohamed, S.F.; Abbas, E.M.H.; Khalaf, H.S.; Farghaly, T.A.; Abd El-Shafy, D.N. Triazolopyrimidines and Thiazolopyrimidines: Synthesis, Anti-HSV-1, Cytotoxicity and Mechanism of action. Mini Rev. Med. Chem., 2018, 18, 18.
[16]
Tsuji, K.; Ishikawa, H. Synthesis and anti-pseudomonal activity of new 2-isocephems with a dihydroxypyridone moiety at C-7. Bioorg. Med. Chem. Lett., 1994, 4, 1601.
[http://dx.doi.org/10.1016/S0960-894X(01)80574-6]
[17]
Sharma, R.N.; Xavier, F.P.; Vasu, K.K.; Chaturvedi, S.C.; Pancholi, S.S.; Enz, J. Synthesis of 4-Benzyl-1,3-thiazole derivatives as potential antiinflammatory agents: An Analogue-based Drug Design Approach. Inhib. Med. Chem., 2009, 24, 890.
[http://dx.doi.org/10.1080/14756360802519558]
[18]
Bell, F.W.; Cantrell, A.S.; Hogberg, M.; Jaskunas, S.R.; Johansson, N.G.; Jordon, C.L.; Kinnick, M.D.; Lind, P.; Jr, J.M. Morin, R. Noreen, B. Oberg, J. A. Palkowitz, C. A. Parrish, P. Pranc, C. Sahlberg, R. J. Ternansky, R. T. Vasileff, L. Vrang, S. J. West, H. Zhang, X. X. J. Zhou. Phenethylthiazolethiourea (PETT) Compounds, a New Class of HIV-1 Reverse Transcriptase Inhibitors. 1. Synthesis and Basic Structure-Activity Relationship Studies of PETT Analogs. J. Med. Chem., 1995, 38, 4929.
[http://dx.doi.org/10.1021/jm00025a010] [PMID: 8523406]
[19]
Hargrave, K.D.; Hess, F.K.; Oliver, J.T.N. -(4-substituted-thiazolyl)oxamic acid derivatives, a new series of potent, orally active antiallergy agents. J. Med. Chem., 1983, 26(8), 1158-1163.
[http://dx.doi.org/10.1021/jm00362a014] [PMID: 6876084]
[20]
Jaen, J.C.; Wise, L.D.; Caprathe, B.W.; Tecle, H.; Bergmeier, S.; Humblet, C.C.; Heffner, T.G.; Meltzer, L.T.; Pugsley, T.A. 4-(1,2,5,6-Tetrahydro-1-alkyl-3-pyridinyl)-2-thiazolamines: a novel class of compounds with central dopamine agonist properties. J. Med. Chem., 1990, 33(1), 311-317.
[http://dx.doi.org/10.1021/jm00163a051] [PMID: 1967314]
[21]
Carter, J.S.; Kramer, S.; Talley, J.J.; Penning, T.; Collins, P.; Graneto, M.J.; Seibert, K.; Koboldt, C.M.; Masferrer, J.; Zweifel, B. Synthesis and activity of sulfonamide-substituted 4,5-diaryl thiazoles as selective cyclooxygenase-2 inhibitors. Bioorg. Med. Chem. Lett., 1999, 9(8), 1171-1174.
[http://dx.doi.org/10.1016/S0960-894X(99)00157-2] [PMID: 10328307]
[22]
Badorc, A.; Bordes, M.F.; de Cointet, P.; Savi, P.; Bernat, A.; Lalé, A.; Petitou, M.; Maffrand, J.P.; Herbert, J.M. New orally active non-peptide fibrinogen receptor (GpIIb-IIIa) antagonists: identification of ethyl 3-[N-[4-[4-[amino[(ethoxycarbonyl) imino] methyl]phenyl]-1,3-thiazol-2-yl]-N-[1-[(ethoxycarbonyl)methyl] pip erid -4-yl]amino]propionate (SR 121787) as a potent and long-acting antithrombotic agent. J. Med. Chem., 1997, 40(21), 3393-3401.
[http://dx.doi.org/10.1021/jm970240y] [PMID: 9341914]
[23]
Richardson, D.R. Iron chelators as therapeutic agents for the treatment of cancer. Crit. Rev. Oncol. Hematol., 2002, 42(3), 267-281.
[http://dx.doi.org/10.1016/S1040-8428(01)00218-9] [PMID: 12050019]
[24]
Lovejoy, D.B.; Richardson, D.R. Novel “hybrid” iron chelators derived from aroylhydrazones and thiosemicarbazones demonstrate selective antiproliferative activity against tumor cells. Blood, 2002, 100(2), 666-676.
[http://dx.doi.org/10.1182/blood.V100.2.666] [PMID: 12091363]
[25]
Belicchi-Ferrari, M.; Bisceglie, F.; Casoli, C.; Durot, S.; Morgenstern-Badarau, I.; Pelosi, G.; Pilotti, E.; Pinelli, S.; Tarasconi, P. Copper(II) and cobalt(III) pyridoxal thiosemicarbazone complexes with nitroprusside as counterion: syntheses, electronic properties, and antileukemic activity. J. Med. Chem., 2005, 48(5), 1671-1675.
[http://dx.doi.org/10.1021/jm049529n] [PMID: 15743209]
[26]
Greenbaum, D.C.; Mackey, Z.; Hansell, E.; Doyle, P.; Gut, J.; Caffrey, C.R.; Lehrman, J.; Rosenthal, P.J.; McKerrow, J.H.; Chibale, K. Synthesis and structure-activity relationships of parasiticidal thiosemicarbazone cysteine protease inhibitors against Plasmodium falciparum, Trypanosoma brucei, and Trypanosoma cruzi. J. Med. Chem., 2004, 47(12), 3212-3219.
[http://dx.doi.org/10.1021/jm030549j] [PMID: 15163200]
[27]
Pirrung, M.C.; Pansare, S.V.; Sarma, K.D.; Keith, K.A.; Kern, E.R. Combinatorial optimization of isatin-beta-thiosemicarbazones as anti-poxvirus agents. J. Med. Chem., 2005, 48(8), 3045-3050.
[http://dx.doi.org/10.1021/jm049147h] [PMID: 15828843]
[28]
Wang, Y.; Gu, W.; Shan, Y.; Liu, F.; Xu, X.; Yang, Y.; Zhang, Q.; Zhang, Y.; Kuang, H.; Wang, Z.; Wang, S. Design, synthesis and anticancer activity of novel nopinone-based thiosemicarbazone derivatives. Bioorg. Med. Chem. Lett., 2017, 27(11), 2360-2363.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.024] [PMID: 28431878]
[29]
Mrozek-Wilczkiewicz, A.; Malarz, K.; Rejmund, M.; Polanski, J.; Musiol, R. Anticancer activity of the thiosemicarbazones that are based on di-2-pyridine ketone and quinoline moiety. Eur. J. Med. Chem., 2019, 171, 180-194.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.027] [PMID: 30921758]
[30]
Muralisankar, M.; Sujith, S.; Bhuvanesh, N.S.P.; Sreekanth, A. Synthesis and crystal structure of new monometallic and bimetallic copper(II) complexes with N-substituted isatin thiosemicarbazone ligands: Effects of the complexes on DNA/protein-binding property, DNA cleavage study and in vitro anticancer activity. Polyhedron, 2016, 118, 103.
[http://dx.doi.org/10.1016/j.poly.2016.06.017]
[31]
Muhammad, Z.A.; Radwan, M.A.A.; Farghaly, T.A.; Gaber, H.M.; Elaasser, M.M. Synthesis and antitumor activity of novel [1,2,4,5]-tetrazepino[6,7-b]indole derivatives: Marine natural product Hyrtioreticuline C and D analogues. Mini-reviews in Med. Chem, 2019, 19(1), 79.
[32]
Alsaedi, A.M.R.; Farghaly, T.A.; Shaaban, M.R. Synthesis and Antimicrobial Evaluation of Novel Pyrazolopyrimidines Incorporated with Mono- and Diphenylsulfonyl Groups. Molecules, 2019, 24, 4009.
[http://dx.doi.org/10.3390/molecules24214009]
[33]
Dawood, D.H.; Abbas, E.M.H.; Farghaly, T.A.; Ali, M.M.; Ibrahim, M.F. ZnO nanoparticles catalyst in the synthesis of bioactive fused pyrimidines as anti-breast cancer agents targeting VEGFR-2. Med. Chem., 2019, 15(3), 277-286.
[http://dx.doi.org/10.2174/1573406414666180912113226] [PMID: 30207239]
[34]
Alsharekh, M.M.; Althagafi, I.I.; Shaaban, M.R.; Farghaly, T.A. Microwave assisted and thermal synthesis of nanosized thiazolyl-phenothiazine derivatives and their biological activities. Res. Chem. Intermed., 2019, 45, 127.
[http://dx.doi.org/10.1007/s11164-018-3594-7]
[35]
Amin, M.M.; Shaaban, M.R.; Al-Qurashi, N.T.; Mahmoud, H.K.; Farghaly, T.A. Indomethacin Analogs: Synthesis and Anti-inflammatory and Analgesic Activities of Indoline Derivatives. Mini Rev. Med. Chem., 2018, 18(16), 1409.
[36]
Althagafi, I.; El-Metwally, N.M.; Elghalban, M.; Farghaly, T.A.; Khedr, A.M. Synthesis of Pyrazolone Derivatives and their Nanometer Ag(I)complexes, Physicochemical, DNA binding, Anti-Tumor and Theoretical Implementations. Bioinorg. Chem. Appl., 2018, 2018, 1.
[http://dx.doi.org/10.1155/2018/2727619]
[37]
Helal, M.H.M.; Salem, M.A.; El-Gaby, M.S.A.; Aljahdali, M. Synthesis and biological evaluation of some novel thiazole compounds as potential anti-inflammatory agents. Eur. J. Med. Chem., 2013, 65, 517-526.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.005] [PMID: 23787438]
[38]
Dávalos, A.; Gómez-Cordovés, C.; Bartolomé, B. Extending applicability of the oxygen radical absorbance capacity (ORAC-fluorescein) assay. J. Agric. Food Chem., 2004, 52(1), 48-54.
[http://dx.doi.org/10.1021/jf0305231] [PMID: 14709012]
[39]
Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Natl. Cancer Inst., 1991, 83(11), 757-766.
[http://dx.doi.org/10.1093/jnci/83.11.757] [PMID: 2041050]