Neoadjuvant Chemotherapy Induces the Appearance of New Copy Number Aberrations in Breast Tumor and is Associated with Metastasis

Page: [681 - 688] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: In this study, we examined the CNA-genetic landscape (CNA – copy number aberration) of breast cancer prior to and following neoadjuvant chemotherapy (NAC) and correlated changes in the tumor landscape with chemotherapy efficiency as well as metastasis-free survival.

Objective: Breast cancer patients (n = 30) with luminal B molecular subtypes were treated with anthracycline- based therapy.

Methods: To study CNAs in breast tumors, microarray analysis was performed.

Results: Three effects of NAC on tumor CNA landscape were identified: 1 - the number of CNAbearing tumor clones decreased following NAC; 2 - there were no alterations in the number of CNAcontaining clones after NAC; 3 - the treatment with NAC increased the number of CNA-bearing clones (new clones appeared). All NAC-treated patients who had new tumor clones with amplification (20%) had a 100% likelihood of metastasis formation. In these cases, NAC contributed to the emergence of potential metastatic clones. Our study identified the following loci - 5p, 6p, 7q, 8q, 9p, 10p, 10q22.1, 13q, 16p, 18Chr and 19p - that were amplified during the treatment with NAC and maybe the markers of potential metastatic clones. In other patients who showed total or partial elimination of CNA-bearing cell clones, no new amplification clones were observed after NAC, and no evidence of metastases was found with follow-up for 5 years (р = 0.00000).

Conclusion: Our data suggest that the main therapeutic result from NAC is the elimination of potential metastatic clones present in the tumor before treatment. The results showed the necessity of an intelligent approach to NAC to avoid metastasis stimulation.

Keywords: Clonal evolution, breast cancer, chemotherapy, copy number aberration, metastasis, CNA-genetic landscape.

Graphical Abstract

[1]
Greaves, M.; Maley, C.C. Clonal evolution in cancer. Nature, 2012, 481(7381), 306-313.
[http://dx.doi.org/10.1038/nature10762] [PMID: 22258609]
[2]
Nik-Zainal, S.; Van Loo, P.; Wedge, D.C.; Alexandrov, L.B.; Greenman, C.D.; Lau, K.W.; Raine, K.; Jones, D.; Marshall, J.; Ramakrishna, M.; Shlien, A.; Cooke, S.L.; Hinton, J.; Menzies, A.; Stebbings, L.A.; Leroy, C.; Jia, M.; Rance, R.; Mudie, L.J.; Gamble, S.J.; Stephens, P.J.; McLaren, S.; Tarpey, P.S.; Papaemmanuil, E.; Davies, H.R.; Varela, I.; McBride, D.J.; Bignell, G.R.; Leung, K.; Butler, A.P.; Teague, J.W.; Martin, S.; Jönsson, G.; Mariani, O.; Boyault, S.; Miron, P.; Fatima, A.; Langerød, A.; Aparicio, S.A.; Tutt, A.; Sieuwerts, A.M.; Borg, Å.; Thomas, G.; Salomon, A.V.; Richardson, A.L.; Børresen-Dale, A.L.; Futreal, P.A.; Stratton, M.R.; Campbell, P.J. The life history of 21 breast cancers. Cell, 2012, 149(5), 994-1007.
[http://dx.doi.org/10.1016/j.cell.2012.04.023] [PMID: 22608083]
[3]
Gerlinger, M.; Rowan, A.J.; Horswell, S.; Math, M.; Larkin, J.; Endesfelder, D.; Gronroos, E.; Martinez, P.; Matthews, N.; Stewart, A.; Tarpey, P.; Varela, I.; Phillimore, B.; Begum, S.; McDonald, N.Q.; Butler, A.; Jones, D.; Raine, K.; Latimer, C.; Santos, C.R.; Nohadani, M.; Eklund, A.C.; Spencer-Dene, B.; Clark, G.; Pickering, L.; Stamp, G.; Gore, M.; Szallasi, Z.; Downward, J.; Futreal, P.A.; Swanton, C. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med., 2012, 366(10), 883-892.
[http://dx.doi.org/10.1056/NEJMoa1113205] [PMID: 22397650]
[4]
Ibragimova, M.K.; Tsyganov, M.M.; Litviakov, N.V. Natural and chemotherapy-induced clonal evolution of tumors. Biochemistry (Mosc.), 2017, 82(4), 413-425.
[http://dx.doi.org/10.1134/S0006297917040022] [PMID: 28371598]
[5]
McGranahan, N.; Swanton, C. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell, 2015, 27(1), 15-26.
[http://dx.doi.org/10.1016/j.ccell.2014.12.001] [PMID: 25584892]
[6]
Devarakonda, S.; Govindan, R. Clonal evolution: Multiregion sequencing of esophageal adenocarcinoma before and after chemotherapy. Cancer Discov., 2015, 5(8), 796-798.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0739] [PMID: 26243860]
[7]
Murugaesu, N.; Wilson, G.A.; Birkbak, N.J.; Watkins, T.; McGranahan, N.; Kumar, S.; Abbassi-Ghadi, N.; Salm, M.; Mitter, R.; Horswell, S.; Rowan, A.; Phillimore, B.; Biggs, J.; Begum, S.; Matthews, N.; Hochhauser, D.; Hanna, G.B.; Swanton, C. Tracking the genomic evolution of esophageal adenocarcinoma through neoadjuvant chemotherapy. Cancer Discov., 2015, 5(8), 821-831.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0412]] [PMID: 26003801]
[8]
Whiteside, T.L. Immune responses to cancer: are they potential biomarkers of prognosis? Front. Oncol., 2013, 3, 107.
[http://dx.doi.org/10.3389/fonc.2013.00107] [PMID: 23730621]
[9]
Tang, X-R.; Dong, Z.Y.; Wu, D. Prognostic and predictive role of tumor mutation burden and copy number alterations across metastatic cancer: Immunotherapeutic implications. In: AACR; , 2019.
[10]
Zhang, L.; Feizi, N.; Chi, C.; Hu, P. Association analysis of somatic copy number alteration burden with breast cancer survival. Front. Genet., 2018, 9, 421.
[http://dx.doi.org/10.3389/fgene.2018.00421] [PMID: 30337938]
[11]
Abeshouse, A.; Ahn, J.; Akbani, R.; Ally, A.; Amin, S.; Andry, C.D.; Annala, M.; Aprikian, A.; Armenia, J.; Arora, A. The molecular taxonomy of primary prostate cancer. Cell, 2015, 163(4), 1011-1025.
[http://dx.doi.org/10.1016/j.cell.2015.10.025] [PMID: 26544944]
[12]
Li, X.; Xu, W.; Kang, W.; Wong, S.H.; Wang, M.; Zhou, Y.; Fang, X.; Zhang, X.; Yang, H.; Wong, C.H.; To, K.F.; Chan, S.L.; Chan, M.T.V.; Sung, J.J.Y.; Wu, W.K.K.; Yu, J. Genomic analysis of liver cancer unveils novel driver genes and distinct prognostic features. Theranostics, 2018, 8(6), 1740-1751.
[http://dx.doi.org/10.7150/thno.22010] [PMID: 29556353]
[13]
Cai, H.; Kumar, N.; Baudis, M. arrayMap: A reference resource for genomic copy number imbalances in human malignancies. PLoS One, 2012, 7(5) e36944
[http://dx.doi.org/10.1371/journal.pone.0036944] [PMID: 22629346]
[14]
Iddawela, M.; Rueda, O.; Eremin, J.; Eremin, O.; Cowley, J.; Earl, H.M.; Caldas, C. Integrative analysis of copy number and gene expression in breast cancer using formalin-fixed paraffin-embedded core biopsy tissue: a feasibility study. BMC Genomics, 2017, 18(1), 526.
[http://dx.doi.org/10.1186/s12864-017-3867-3] [PMID: 28697743]
[15]
Andre, F.; Job, B.; Dessen, P.; Tordai, A.; Michiels, S.; Liedtke, C.; Richon, C.; Yan, K.; Wang, B.; Vassal, G.; Delaloge, S.; Hortobagyi, G.N.; Symmans, W.F.; Lazar, V.; Pusztai, L. Molecular characterization of breast cancer with high-resolution oligonucleotide comparative genomic hybridization array. Clin. Cancer Res., 2009, 15(2), 441-451.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1791] [PMID: 19147748]
[16]
Zhao, K; Zhao, Y; Zhu, J-Y; Dong, H A panel of genes identified as targets for 8q24. 13-24.3 gain contributing to unfavorable overall survival in patients with hepatocellular carcinoma Curr. Med.Sci., 38(4), 590-596.
[17]
Kutasovic, J.R.; McCart Reed, A.E.; Males, R.; Sim, S.; Saunus, J.M.; Dalley, A.; McEvoy, C.R.; Dedina, L.; Miller, G.; Peyton, S.; Reid, L.; Lal, S.; Niland, C.; Ferguson, K.; Fellowes, A.P.; Al-Ejeh, F.; Lakhani, S.R.; Cummings, M.C.; Simpson, P.T. Breast cancer metastasis to gynaecological organs: A clinico-pathological and molecular profiling study. J. Pathol. Clin. Res., 2019, 5(1), 25-39.
[http://dx.doi.org/10.1002/cjp2.118] [PMID: 30246500]