Association of Virulence Genes with Antibiotic Resistance in Pakistani Uropathogenic E. coli Isolates

Page: [517 - 524] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Escherichia coli various strains can cause alarmingly serious infections. Countries like Pakistan harbour the class of bacteria with one of the highest rates of resistance, but very little has been done to explore their genetic pool.

Objectives: This study was designed to find out the frequency of virulence genes of Uropathogenic E. coli and their association with antibiotic resistance along with the evolutionary adaptation of the selected gene through the phylogenetic tree.

Methods: Isolates from 120 urinary tract infected patients were collected. Antibiotic sensitivity was detected by the disk diffusion method and DNA extraction was done by the boiling lysis method followed by PCR-based detection of virulence genes. The final results were analysed using the chi-square test.

Results: The isolates were found to be least susceptible to nalidixic acid, followed by ampicillin, cotrimoxazole, cefotaxime, ciprofloxacin, aztreonam, amoxicillin, gentamycin, nitrofurantoin and imipenem. The iucC was the most common virulence gene among the resistant isolates. About 86% of the collected samples were found to be multi-drug resistant. Statistical analysis revealed a significant association between the iucC gene and resistance to ampicillin (P=0.03) and amoxicillin (P=0.04), and also between fimH and resistance to aztreonam (P=0.03).

Conclusion: This study unravels the uncharted virulence genes of UPEC in our community for the very first time. We report a high frequency of the iucC and fimH virulence genes. This, along with their positive association with resistance to beta-lactam antibiotics in the studied community, indicates their important role in the development of complicated UTIs.

Keywords: Urinary tract infection, uropathogenic E. coli, virulence, antibiotic resistance, iucC gene, beta-lactam antibiotics.

[1]
Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol., 2015, 13(5), 269-284.
[http://dx.doi.org/10.1038/nrmicro3432] [PMID: 25853778]
[2]
Foxman, B. The epidemiology of urinary tract infection. Nat. Rev. Urol., 2010, 7(12), 653-660.
[http://dx.doi.org/10.1038/nrurol.2010.190] [PMID: 21139641]
[3]
Rasko, D.A.; Rosovitz, M.J.; Myers, G.S.; Mongodin, E.F.; Fricke, W.F.; Gajer, P.; Crabtree, J.; Sebaihia, M.; Thomson, N.R.; Chaudhuri, R.; Henderson, I.R.; Sperandio, V.; Ravel, J. The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J. Bacteriol., 2008, 190(20), 6881-6893.
[http://dx.doi.org/10.1128/JB.00619-08] [PMID: 18676672]
[4]
Oelschlaeger, T.A.; Dobrindt, U.; Hacker, J. Pathogenicity islands of uropathogenic E. coli and the evolution of virulence. Int. J. Antimicrob. Agents, 2002, 19(6), 517-521.
[http://dx.doi.org/10.1016/S0924-8579(02)00092-4] [PMID: 12135843]
[5]
Wiles, T.J.; Kulesus, R.R.; Mulvey, M.A. Origins and virulence mechanisms of uropathogenic Escherichia coli. Exp. Mol. Pathol., 2008, 85(1), 11-19.
[http://dx.doi.org/10.1016/j.yexmp.2008.03.007] [PMID: 18482721]
[6]
Pitout, J.D. Extraintestinal pathogenic Escherichia coli: a combination of virulence with antibiotic resistance. Front. Microbiol., 2012, 3, 9.
[http://dx.doi.org/10.3389/fmicb.2012.00009] [PMID: 22294983]
[7]
Hernando-Amado, S.; Sanz-García, F.; Blanco, P.; Martínez, J.L. Fitness costs associated with the acquisition of antibiotic resistance. Essays Biochem., 2017, 61(1), 37-48.
[http://dx.doi.org/10.1042/EBC20160057] [PMID: 28258228]
[8]
Schroeder, M.; Brooks, B.D.; Brooks, A.E. The complex relationship between virulence and antibiotic resistance. Genes (Basel), 2017, 8(1), 39.
[http://dx.doi.org/10.3390/genes8010039] [PMID: 28106797 ]
[9]
Farshad, S.; Emamghoraishi, F.; Japoni, A. Association of virulent genes hly, sfa, cnf-1 and pap with antibiotic sensitivity in Escherichia coli strains isolated from children with community-acquired UTI. Iran. Red Crescent Med. J., 2010, 2010(1), 33-37.
[10]
Horcajada, J.P.; Soto, S.; Gajewski, A.; Smithson, A.; Jiménez de Anta, M.T.; Mensa, J.; Vila, J.; Johnson, J.R. Quinolone-resistant uropathogenic Escherichia coli strains from phylogenetic group B2 have fewer virulence factors than their susceptible counterparts. J. Clin. Microbiol., 2005, 43(6), 2962-2964.
[http://dx.doi.org/10.1128/JCM.43.6.2962-2964.2005] [PMID: 15956432]
[11]
Mathers, A.J.; Peirano, G.; Pitout, J.D. Escherichia coli ST131: the quintessential example of an international multiresistant high-risk clone. Advances in Applied Microbiology;Elsevier; , 2015, Vol. 90, pp. 109-154.
[12]
Tahir, R.A.; Wu, H.; Javed, N.; Khalique, A.; Khan, S.A.F.; Mir, A.; Ahmed, M.S.; Barreto, G.E.; Qing, H.; Ashraf, G.M.; Sehgal, S.A. Pharmacoinformatics and molecular docking reveal potential drug candidates against Schizophrenia to target TAAR6. J. Cell. Physiol., 2019, 234(8), 13263-13276.
[http://dx.doi.org/10.1002/jcp.27999] [PMID: 30569503]
[13]
Sehgal, S.A.; Khattak, N.A.; Mir, A. Structural, phylogenetic and docking studies of D-amino acid oxidase activator (DAOA), a candidate schizophrenia gene. Theor. Biol. Med. Model., 2013, 10(1), 3.
[http://dx.doi.org/10.1186/1742-4682-10-3] [PMID: 23286827]
[14]
Sehgal, S.A.; Mannan, S.; Kanwal, S.; Naveed, I.; Mir, A. Adaptive evolution and elucidating the potential inhibitor against schizophrenia to target DAOA (G72) isoforms. Drug Des. Devel. Ther., 2015, 9, 3471-3480.
[PMID: 26170631]
[15]
Tahir, R.A.; Sehgal, S.A.; Khattak, N.A.; Khan Khattak, J.Z.; Mir, A. Tumor necrosis factor receptor superfamily 10B (TNFRSF10B): an insight from structure modeling to virtual screening for designing drug against head and neck cancer. Theor. Biol. Med. Model., 2013, 10(1), 38.
[http://dx.doi.org/10.1186/1742-4682-10-38] [PMID: 23724937]
[16]
Sehgal, S.A. Pharmacoinformatics, adaptive evolution, and elucidation of Six novel compounds for Schizophrenia treatment by targeting DAOA (G72) Isoforms. BioMed Res. Int., 2017, 2017, 5925714.
[http://dx.doi.org/10.1155/2017/5925714] [PMID: 28197415]
[17]
Cowan, S.T.; Steel, K.J. Cowan and Steel’s Manual for the Identification of Medical Bacteria; Cambridge University Press, 2004.
[http://dx.doi.org/10.1017/CBO9780511527104]
[18]
Franklin, R.; Cockerill, M., III Performance standards for antimicrobial susceptibility testing, twenty-first informational supplement M100-S21. Clin. Lab. Stand. Inst., 2011, 31, 68-80.
[19]
Zhang, Q.Y.; Zhou, W.W.; Zhou, Y.; Wang, X.F.; Xu, J.F. Response surface methodology to design a selective co-enrichment broth of Escherichia coli, Salmonella spp. and Staphylococcus aureus for simultaneous detection by multiplex PCR. Microbiol. Res., 2012, 167(7), 405-412.
[http://dx.doi.org/10.1016/j.micres.2012.02.003] [PMID: 22444435]
[20]
Usein, C.R.; Damian, M.; Tatu-Chitoiu, D.; Capusa, C.; Fagaras, R.; Tudorache, D.; Nica, M.; Le Bouguénec, C. Prevalence of virulence genes in Escherichia coli strains isolated from Romanian adult urinary tract infection cases. J. Cell. Mol. Med., 2001, 5(3), 303-310.
[http://dx.doi.org/10.1111/j.1582-4934.2001.tb00164.x] [PMID: 12067489]
[21]
Beyene, G.; Tsegaye, W. Bacterial uropathogens in urinary tract infection and antibiotic susceptibility pattern in jimma university specialized hospital, southwest ethiopia. Ethiop. J. Health Sci., 2011, 21(2), 141-146.
[http://dx.doi.org/10.4314/ejhs.v21i2.69055] [PMID: 22434993]
[22]
Tarchouna, M.; Ferjani, A.; Ben-Selma, W.; Boukadida, J. Distribution of uropathogenic virulence genes in Escherichia coli isolated from patients with urinary tract infection. Int. J. Infect. Dis., 2013, 17(6), e450-e453.
[http://dx.doi.org/10.1016/j.ijid.2013.01.025] [PMID: 23510539]
[23]
Asadi, S.; Kargar, M.; Solhjoo, K.; Najafi, A.; Ghorbani-Dalini, S. The association of virulence determinants of uropathogenic Escherichia coli with antibiotic resistance. Jundishapur J. Microbiol., 2014, 7(5), e9936.
[PMID: 25147722]
[24]
Houdouin, V.; Bonacorsi, S.; Bidet, P.; Bingen-Bidois, M.; Barraud, D.; Bingen, E. Phylogenetic background and carriage of pathogenicity island-like domains in relation to antibiotic resistance profiles among Escherichia coli urosepsis isolates. J. Antimicrob. Chemother., 2006, 58(4), 748-751.
[http://dx.doi.org/10.1093/jac/dkl326] [PMID: 16905527]
[25]
Moreno, E.; Planells, I.; Prats, G.; Planes, A.M.; Moreno, G.; Andreu, A. Comparative study of Escherichia coli virulence determinants in strains causing urinary tract bacteremia versus strains causing pyelonephritis and other sources of bacteremia. Diagn. Microbiol. Infect. Dis., 2005, 53(2), 93-99.
[http://dx.doi.org/10.1016/j.diagmicrobio.2005.05.015] [PMID: 16168618]
[26]
Rijavec, M.; Müller-Premru, M.; Zakotnik, B.; Žgur-Bertok, D. Virulence factors and biofilm production among Escherichia coli strains causing bacteraemia of urinary tract origin. J. Med. Microbiol., 2008, 57(Pt 11), 1329-1334.
[http://dx.doi.org/10.1099/jmm.0.2008/002543-0] [PMID: 18927408 ]
[27]
Arisoy, M.; Aysev, D.; Ekim, M.; Özel, D.; Köse, S.K.; Özsoy, E.D.; Akar, N. Detection of virulence factors of Escherichia coli from children by multiplex polymerase chain reaction. Int. J. Clin. Pract., 2006, 60(2), 170-173.
[http://dx.doi.org/10.1111/j.1742-1241.2005.00668.x] [PMID: 16451289]
[28]
López-Banda, D.A.; Carrillo-Casas, E.M.; Leyva-Leyva, M.; Orozco-Hoyuela, G.; Manjarrez-Hernández, Á.H.; Arroyo-Escalante, S.; Moncada-Barrón, D.; Villanueva-Recillas, S.; Xicohtencatl-Cortes, J.; Hernández-Castro, R. Identification of virulence factors genes in Escherichia coli isolates from women with urinary tract infection in Mexico. BioMed Res. Int., 2014, 2014, 959206.
[http://dx.doi.org/10.1155/2014/959206] [PMID: 24895634]
[29]
Tiba, M.R.; Yano, T.; Leite, D.S. Genotypic characterization of virulence factors in Escherichia coli strains from patients with cystitis. Rev. Inst. Med. Trop. São Paulo, 2008, 50(5), 255-260.
[http://dx.doi.org/10.1590/S0036-46652008000500001] [PMID: 18949339]
[30]
Kot, B.; Wicha, J.; Grużewska, A.; Piechota, M.; Wolska, K.; Obrębska, M. Virulence factors, biofilm-forming ability, and antimicrobial resistance of urinary Escherichia coli strains isolated from hospitalized patients. Turk. J. Med. Sci., 2016, 46(6), 1908-1914.
[http://dx.doi.org/10.3906/sag-1508-105] [PMID: 28081347]
[31]
Santo, E.; Macedo, C.; Marin, J.M. Virulence factors of uropathogenic Escherichia coli from a university hospital in Ribeirão Preto, São Paulo, Brazil. Rev. Inst. Med. Trop. São Paulo, 2006, 48(4), 185-188.
[http://dx.doi.org/10.1590/S0036-46652006000400002] [PMID: 17119672]
[32]
Catal, F.; Bavbek, N.; Bayrak, O.; Karabel, M.; Karabel, D.; Odemis, E.; Uz, E. Antimicrobial resistance patterns of urinary tract pathogens and rationale for empirical therapy in Turkish children for the years 2000-2006. Int. Urol. Nephrol., 2009, 41(4), 953-957.
[http://dx.doi.org/10.1007/s11255-008-9445-5] [PMID: 18704743]
[33]
Prakash, D.; Saxena, R.S. Distribution and antimicrobial susceptibility pattern of bacterial pathogens causing urinary tract infection in urban community of meerut city, India. ISRN Microbiol., 2013, 2013, 749629.
[34]
Najmul, H.; Tanveer, A. Changing pattern of resistant pathogens causing urinary tract infections in Karachi. Int. J. Infec. Microbiol., 2013, 2(3), 105-110.
[http://dx.doi.org/10.3126/ijim.v2i3.8069]
[35]
Bouchillon, S.; Hoban, D.J.; Badal, R.; Hawser, S. Fluoroquinolone resistance among gram-negative urinary tract pathogens: global smart program results, 2009-2010. Open Microbiol. J., 2012, 6, 74-78.
[http://dx.doi.org/10.2174/1874285801206010074] [PMID: 23002406]
[36]
Neamati, F.; Firoozeh, F.; Saffari, M.; Zibaei, M. Virulence genes and antimicrobial resistance pattern in uropathogenic Escherichia coli isolated from hospitalized patients in Kashan, Iran. Jundishapur J. Microbiol., 2015, 8(2), e17514.
[http://dx.doi.org/10.5812/jjm.17514] [PMID: 25825647 ]
[37]
Idress, M.; Mussarat, U.; Badshah, Y.; Qamar, R.; Bokhari, H. Virulence factors profile of drug-resistant Escherichia coli isolates from urinary tract infections in Punjab, Pakistan. Eur. J. Clin. Microbiol. Infect. Dis., 2010, 29(12), 1533-1537.
[http://dx.doi.org/10.1007/s10096-010-1036-6] [PMID: 20814711]
[38]
Gobernado, M.; Valdés, L.; Alós, J.I.; García-Rey, C.; Dal-Ré, R.; García-de-Lomas, J.; Pathogens, S.S.G.U. Antimicrobial susceptibility of clinical Escherichia coli isolates from uncomplicated cystitis in women over a 1-year period in Spain. Rev. Esp. Quimioter., 2007, 20(1), 68-76.
[PMID: 17530038 ]
[39]
Bahadin, J.; Teo, S.S.; Mathew, S. Aetiology of community-acquired urinary tract infection and antimicrobial susceptibility patterns of uropathogens isolated. Singapore Med. J., 2011, 52(6), 415-420.
[PMID: 21731993]
[40]
Alabsi, M.S.; Ghazal, A.; Sabry, S.A.; Alasaly, M.M. Association of some virulence genes with antibiotic resistance among uropathogenic Escherichia coli isolated from urinary tract infection patients in Alexandria, Egypt: A hospital-based study. J. Glob. Antimicrob. Resist., 2014, 2(2), 83-86.
[http://dx.doi.org/10.1016/j.jgar.2014.01.003] [PMID: 27873595]
[41]
Sukumaran, D.; Mohamed Hatha, A.A. Antibiotic resistance and virulence genes of extraintestinal pathogenic Escherichia coli from tropical estuary, South India. J. Infect. Dev. Ctries., 2015, 9(5), 496-504.
[http://dx.doi.org/10.3855/jidc.5627] [PMID: 25989169]
[42]
Masuda, N.; Sakagawa, E.; Ohya, S. Outer membrane proteins responsible for multiple drug resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 1995, 39(3), 645-649.
[http://dx.doi.org/10.1128/AAC.39.3.645] [PMID: 7793866]
[43]
Alekshun, M.N.; Levy, S.B. The Escherichia coli mar locus-Antibiotic resistance and more. ASM News, 2004, 70(10), 451-456.