Natural Sesquiterpene Lactones in the Prevention and Treatment of Inflammatory Disorders and cancer: A Systematic Study of this Emerging Therapeutic Approach based on Chemical and Pharmacological Aspect

Page: [1102 - 1116] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Background and Introduction: Sesquiterpene lactones are a class of secondary metabolite that contains sesquiterpenoids and lactone ring as pharmacophore moiety. A large group of bioactive secondary metabolites such as phytopharmaceuticals belong to this category. From the Asteraceae family-based medicinal plants, more than 5,000 sesquiterpene lactones have been reported so far. Sesquiterpene lactone-based pharmacophore moieties hold promise for broad-spectrum biological activities against cancer, inflammation, parasitic, bacterial, fungal, viral infection and other functional disorders. Moreover, these moiety based phytocompounds have been highlighted with a new dimension in the natural drug discovery program worldwide after the 2015 Medicine Nobel Prize achieved by the Artemisinin researchers.

Objective: These bitter substances often contain an α, β-unsaturated-γ-lactone as a major structural backbone, which in recent studies has been explored to be associated with anti-tumor, cytotoxic, and anti-inflammatory action. Recently, the use of sesquiterpene lactones as phytomedicine has been increased. This study will review the prospect of sesquiterpene lactones against inflammation and cancer.

Methods: Hence, we emphasized on the different features of this moiety by incorporating its structural diversity on biological activities to explore structure-activity relationships (SAR) against inflammation and cancer.

Results: How the dual mode of action such as anti-inflammatory and anti-cancer has been exhibitedby these phytopharmaceuticals will be forecasted in this study. Furthermore, the correlation of anti-inflammatory and anti-cancer activity executed by the sesquiterpene lactones for fruitful phytotherapy will also be revealed in the present review in the milieu of pharmacophore activity relation and pharmacodynamics study as well.

Conclusion: So, these metabolites are paramount in phytopharmacological aspects. The present discussion on the future prospect of this moiety based on the reported literature could be a guide for anti-inflammatory and anti-cancer drug discovery programs for the upcoming researchers.

Keywords: Sesquiterpene lactone, michael acceptor, anti-inflammatory, anticancer, in silico, QSAR & docking.

Graphical Abstract

[1]
Wedge, D.E.; Galindo, J.C.G.; Macías, F.A. Fungicidal activity of natural and synthetic sesquiterpene lactone analogs. Phytochemistry, 2000, 53(7), 747-757.
[http://dx.doi.org/10.1016/S0031-9422(00)00008-X] [PMID: 10783981]
[2]
Canales, M.; Hernández, T.; Caballero, J.; Romo de Vivar, A.; Avila, G.; Duran, A.; Lira, R. Informant consensus factor and antibacterial activity of the medicinal plants used by the people of San Rafael Coxcatlán, Puebla, México. J. Ethnopharmacol., 2005, 97(3), 429-439.
[http://dx.doi.org/10.1016/j.jep.2004.11.013] [PMID: 15740877]
[3]
Rodriguez, E.; Towers, G.H.N.; Mitchell, J.C. Biological activities of sesquiterpene lactones. Phytochemistry, 1976, 15, 1573-1580.
[http://dx.doi.org/10.1016/S0031-9422(00)97430-2]
[4]
Shoaib, M.; Shah, I.; Ali, N.; Adhikari, A.; Tahir, M.N.; Shah, S.W.A.; Ishtiaq, S.; Khan, J.; Khan, S.; Umer, M.N. Sesquiterpene lactone! a promising antioxidant, anticancer and moderate antinociceptive agent from Artemisia macrocephala jacquem. BMC Complement. Altern. Med., 2017, 17(1), 27.
[http://dx.doi.org/10.1186/s12906-016-1517-y] [PMID: 28061778]
[5]
Ghantous, A.; Gali-Muhtasib, H.; Vuorela, H.; Saliba, N.A.; Darwiche, N. What made sesquiterpene lactones reach cancer clinical trials? Drug Discov. Today, 2010, 15(15-16), 668-678.
[http://dx.doi.org/10.1016/j.drudis.2010.06.002] [PMID: 20541036]
[6]
Chaturvedi, D. Sesquiterpene lactones: Structural diversity and their biological activities. Opportunity, Challenge and Scope of Natural Products in Medicinal Chemistry; Tiwari, V.K; Mishra, B.B., Ed.; Research Signpost: Trivandrum, 2011, pp. 313-334.
[7]
Martínez, M.J.A.; Del Olmo, L.M.B.; Ticona, L.A.; Benito, P.B. The Artemisia L. genus: a review of bioactive sesquiterpene lactones. Studies in natural products chemistry; Elsevier, 2012, Vol. 37, pp. 43-65.
[8]
Ikezawa, N.; Göpfert, J.C.; Nguyen, D.T.; Kim, S.U.; O’Maille, P.E.; Spring, O.; Ro, D.K. Lettuce costunolide synthase (CYP71BL2) and its homolog (CYP71BL1) from sunflower catalyze distinct region and stereoselective hydroxylations in sesquiterpene lactone metabolism. J. Biol. Chem., 2011, 286(24), 21601-21611.
[http://dx.doi.org/10.1074/jbc.M110.216804] [PMID: 21515683]
[9]
Chen, H.C.; Chou, C.K.; Lee, S.D.; Wang, J.C.; Yeh, S.F. Active compounds from Saussurea lappa Clarks that suppress hepatitis B virus surface antigen gene expression in human hepatoma cells. Antiviral Res., 1995, 27(1-2), 99-109.
[http://dx.doi.org/10.1016/0166-3542(94)00083-K] [PMID: 7486962]
[10]
Pandey, M.M.; Rastogi, S.; Rawat, A.K.S. Saussurea costus: Botanical, chemical and pharmacological review of an Ayurvedic medicinal plant. J. Ethnopharmacol., 2007, 110(3), 379-390.
[http://dx.doi.org/10.1016/j.jep.2006.12.033] [PMID: 17306480]
[11]
Fakhoury, I.; Gali-Muhtasib, H. Salograviolide A: A plant-derived sesquiterpene lactone with promising anti-inflammatory and anticancer effects.Advances in Cancer Therapy; Gali-Muhtasib, H., Ed.; In: Tech: Croatia. , 2011, pp. 369-388.
[http://dx.doi.org/10.5772/24404]
[12]
Zhao, Z.J.; Xiang, J.Y.; Liu, L.; Huang, X.L.; Gan, H.T. Parthenolide, an inhibitor of the nuclear factor-κB pathway, ameliorates dextran sulfate sodium-induced colitis in mice. Int. Immunopharmacol., 2012, 12(1), 169-174.
[http://dx.doi.org/10.1016/j.intimp.2011.11.007] [PMID: 22155740]
[13]
Hu, Y.; Zhang, F.; Zhang, C.; Zhang, M. Anti-inflammatory properties of an active sesquiterpene lactone and its structure-activity relationship. Med. Chem., 2015, 5, 354-360.
[14]
Mathema, V.B.; Koh, Y.S.; Thakuri, B.C.; Sillanpää, M. Parthenolide, a sesquiterpene lactone, expresses multiple anti-cancer and anti-inflammatory activities. Inflammation, 2012, 35(2), 560-565.
[http://dx.doi.org/10.1007/s10753-011-9346-0] [PMID: 21603970]
[15]
Doan, N.T.Q.; Paulsen, E.S.; Sehgal, P.; Møller, J.V.; Nissen, P.; Denmeade, S.R.; Isaacs, J.T.; Dionne, C.A.; Christensen, S.B. Targeting thapsigargin towards tumors. Steroids, 2015, 97, 2-7.
[http://dx.doi.org/10.1016/j.steroids.2014.07.009] [PMID: 25065587]
[16]
Lohberger, B.; Rinner, B.; Stuendl, N.; Kaltenegger, H.; Steinecker-Frohnwieser, B.; Bernhart, E.; Bonyadi Rad, E.; Weinberg, A.M.; Leithner, A.; Bauer, R.; Kretschmer, N. Sesquiterpene lactones downregulate G2/M cell cycle regulator proteins and affect the invasive potential of human soft tissue sarcoma cells. PLoS One, 2013, 8(6), e66300
[http://dx.doi.org/10.1371/journal.pone.0066300] [PMID: 23799090]
[17]
Jia, Q.Q.; Wang, J.C.; Long, J.; Zhao, Y.; Chen, S.J.; Zhai, J.D.; Wei, L.B.; Zhang, Q.; Chen, Y.; Long, H.B. Sesquiterpene lactones and their derivatives inhibit high glucose-induced NF-κB activation and MCP-1 and TGF-β1 expression in rat mesangial cells. Molecules, 2013, 18(10), 13061-13077.
[http://dx.doi.org/10.3390/molecules181013061] [PMID: 24152676]
[18]
Serra-Barcellona, C.; Coll Aráoz, M.V.; Cabrera, W.M.; Habib, N.C.; Honoré, S.M.; Catalán, C.A.; Grau, A.; Genta, S.B.; Sánchez, S.S. Smallanthus macroscyphus: A new source of antidiabetic compounds. Chem. Biol. Interact., 2014, 209, 35-47.
[http://dx.doi.org/10.1016/j.cbi.2013.11.015] [PMID: 24309157]
[19]
Escandón-Rivera, S.; Pérez-Vásquez, A.; Navarrete, A.; Hernández, M.; Linares, E.; Bye, R.; Mata, R. Anti-hyperglycemic activity of major compounds from Calea ternifolia. Molecules, 2017, 22(2), 289-302.
[http://dx.doi.org/10.3390/molecules22020289] [PMID: 28216594]
[20]
Giordano, O.S.; Guerreiro, E.; Pestchanker, M.J.; Guzman, J.; Pastor, D.; Guardia, T. The gastric cytoprotective effect of several sesquiterpene lactones. J. Nat. Prod., 1990, 53(4), 803-809.
[http://dx.doi.org/10.1021/np50070a004] [PMID: 2095374]
[21]
Goswami, S.; Bhakuni, R.S.; Chinniah, A.; Pal, A.; Kar, S.K.; Das, P.K. Anti-Helicobacter pylori potential of artemisinin and its derivatives. Antimicrob. Agents Chemother., 2012, 56(9), 4594-4607.
[http://dx.doi.org/10.1128/AAC.00407-12] [PMID: 22687518]
[22]
García-Martínez, L.E.; Sánchez-Mendoza, M.E.; Arrieta-Baez, D.; Cruz-Antonio, L.; Mejía-Barradas, C.M.; Soto-Perulero, C.R. Arrieta, J. Gastroprotection of 2,3-epoxyjuanislamin, isolated from Calea urticifolia, against ethanol-induced gastric lesions in Wistar rats. Int. J. Pharmacol., 2016, 12, 893-900.
[http://dx.doi.org/10.3923/ijp.2016.893.900]
[23]
Ibrahim, M.; Farooq, T.; Hussain, N.; Hussain, A.; Gulzar, T.; Hussain, I.; Akash, M.S.H.; Rehmani, F.S. Acetyl and butyryl cholinesterase inhibitory sesquiterpene lactones from Amberboa ramosa. Chem. Cent. J., 2013, 7(1), 116-120.
[http://dx.doi.org/10.1186/1752-153X-7-116] [PMID: 23837557]
[24]
Hajimehdipoor, H.; Mosaddegh, M.; Naghibi, F.; Haeri, A.; Hamzeloo-Moghadam, M. Natural sesquiterpen lactones as acetylcholinesterase inhibitors. An. Acad. Bras. Cienc., 2014, 86(2), 801-806.
[http://dx.doi.org/10.1590/0001-3765201420130005] [PMID: 24838542]
[25]
Hegazy, M.E.F.; Ibrahim, A.Y.; Mohamed, T.A.; Shahat, A.A.; El Halawany, A.M.; Abdel-Azim, N.S.; Alsaid, M.S.; Paré, P.W. Sesquiterpene lactones from Cynara cornigera: acetyl cholinesterase inhibition and in silico ligand docking. Planta Med., 2016, 82(1-2), 138-146.
[PMID: 26441064]
[26]
Jimenez, V.; Kemmerling, U.; Paredes, R.; Maya, J.D.; Sosa, M.A.; Galanti, N. Natural sesquiterpene lactones induce programmed cell death in Trypanosoma cruzi: A new therapeutic target? Phytomedicine, 2014, 21(11), 1411-1418.
[http://dx.doi.org/10.1016/j.phymed.2014.06.005] [PMID: 25022207]
[27]
Peña-Espinoza, M.; Boas, U.; Williams, A.R.; Thamsborg, S.M.; Simonsen, H.T.; Enemark, H.L. Sesquiterpene lactone containing extracts from two cultivars of forage chicory (Cichorium intybus) show distinctive chemical profiles and in vitro activity against Ostertagia ostertagi. Int. J. Parasitol. Drugs Drug Resist., 2015, 5(3), 191-200.
[http://dx.doi.org/10.1016/j.ijpddr.2015.10.002] [PMID: 27120066]
[28]
Sülsen, V.P.; Puente, V.; Papademetrio, D.; Batlle, A.; Martino, V.S.; Frank, F.M.; Lombardo, M.E. Mode of action of the sesquiterpene lactones psilostachyin and psilostachyin C on Trypanosoma cruzi. PLoS One, 2016, 11(3), e0150526
[http://dx.doi.org/10.1371/journal.pone.0150526] [PMID: 26939119]
[29]
Tu, Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat. Med., 2011, 17(10), 1217-1220.
[http://dx.doi.org/10.1038/nm.2471] [PMID: 21989013]
[30]
Haynes, R.K.; Cheu, K.W.; N’Da, D.; Coghi, P.; Monti, D. Considerations on the mechanism of action of artemisinin antimalarials: Part 1--the ‘carbon radical’ and ‘heme’ hypotheses. Infect. Disord. Drug Targets, 2013, 13(4), 217-277.
[http://dx.doi.org/10.2174/1871526513666131129155708] [PMID: 24304352]
[31]
Corey, V.C.; Lukens, A.K.; Istvan, E.S.; Lee, M.C.S.; Franco, V.; Magistrado, P.; Coburn-Flynn, O.; Sakata-Kato, T.; Fuchs, O.; Gnädig, N.F.; Goldgof, G.; Linares, M.; Gomez-Lorenzo, M.G.; De Cózar, C.; Lafuente-Monasterio, M.J.; Prats, S.; Meister, S.; Tanaseichuk, O.; Wree, M.; Zhou, Y.; Willis, P.A.; Gamo, F.J.; Goldberg, D.E.; Fidock, D.A.; Wirth, D.F.; Winzeler, E.A. A broad analysis of resistance development in the malaria parasite. Nat. Commun., 2016, 7, 11901-11910.
[http://dx.doi.org/10.1038/ncomms11901] [PMID: 27301419]
[32]
Duraipandiyan, V.; Al-Harbi, N.A.; Ignacimuthu, S.; Muthukumar, C. Antimicrobial activity of sesquiterpene lactones isolated from traditional medicinal plant, Costus speciosus (Koen ex.Retz.). Sm. BMC Complement. Altern. Med., 2012, 12, 13-18.
[http://dx.doi.org/10.1186/1472-6882-12-13] [PMID: 22397713]
[33]
Badawy, M.E.I.; Abdelgaleil, S.A.M.; Suganuma, T.; Fuji, M. Antibacterial and biochemical activityof pseudoguaianolide sesquiterpenes isolated from Ambrosia maritima against plant pathogenic bacteria. Plant Prot. Sci., 2014, 50, 64-69.
[http://dx.doi.org/10.17221/28/2013-PPS]
[34]
Kang, T.H.; Lee, Y.M.; Lee, W.J.; Hwang, E.I.; Park, K.D.; Choi, G.J.; Moon, J.S.; Park, H.Y.; Kim, S.U. Antifungal activities of dimeric sesquiterpenes, shizukaols c and f, isolated from Chloranthus japonicus sieb. J. Microbiol. Biotechnol., 2017, 27(7), 1272-1275.
[http://dx.doi.org/10.4014/jmb.1612.12051] [PMID: 28535608]
[35]
Liu, L.; Gao, H.; Chen, X.; Cai, X.; Yang, L.; Guo, L.; Yao, X.; Che, Y. Brasilamides A–D: sesquiterpenoids from the plant endophytic fungus Paraconiothyrium brasiliense. Eur. J. Org. Chem., 2010, 17, 3302-3306.
[http://dx.doi.org/10.1002/ejoc.201000284]
[36]
Obeid, S.; Alen, J.; Nguyen, V.H.; Pham, V.C.; Meuleman, P.; Pannecouque, C.; Le, T.N.; Neyts, J.; Dehaen, W.; Paeshuyse, J. Artemisinin analogues as potent inhibitors of in vitro hepatitis C virus replication. PLoS One, 2013, 8(12), e81783
[http://dx.doi.org/10.1371/journal.pone.0081783] [PMID: 24349127]
[37]
Liu, J.F.; Wang, L.; Wang, Y.F.; Song, X.; Yang, L.J.; Zhang, Y.B. Sesquiterpenes from the fruits of Illicium jiadifengpi and their anti-hepatitis B virus activities. Fitoterapia, 2015, 104, 41-44.
[http://dx.doi.org/10.1016/j.fitote.2015.05.004] [PMID: 25964187]
[38]
Luna-Herrera, J.; Costa, M.C.; González, H.G.; Rodrigues, A.I.; Castilho, P.C. Synergistic antimycobacterial activities of sesquiterpene lactones from Laurus spp. J. Antimicrob. Chemother., 2007, 59(3), 548-552.
[http://dx.doi.org/10.1093/jac/dkl523] [PMID: 17218447]
[39]
Coronado-Aceves, E.W.; Velázquez, C.; Robles-Zepeda, R.E.; Jiménez-Estrada, M.; Hernández-Martínez, J.; Gálvez-Ruiz, J.C.; Garibay-Escobar, A. Reynosin and santamarine: two sesquiterpene lactones from Ambrosia confertiflora with bactericidal activity against clinical strains of Mycobacterium tuberculosis. Pharm. Biol., 2016, 54(11), 2623-2628.
[http://dx.doi.org/10.3109/13880209.2016.1173067] [PMID: 27180996]
[40]
Seo, C.S.; Lim, H.S.; Jeong, S.J.; Shin, H.K. Anti-allergic effects of sesquiterpene lactones from the root of Aucklandia lappa Decne. Mol. Med. Rep., 2015, 12(5), 7789-7795.
[http://dx.doi.org/10.3892/mmr.2015.4342] [PMID: 26398906]
[41]
Neganova, M.E.; Afanas’eva, S.V.; Klochkov, S.G.; Shevtsova, E.F. Mechanisms of antioxidant effect of natural sesquiterpene lactone and alkaloid derivatives. Bull. Exp. Biol. Med., 2012, 152(6), 720-722.
[http://dx.doi.org/10.1007/s10517-012-1615-x] [PMID: 22803173]
[42]
Gonçalves, A.E.; Bürger, C.; Amoah, S.K.; Tolardo, R.; Biavatti, M.W.; de Souza, M.M. The antidepressant-like effect of Hedyosmum brasiliense and its sesquiterpene lactone, podoandin in mice: Evidence for the involvement of adrenergic, dopaminergic and serotonergic systems. Eur. J. Pharmacol., 2012, 674(2-3), 307-314.
[http://dx.doi.org/10.1016/j.ejphar.2011.11.009] [PMID: 22115892]
[43]
Kreuger, M.R.O.; Farias, B.G.; Moreira, J.; Blind, L.Z.; Amoah, S.K.S.; Leite, A.S.; Biavatti, M.W.; van Hoof, T.; D’Herde, K.; Cruz, A.B. Effects of the topical application of an ethyl acetate fraction from Vernonia scorpioides onexcisional wounds infected with Staphylococcus aureus in rats. Rev. Bras. Farmacogn., 2012, 22, 123-130.
[http://dx.doi.org/10.1590/S0102-695X2011005000192]
[44]
Wesołowska, A.; Nikiforuk, A.; Michalska, K.; Kisiel, W.; Chojnacka-Wójcik, E. Analgesic and sedative activities of lactucin and some lactucin-like guaianolides in mice. J. Ethnopharmacol., 2006, 107(2), 254-258.
[http://dx.doi.org/10.1016/j.jep.2006.03.003] [PMID: 16621374]
[45]
Zuo, S.; Li, Q.; Liu, X.; Feng, H.; Chen, Y. The potential therapeutic effects of artesunate on strokeand other central nervous system diseases. BioMed Res. Int., 2016, 2016, 1489050
[http://dx.doi.org/10.1155/2016/1489050] [PMID: 28116289]
[46]
Chadwick, M.; Trewin, H.; Gawthrop, F.; Wagstaff, C. Sesquiterpenoids lactones: Benefits to plants and people. Int. J. Mol. Sci., 2013, 14(6), 12780-12805.
[http://dx.doi.org/10.3390/ijms140612780] [PMID: 23783276]
[47]
Wong, H.R.; Menendez, I.Y. Sesquiterpene lactones inhibit inducible nitric oxide synthase gene expression in cultured rat aortic smooth muscle cells. Biochem. Biophys. Res. Commun., 1999, 262(2), 375-380.
[http://dx.doi.org/10.1006/bbrc.1999.1207] [PMID: 10462483]
[48]
Leitolis, A.; Amoah, S.K.; Biavatti, M.W.; da Silva-Santos, J.E. Sesquiterpene lactones from Hedyosmum brasiliense induce in vitro relaxation of rat aorta and corpus cavernosum. Rev. Bras. Farmacogn., 2016, 26, 363-368.
[http://dx.doi.org/10.1016/j.bjp.2016.01.005]
[49]
Amoah, S.K.; Dalla Vecchia, M.T.; Pedrini, B.; Carnhelutti, G.L.; Gonçalves, A.E.; Dos Santos, D.A.; Biavatti, M.W.; de Souza, M.M. Inhibitory effect of sesquiterpene lactones and the sesquiterpene alcohol aromadendrane-4β,10α-diol on memory impairment in a mouse model of Alzheimer. Eur. J. Pharmacol., 2015, 769, 195-202.
[http://dx.doi.org/10.1016/j.ejphar.2015.11.018] [PMID: 26593432]
[50]
Rasul, A.; Parveen, S.; Ma, T. costunolide: A nobel anticancer Sesquiterpene lactones. Bangladesh J. Pharmacol., 2012, 7, 6-13.
[http://dx.doi.org/10.3329/bjp.v7i1.10066]
[51]
Ren, Y.; Yu, J.; Kinghorn, A.D. Development of anticancer agents from plant-derived sesquiterpene lactones. Curr. Med. Chem., 2016, 23(23), 2397-2420.
[http://dx.doi.org/10.2174/0929867323666160510123255] [PMID: 27160533]
[52]
Krishna, S.; Ganapathi, S.; Ster, I.C.; Saeed, M.E.M.; Cowan, M.; Finlayson, C.; Kovacsevics, H.; Jansen, H.; Kremsner, P.G.; Efferth, T.; Kumar, D. A randomised, double blind, placebo-controlled pilot study of oral artesunate therapy for colorectal cancer. EBioMedicine, 2014, 2(1), 82-90.
[http://dx.doi.org/10.1016/j.ebiom.2014.11.010] [PMID: 26137537]
[53]
Mahalingam, D.; Wilding, G.; Denmeade, S.; Sarantopoulas, J.; Cosgrove, D.; Cetnar, J.; Azad, N.; Bruce, J.; Kurman, M.; Allgood, V.E.; Carducci, M. Mipsagargin, a novel thapsigargin-based PSMA-activated prodrug: results of a first-in-man phase I clinical trial in patients with refractory, advanced or metastatic solid tumours. Br. J. Cancer, 2016, 114(9), 986-994.
[http://dx.doi.org/10.1038/bjc.2016.72] [PMID: 27115568]
[54]
Quynh Doan, N.T.; Christensen, S.B. Thapsigargin, origin, chemistry, structure-activity relationships and prodrug development. Curr. Pharm. Des., 2015, 21(38), 5501-5517.
[http://dx.doi.org/10.2174/1381612821666151002112824] [PMID: 26429715]
[55]
Andersen, T.B.; López, C.Q.; Manczak, T.; Martinez, K.; Simonsen, H.T. Thapsigargin--from Thapsia L. to mipsagargin. Molecules, 2015, 20(4), 6113-6127.
[http://dx.doi.org/10.3390/molecules20046113] [PMID: 25856061]
[56]
Phase 2 study of G-202 in patients with chemotherapy-naïve metastatic castrate-resistant prostate cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT01734681 [Accessed: 5th Aug 2018]
[57]
Study of G-202 (mipsagargin) as second-line therapy following sorafenib in hepatocellular carcinoma (G-202-003). Available online: https://clinicaltrials.gov/ct2/show/NCT01777594 [Accessed: 5th Aug 2018].
[58]
Adis insight. drug profile: LC-1. Available online: http://adisinsight.springer.com/drugs/800029612 [Accessed: 21st December 2018].
[59]
Li, H.; Li, M.; Wang, G.; Shao, F.; Chen, W.; Xia, C.; Wang, S.; Li, Y.; Zhou, G.; Liu, Z. EM23, a natural sesquiterpene lactone from Elephantopus mollis, induces apoptosis in human myeloid leukemia cells through thioredoxin and reactive oxygen species-mediated signaling pathways. Front. Pharmacol., 2016, 7, 77.
[http://dx.doi.org/10.3389/fphar.2016.00077] [PMID: 27064563]
[60]
Arantes, F.F.P.; Barbosa, L.C.A.; Maltha, C.R.A.; Demuner, A.J.; Fidêncio, P.H.; Carneiro, J.W.M. A quantum chemical and chemometric study of sesquiterpene lactones with cytotoxicity against tumor cells. J. Chemometr., 2011, 25, 401-407.
[http://dx.doi.org/10.1002/cem.1385]
[61]
Gach, K.; Janecka, A. α-Methylene-γ-lactones as a novel class of anti-leukemic agents. Anticancer. Agents Med. Chem., 2014, 14(5), 688-694.
[http://dx.doi.org/10.2174/1871520614666140313095010] [PMID: 24628266]
[62]
Sinisi, A.; Millán, E.; Abay, S.M.; Habluetzel, A.; Appendino, G.; Muñoz, E.; Taglialatela-Scafati, O. Poly-electrophilic sesquiterpene lactones from Vernonia amygdalina: New members and differences in their mechanism of thiol trapping and in bioactivity. J. Nat. Prod., 2015, 78(7), 1618-1623.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00179] [PMID: 26115003]
[63]
Siedle, B.; García-Piñeres, A.J.; Murillo, R.; Schulte-Mönting, J.; Castro, V.; Rüngeler, P.; Klaas, C.A.; Da Costa, F.B.; Kisiel, W.; Merfort, I. Quantitative structure-activity relationship of sesquiterpene lactones as inhibitors of the transcription factor NF-kappaB. J. Med. Chem., 2004, 47(24), 6042-6054.
[http://dx.doi.org/10.1021/jm049937r] [PMID: 15537359]
[64]
Schmidt, T.J. Structure-activity relationships of sesquiterpene lactones. Studies in Natural Products Chemistry, 2006, 33, 309-392.
[http://dx.doi.org/10.1016/S1572-5995(06)80030-X]
[65]
Fouche, G.; Ackerman, L.G.J.; Venter, E.A.; Mathe, Y.Z.; Liles, D.C.; Botha, C.J. Sesquiterpene lactones from Geigeria aspera Harv. and their cytotoxicity. Nat. Prod. Res., 2019, 1-7.
[http://dx.doi.org/10.1080/14786419.2019.1675068] [PMID: 31617781]
[66]
Heinrich, M.; Robles, M.; West, J.E.; Ortiz de Montellano, B.R.; Rodriguez, E. Ethnopharmacology of Mexican asteraceae (Compositae). Annu. Rev. Pharmacol. Toxicol., 1998, 38, 539-565.
[http://dx.doi.org/10.1146/annurev.pharmtox.38.1.539] [PMID: 9597165]
[67]
Mitchell, J.C.; Fritig, B.; Singh, B.; Towers, G.H.N. Allergic contact dermatitis from Frullania and Compositae. The role of sesquiterpene lactones. J. Invest. Dermatol., 1970, 54(3), 233-239.
[http://dx.doi.org/10.1111/1523-1747.ep12280310] [PMID: 5436950]
[68]
Rüngeler, P.; Castro, V.; Mora, G.; Gören, N.; Vichnewski, W.; Pahl, H.L.; Merfort, I.; Schmidt, T.J. Inhibition of transcription factor NF-kappaB by sesquiterpene lactones: A proposed molecular mechanism of action. Bioorg. Med. Chem., 1999, 7(11), 2343-2352.
[http://dx.doi.org/10.1016/S0968-0896(99)00195-9] [PMID: 10632044]
[69]
Bork, P.M.; Schmitz, M.L.; Kuhnt, M.; Escher, C.; Heinrich, M. Sesquiterpene lactone containing Mexican Indian medicinal plants and pure sesquiterpene lactones as potent inhibitors of transcription factor NF-kappaB. FEBS Lett., 1997, 402(1), 85-90.
[http://dx.doi.org/10.1016/S0014-5793(96)01502-5] [PMID: 9013864]
[70]
Lyss, G.; Schmidt, T.J.; Merfort, I.; Pahl, H.L. Helenalin, an anti-inflammatory sesquiterpene lactone from Arnica, selectively inhibits transcription factor NF-kappaB. Biol. Chem., 1997, 378(9), 951-961.
[http://dx.doi.org/10.1515/bchm.1997.378.9.951] [PMID: 9348104]
[71]
Viennois, E.; Xiao, B.; Ayyadurai, S.; Wang, L.; Wang, P.G.; Zhang, Q.; Chen, Y.; Merlin, D.; Merlin, D. Micheliolide, a new sesquiterpene lactone that inhibits intestinal inflammation and colitis-associated cancer. Lab. Invest., 2014, 94(9), 950-965.
[http://dx.doi.org/10.1038/labinvest.2014.89] [PMID: 25068660]
[72]
Li, C.; Jones, A.X.; Lei, X. Synthesis and mode of action of oligomeric sesquiterpene lactones. Nat. Prod. Rep., 2016, 33(5), 602-611.
[http://dx.doi.org/10.1039/C5NP00089K] [PMID: 26510522]
[73]
Walshe-Roussel, B.; Choueiri, C.; Saleem, A.; Asim, M.; Caal, F.; Cal, V.; Rojas, M.O.; Pesek, T.; Durst, T.; Arnason, J.T. Potent anti-inflammatory activity of sesquiterpene lactones from Neurolaena lobata (L.) R. Br. ex Cass., a Q’eqchi’ Maya traditional medicine. Phytochemistry, 2013, 92, 122-127.
[http://dx.doi.org/10.1016/j.phytochem.2013.05.004] [PMID: 23747054]
[74]
McKinnon, R.; Binder, M.; Zupkó, I.; Afonyushkin, T.; Lajter, I.; Vasas, A.; de Martin, R.; Unger, C.; Dolznig, H.; Diaz, R.; Frisch, R.; Passreiter, C.M.; Krupitza, G.; Hohmann, J.; Kopp, B.; Bochkov, V.N. Pharmacological insight into the anti-inflammatory activity of sesquiterpene lactones from Neurolaena lobata (L.) R.Br. ex Cass. Phytomedicine, 2014, 21(12), 1695-1701.
[http://dx.doi.org/10.1016/j.phymed.2014.07.019] [PMID: 25442279]
[75]
de Souza, M.R.; de Paula, C.A.; Pereira de Resende, M.L.; Grabe-Guimarães, A.; de Souza Filho, J.D.; Saúde-Guimarães, D.A. Pharmacological basis for use of Lychnophora trichocarpha in gouty arthritis: anti-hyperuricemic and anti-inflammatory effects of its extract, fraction and constituents. J. Ethnopharmacol., 2012, 142(3), 845-850.
[http://dx.doi.org/10.1016/j.jep.2012.06.012] [PMID: 22732730]
[76]
Cheng, X.; Zeng, Q.; Ren, J.; Qin, J.; Zhang, S.; Shen, Y.; Zhu, J.; Zhang, F.; Chang, R.; Zhu, Y.; Zhang, W.; Jin, H. Sesquiterpene lactones from Inula falconeri, a plant endemic to the Himalayas, as potential anti-inflammatory agents. Eur. J. Med. Chem., 2011, 46(11), 5408-5415.
[http://dx.doi.org/10.1016/j.ejmech.2011.08.047] [PMID: 21924800]
[77]
Ríos, E.V.; León, A.; Chávez, M.I.; Torres, Y.; Ramírez-Apan, M.T.; Toscano, R.A.; Bravo-Monzón, Á.E.; Espinosa-García, F.J.; Delgado, G. Sesquiterpene lactones from Mikania micrantha and Mikania cordifolia and their cytotoxic and anti-inflammatory evaluation. Fitoterapia, 2014, 94, 155-163.
[http://dx.doi.org/10.1016/j.fitote.2014.02.006] [PMID: 24565963]
[78]
Lajter, I.; Pan, S.P.; Nikles, S.; Ortmann, S.; Vasas, A.; Csupor-Löffler, B.; Forgó, P.; Hohmann, J.; Bauer, R. Inhibition of COX-2 and NF-κB1 gene expression, NO production, 5-LOX, and COX-1 and COX-2 enzymes by extracts and constituents of Onopordum acanthium. Planta Med., 2015, 81(14), 1270-1276.
[http://dx.doi.org/10.1055/s-0035-1546242] [PMID: 26383017]
[79]
Formisano, C.; Sanna, C.; Ballero, M.; Chianese, G.; Sirignano, C.; Rigano, D.; Millán, E.; Muñoz, E.; Taglialatela-Scafati, O. Anti-inflammatory sesquiterpene lactones from Onopordum illyricum L. (Asteraceae), an Italian medicinal plant. Fitoterapia, 2017, 116, 61-65.
[http://dx.doi.org/10.1016/j.fitote.2016.11.006] [PMID: 27871974]
[80]
Yin, G.P.; An, Y.W.; Hu, G.; Zhu, J.J.; Chen, L.M.; Li, L.C.; Wang, Z.M. Three new guaiane sesquiterpene lactones from rhizomes of Curcuma wenyujin. J. Asian Nat. Prod. Res., 2013, 15(7), 723-730.
[http://dx.doi.org/10.1080/10286020.2013.796936] [PMID: 23679107]
[81]
Youn, U.J.; Park, E.J.; Kondratyuk, T.P.; Simmons, C.J.; Borris, R.P.; Tanamatayarat, P.; Wongwiwatthananukit, S.; Toyama, O.; Songsak, T.; Pezzuto, J.M.; Chang, L.C. Anti-inflammatory sesquiterpene lactones from the flower of Vernonia cinerea. Bioorg. Med. Chem. Lett., 2012, 22(17), 5559-5562.
[http://dx.doi.org/10.1016/j.bmcl.2012.07.010] [PMID: 22850207]
[82]
Liu, Y.; Ma, J.; Wang, Y.; Donkor, P.O.; Li, Q.; Gao, S.; Hou, Y.; Xu, Y.; Cui, J.; Ding, L.; Zhao, F.; Kang, N.; Chen, L.; Qiu, F. Eudesmane-type sesquiterpenes from Curcuma phaeocaulis and their inhibitory activities on nitric oxide production in RAW 264.7 cells. Eur. J. Org. Chem., 2014, 25, 5540-5548.
[http://dx.doi.org/10.1002/ejoc.201402465]
[83]
Chen, L.P.; Wu, G.Z.; Zhang, J.P.; Ye, J.; Liu, Q.X.; Shen, Y.H.; Li, H.L.; Zhang, W.D. Vlasouliolides A-D, four rare C17/C15 sesquiterpene lactone dimers with potential anti-inflammatory activity from Vladimiria souliei. Sci. Rep., 2017, 7, 43837.
[http://dx.doi.org/10.1038/srep43837] [PMID: 28256560]
[84]
Wang, F.; Zhong, H.; Fang, S.; Zheng, Y.; Li, C.; Peng, G.; Shen, X. potential anti-inflammatory sesquiterpene lactones from Eupatorium lindleyanum. Planta Med., 2018, 84(2), 123-128.
[http://dx.doi.org/10.1055/s-0043-117742] [PMID: 28793356]
[85]
Jakobs, A.; Steinmann, S.; Henrich, S.M.; Schmidt, T.J.; Klempnauer, K.H. Helenalin acetate, an natural sesquiterpene lactone with anti-inflammatory and anti-cancer activity, disrupts the cooperation of CCAAT-box/enhancer-binding protein beta (C/EBPβ) and co-activator p300. J. Biol. Chem., 2016, 291(50), 26098-26108.
[http://dx.doi.org/10.1074/jbc.M116.748129] [PMID: 27803164]
[86]
Lin, X.; Peng, Z.; Su, C. Potential anti-cancer activities and mechanisms of costunolide and dehydrocostuslactone. Int. J. Mol. Sci., 2015, 16(5), 10888-10906.
[http://dx.doi.org/10.3390/ijms160510888] [PMID: 25984608]
[87]
Crespo-Ortiz, M.P.; Wei, M.Q. Antitumor activity of artemisinin and its derivatives: From a well-known antimalarial agent to a potential anticancer drug. J. Biomed. Biotechnol., 2012., 2012247597
[http://dx.doi.org/10.1155/2012/247597] [PMID: 22174561]
[88]
Li, Z.; Li, Q.; Wu, J.; Wang, M.; Yu, J. Artemisinin and its derivatives as a repurposing anticancer agent: What else do we need to do? Molecules, 2016, 21(10), 1331.
[http://dx.doi.org/10.3390/molecules21101331] [PMID: 27739410]
[89]
Jain, H.; Dhingra, N.; Narsinghani, T.; Sharma, R. Insights into the mechanism of natural terpenoids as NF-κB inhibitors: An overview on their anticancer potential. Exp. Oncol., 2016, 38(3), 158-168.
[http://dx.doi.org/10.31768/2312-8852.2016.38(3):158-168] [PMID: 27685522]
[90]
Fonrose, X.; Ausseil, F.; Soleilhac, E.; Masson, V.; David, B.; Pouny, I.; Cintrat, J.C.; Rousseau, B.; Barette, C.; Massiot, G.; Lafanechère, L. Parthenolide inhibits tubulin carboxypeptidase activity. Cancer Res., 2007, 67(7), 3371-3378.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3732] [PMID: 17409447]
[91]
Wong, Y.K.; Xu, C.; Kalesh, K.A.; He, Y.; Lin, Q. FredWong, W.S.; Shen, H.M.; Wang, J. Artemisinin as an anticancer drug: Recent advances in target profiling and mechanisms of action. Med. Res. Rev., 2017, 37(6), 1-26.
[92]
Perry, N.B.; Burgess, E.J.; Rodríguez Guitián, M.A.; Romero Franco, R.; López Mosquera, E.; Smallfield, B.M.; Joyce, N.I.; Littlejohn, R.P. Sesquiterpene lactones in Arnica montana: Helenalin and dihydrohelenalin chemotypes in Spain. Planta Med., 2009, 75(6), 660-666.
[http://dx.doi.org/10.1055/s-0029-1185362] [PMID: 19235681]
[93]
Lim, C.B.; Fu, P.Y.; Ky, N.; Zhu, H.S.; Feng, X.; Li, J.; Srinivasan, K.G.; Hamza, M.S.; Zhao, Y. NF-κB p65 repression by the sesquiterpene lactone, Helenalin, contributes to the induction of autophagy cell death. BMC Complement. Altern. Med., 2012, 93, 2-12.
[http://dx.doi.org/10.1186/1472-6882-12-93]
[94]
Youn, U.J.; Miklossy, G.; Chai, X.; Wongwiwatthananukit, S.; Toyama, O.; Songsak, T.; Turkson, J.; Chang, L.C. Bioactive sesquiterpene lactones and other compounds isolated from Vernonia cinerea. Fitoterapia, 2014, 93, 194-200.
[http://dx.doi.org/10.1016/j.fitote.2013.12.013] [PMID: 24370662]
[95]
Miklossy, G.; Youn, U.J.; Yue, P.; Zhang, M.; Chen, C.H.; Hilliard, T.S.; Paladino, D.; Li, Y.; Choi, J.; Sarkaria, J.N.; Kawakami, J.K.; Wongwiwatthananukit, S.; Chen, Y.; Sun, D.; Chang, L.C.; Turkson, J. Hirsutinolide series inhibit Stat3 activity, alter GCN1, MAP1B, Hsp105, G6PD, vimentin, TrxR1, and importin α-2 expression, and induce antitumor effects against human glioma. J. Med. Chem., 2015, 58(19), 7734-7748.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00686] [PMID: 26331426]
[96]
Rosselli, S.; Bruno, M.; Raimondo, F.M.; Spadaro, V.; Varol, M.; Koparal, A.T.; Maggio, A. Cytotoxic effect of eudesmanolides isolated from flowers of Tanacetum vulgare ssp. siculum. Molecules, 2012, 17(7), 8186-8195.
[http://dx.doi.org/10.3390/molecules17078186] [PMID: 22777187]
[97]
Tohme, R.; Al Aaraj, L.; Ghaddar, T.; Gali-Muhtasib, H.; Saliba, N.A.; Darwiche, N. Differential growth inhibitory effects of highly oxygenated guaianolides isolated from the Middle Eastern indigenous plant Achillea falcata in HCT-116 colorectal cancer cells. Molecules, 2013, 18(7), 8275-8288.
[http://dx.doi.org/10.3390/molecules18078275] [PMID: 23860275]
[98]
Costantino, V.V.; Mansilla, S.F.; Speroni, J.; Amaya, C.; Cuello-Carrión, D.; Ciocca, D.R.; Priestap, H.A.; Barbieri, M.A.; Gottifredi, V.; Lopez, L.A. The sesquiterpene lactone dehydroleucodine triggers senescence and apoptosis in association with accumulation of DNA damage markers. PLoS One, 2013, 8(1), e53168
[http://dx.doi.org/10.1371/journal.pone.0053168] [PMID: 23341930]
[99]
Yeh, C.T.; Huang, W.C.; Rao, Y.K.; Ye, M.; Lee, W.H.; Wang, L.S.; Tzeng, D.T.; Wu, C.H.; Shieh, Y.S.; Huang, C.Y.F.; Chen, Y.J.; Hsiao, M.; Wu, A.T.; Yang, Z.; Tzeng, Y.M. A sesquiterpene lactone antrocin from Antrodia camphorata negatively modulates JAK2/STAT3 signaling via microRNA let-7c and induces apoptosis in lung cancer cells. Carcinogenesis, 2013, 34(12), 2918-2928.
[http://dx.doi.org/10.1093/carcin/bgt255] [PMID: 23880305]
[100]
Gohari, A.R.; Mosaddegh, M.; Naghibi, F.; Eslami-Tehrani, B.; Pirani, A.; Hamzeloo-Moghadam, M.; Read, R.W. Cytotoxic sesquiterpene lactones from the aerial parts of Inula aucheriana. An. Acad. Bras. Cienc., 2015, 87(2), 777-785.
[http://dx.doi.org/10.1590/0001-3765201520140063] [PMID: 25993354]
[101]
Zhao, B.; Li, X. Altholactone induces reactive oxygen species-mediated apoptosis in bladder cancer T24 cells through mitochondrial dysfunction, MAPK-p38 activation and Akt suppression. Oncol. Rep., 2014, 31(6), 2769-2775.
[http://dx.doi.org/10.3892/or.2014.3126] [PMID: 24700345]
[102]
Ma, Y.Y.; Zhao, D.G.; Gao, K. Structural investigation and biological activity of sesquiterpene lactones from the traditional Chinese herb Inula racemosa. J. Nat. Prod., 2013, 76(4), 564-570.
[http://dx.doi.org/10.1021/np300742d] [PMID: 23451797]
[103]
Hu, H.B.; Zhang, P.H.; Wu, Y. Sesquiterpenoids from the root bark of Acanthopanax leucorrhizus and their biological activities. Helv. Chim. Acta, 2014, 97, 1283-1288.
[http://dx.doi.org/10.1002/hlca.201300424]
[104]
Salla, M.; Fakhoury, I.; Saliba, N.; Darwiche, N.; Gali-Muhtasib, H. Synergistic anticancer activities of the plant-derived sesquiterpene lactones salograviolide A and iso-seco-tanapartholide. J. Nat. Med., 2013, 67(3), 468-479.
[http://dx.doi.org/10.1007/s11418-012-0703-6] [PMID: 22976170]
[105]
Chen, X.; Zhan, Z.J.; Yue, J.M. Sesquiterpenoids from Vernonia cinerea. Nat. Prod. Res., 2006, 20(1), 31-35.
[http://dx.doi.org/10.1080/14786410500078276] [PMID: 16286305]
[106]
Unger, C.; Kiss, I.; Vasas, A.; Lajter, I.; Kramer, N.; Atanasov, A.G.; Nguyen, C.H.; Chatuphonprasert, W.; Brenner, S.; Krieger, S.; McKinnon, R.; Peschel, A.; Kain, R.; Saiko, P.; Szekeres, T.; Kenner, L.; Hassler, M.R.; Diaz, R.; Frisch, R.; Dirsch, V.M.; Jäger, W.; de Martin, R.; Bochkov, V.N.; Passreiter, C.M.; Peter-Vörösmarty, B.; Mader, R.M.; Grusch, M.; Dolznig, H.; Kopp, B.; Zupko, I.; Hohmann, J.; Krupitza, G. The germacranolide sesquiterpene lactone neurolenin B of the medicinal plant Neurolaena lobata (L.) R.Br. ex Cass inhibits NPM/ALK-driven cell expansion and NF-κB-driven tumour intravasation. Phytomedicine, 2015, 22(9), 862-874.
[http://dx.doi.org/10.1016/j.phymed.2015.06.003] [PMID: 26220634]
[107]
Ordóñez, P.E.; Sharma, K.K.; Bystrom, L.M.; Alas, M.A.; Enriquez, R.G.; Malagón, O.; Jones, D.E.; Guzman, M.L.; Compadre, C.M. Dehydroleucodine, a sesquiterpene lactone from Gynoxys verrucosa, demonstrates cytotoxic activity against human leukemia cells. J. Nat. Prod., 2016, 79(4), 691-696.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00383] [PMID: 27057812]
[108]
Cheng, X.R.; Zhang, W.D.; Le, G.W. Dimeric sesquiterpene lactones from Inula falconeri with significant cytotoxicity. FASEB J., 2016, 30, lb482-lb482.
[109]
Liang, N.; Li, Y.; Chung, H.Y. Two natural eudesmane-type sesquiterpenes from Laggera alata inhibit angiogenesis and suppress breast cancer cell migration through VEGF- and Angiopoietin 2-mediated signaling pathways. Int. J. Oncol., 2017, 51(1), 213-222.
[http://dx.doi.org/10.3892/ijo.2017.4004] [PMID: 28534941]
[110]
Cotugno, R.; Fortunato, R.; Santoro, A.; Gallotta, D.; Braca, A.; De Tommasi, N.; Belisario, M.A. Effect of sesquiterpene lactone coronopilin on leukaemia cell population growth, cell type-specific induction of apoptosis and mitotic catastrophe. Cell Prolif., 2012, 45(1), 53-65.
[http://dx.doi.org/10.1111/j.1365-2184.2011.00796.x] [PMID: 22168177]
[111]
Alexandre Schefer, F.; Ricardo, S.; Zozula Blind, C.L.; Luis, P.; de Oliveira Souza, B.L.; Branco Filippin, M.F.; Weber, B.M.; Regina Orofino, K.M. Antitumoral activity of sesquiterpene lactone diacethylpiptocarphol in mice. J. Ethnopharmacol., 2017, 198, 262-267.
[http://dx.doi.org/10.1016/j.jep.2017.01.022] [PMID: 28099876]
[112]
Marzouk, A.M.; Abd Elhalim, O.B. A new lanostane-type triterpene and sesquiterpene lactones from Vernonia leopoldii and their in vitro cytotoxicity. Nat. Prod. Res., 2016, 30(7), 741-749.
[http://dx.doi.org/10.1080/14786419.2015.1062004] [PMID: 26207920]
[113]
Martins, G.G.; Lívero, F.A.; Stolf, A.M.; Kopruszinski, C.M.; Cardoso, C.C.; Beltrame, O.C.; Queiroz-Telles, J.E.; Strapasson, R.L.B.; Stefanello, M.É.A.; Oude-Elferink, R.; Acco, A. Sesquiterpene lactones of Moquiniastrum polymorphum subsp. floccosum have antineoplastic effects in Walker-256 tumor-bearing rats. Chem. Biol. Interact., 2015, 228, 46-56.
[http://dx.doi.org/10.1016/j.cbi.2015.01.018] [PMID: 25616030]
[114]
Hsieh, C.C.; Huang, Y.S. Aspirin breaks the crosstalk between 3T3-L1 adipocytes and 4T1 breast cancer cells by regulating cytokine production. PLoS One, 2016, 11(1), e0147161
[http://dx.doi.org/10.1371/journal.pone.0147161] [PMID: 26794215]
[115]
Bayarsaihan, D. Epigenetic mechanisms in inflammation. J. Dent. Res., 2011, 90(1), 9-17.
[http://dx.doi.org/10.1177/0022034510378683] [PMID: 21178119]
[116]
Ligthart, S.; Marzi, C.; Aslibekyan, S.; Mendelson, M.M.; Conneely, K.N.; Tanaka, T.; Colicino, E.; Waite, L.L.; Joehanes, R.; Guan, W.; Brody, J.A.; Elks, C.; Marioni, R.; Jhun, M.A.; Agha, G.; Bressler, J.; Ward-Caviness, C.K.; Chen, B.H.; Huan, T.; Bakulski, K.; Salfati, E.L.; Fiorito, G.; Wahl, S.; Schramm, K.; Sha, J.; Hernandez, D.G.; Just, A.C.; Smith, J.A.; Sotoodehnia, N.; Pilling, L.C.; Pankow, J.S.; Tsao, P.S.; Liu, C.; Zhao, W.; Guarrera, S.; Michopoulos, V.J.; Smith, A.K.; Peters, M.J.; Melzer, D.; Vokonas, P.; Fornage, M.; Prokisch, H.; Bis, J.C.; Chu, A.Y.; Herder, C.; Grallert, H.; Yao, C.; Shah, S.; McRae, A.F.; Lin, H.; Horvath, S.; Fallin, D.; Hofman, A.; Wareham, N.J.; Wiggins, K.L.; Feinberg, A.P.; Starr, J.M.; Visscher, P.M.; Murabito, J.M.; Kardia, S.L.; Absher, D.M.; Binder, E.B.; Singleton, A.B.; Bandinelli, S.; Peters, A.; Waldenberger, M.; Matullo, G.; Schwartz, J.D.; Demerath, E.W.; Uitterlinden, A.G.; van Meurs, J.B.; Franco, O.H.; Chen, Y.I.; Levy, D.; Turner, S.T.; Deary, I.J.; Ressler, K.J.; Dupuis, J.; Ferrucci, L.; Ong, K.K.; Assimes, T.L.; Boerwinkle, E.; Koenig, W.; Arnett, D.K.; Baccarelli, A.A.; Benjamin, E.J.; Dehghan, A. DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases. Genome Biol., 2016, 17(1), 255.
[http://dx.doi.org/10.1186/s13059-016-1119-5] [PMID: 27955697]
[117]
Stenvinkel, P.; Karimi, M.; Johansson, S.; Axelsson, J.; Suliman, M.; Lindholm, B.; Heimbürger, O.; Barany, P.; Alvestrand, A.; Nordfors, L.; Qureshi, A.R.; Ekström, T.J.; Schalling, M. Impact of inflammation on epigenetic DNA methylation - a novel risk factor for cardiovascular disease? J. Intern. Med., 2007, 261(5), 488-499.
[http://dx.doi.org/10.1111/j.1365-2796.2007.01777.x] [PMID: 17444888]
[118]
Tabas, I.; Glass, C.K. Anti-inflammatory therapy in chronic disease: Challenges and opportunities. Science, 2013, 339(6116), 166-172.
[http://dx.doi.org/10.1126/science.1230720] [PMID: 23307734]
[119]
Zhang, Q.; Jiang, X.; He, W.; Wei, K.; Sun, J.; Qin, X.; Zheng, Y.; Jiang, X. MCL plays an anti-inflammatory role in mycobacterium tuberculosis-induced immune response by inhibiting NF-κB and NLRP3 inflammasome activation. Mediators Inflamm., 2017, 2017, 1-12.
[120]
Saeed, M.; Jacob, S.; Sandjo, L.P.; Sugimoto, Y.; Khalid, H.E.; Opatz, T.; Thines, E.; Efferth, T. Cytotoxicity of the sesquiterpene lactones neoambrosin and damsin from Ambrosia maritima against multidrug-resistant cancer cells. Front. Pharmacol., 2015, 6, 267-274.
[http://dx.doi.org/10.3389/fphar.2015.00267] [PMID: 26617519]
[121]
Alam, M.; Khan, A.; Wadood, A.; Khan, A.; Bashir, S.; Aman, A.; Jan, A.K.; Rauf, A.; Ahmad, B.; Khan, A.R.; Farooq, U. Bioassay-guided isolation of sesquiterpene coumarins from Ferula narthex Bioss: A new anticancer agent. Front. Pharmacol., 2016, 7, 1-6.
[122]
Tang, J.J.; He, Q.R.; Dong, S.; Guo, X.; Wang, Y.G.; Lei, B.L.; Tian, J.M.; Gao, J.M. Diversity modification and structure-activity relationships of two natural products 1β-hydroxy alantolactone and ivangustin as potent cytotoxic agents. Sci. Rep., 2018, 8(1), 1722.
[http://dx.doi.org/10.1038/s41598-018-20192-9] [PMID: 29379131]
[123]
Janganati, V.; Ponder, J.; Thakkar, S.; Jordan, C.T.; Crooks, P.A. Succinamide derivatives of melampomagnolide B and their anti-cancer activities. Bioorg. Med. Chem., 2017, 25(14), 3694-3705.
[http://dx.doi.org/10.1016/j.bmc.2017.05.008] [PMID: 28545815]
[124]
MOE. The Molecular Operating Environment from Chemical Computing Group Inc., Montreal, Quebec, Canada,, 2013, 936257.
[http://dx.doi.org/www.chemcomp.com]
[125]
Choi, Y.K.; Cho, S.G.; Woo, S.M.; Yun, Y.J.; Jo, J.; Kim, W.; Shin, Y.C.; Ko, S.G. Saussurea lappa Clarke-derived costunolide prevents TNFα-induced breast cancer cell migration and invasion by inhibiting NF-κB activity. Evid. Based Complement. Alternat. Med., 2013., 2013936257
[http://dx.doi.org/10.1155/2013/936257] [PMID: 23997800]