[1]
WHO Guidelines on Good Agricultural and Collection Practices (GACP) for Medicinal Plants; World Health Organization: Geneva, Switzerland, 2003.
[3]
Mukherjee, P.W. Quality Control of Herbal Drugs: An Approach to Evaluation of Botanicals; Business Horizons Publishers: New Delhi, India, 2002.
[4]
Bodeker, C.; Bodeker, G.; Ong, C.K. WHO Global Atlas of Traditional, Complementary and Alternative Medicine; World Health Organization: Geneva, Switzerland, 2005.
[6]
Traditional Medicine Strategy (2002–2005). WHO/EDM/TRM/2002.1; World Health Organization: Geneva, Switzerland, 2002.
[7]
WHO Guidelines on Safety Monitoring of Herbal Medicines in Pharmacovigilance Systems; World Health Organization: Geneva, Switzerland, 2004.
[8]
National Policy on Traditional Medicine and Regulation of Herbal Medicines. Report of a World Health Organization Global Survey; Geneva, Switzerland, 2005.
[9]
Goraya, G. S.; Ved, D. K. Medicinal Plants in India: An Assessment
of their Demand and Supply. National Medicinal Plants
Board, Ministry of AYUSH, Government of India, New-Delhi and
Indian Council of Forestry Research & Education, Dehradun.,, 2017, 1-307.
[11]
Wiersum, K.F.; Dold, A.P.; Husselman, M. Cultivation of medicinal plants as a tool for biodiversity con-servation and poverty alleviation in the Amatola region, South Africa. Frontis; Springer: Netherlands, 2006, pp. 43-57.
[12]
Dubey, K.; Dubey, K. Biodiversity conservation of medicinal plants. J. Res. Educ. Indian Med., 2011, 17(1-2), 1-6.
[14]
Luo, D.; Fan, D.; Yu, H. A new processing technique for the identification of Chinese herbal medicine. 2013Fifth International Conference on Computational and Information Sciences (ICCIS), Shiyang, China, pp. 474-477.
[16]
Liu, C.; Wu, X.; Xiong, W. Chinese herbal medicine classification based on BP neural network. J. Softw., 2014, 9(4), 938-944.
[17]
Norazian, S. Development of intelligent classifier and estimator for tualang honey purity., Doctoral dissertation, Universiti Sains Malaysia, . 2014.
[30]
Sucher, N.J.; Carles, M.C. Genome-based approaches to the authentication of medicinal plants. Planta Med., 2008, 74(06), 603-623.
[31]
Chanda, S. Importance of pharmacognostic study of medicinal plants: An overview. J. Pharmacog. Phytochem., 2014, 2(5), 69-73.
[34]
Kotsiantis, S.B.; Zaharakis, I.; Pintelas, P. Supervised machine learning: A review of classification techniques. Emer. Art. Int. Appl. Comp. Eng., 2007, 160, 3-24.
[36]
Zhao, Z.; Hu, Y.; Liang, Z. Authentication is fundamental for standardization of Chinese medicines. Plan med.,, 2006, 72(10), 865-874.
[37]
Zhang, Y.B.; Shaw, P.C.; Sze, C.W. Molecular authentication of Chinese herbal materials. Yao Wu Shi Pin Fen Xi, 2007, 15(1), 1-9.
[39]
Joshi, K.; Chavan, P.; Warude, D. Molecular markers in herbal drug technology. Curr. Sci., 2004, 87(2), 159-165.
[40]
Yadav, N.P.; Dixit, V.K. Recent approaches in herbal drug standardization. Int. J. Integr. Biol., 2008, 2(3), 195-203.
[41]
Frankel, O.H.; Brown, A.H.; Burdon, J.J. The Conservation of Plant Biodiversity; Cambridge University Press, 1995.
[43]
Sun, Y.; Liu, Y.; Wang, G. Deep learning for plant identification in natural environment. Comp. Int. Neurosci. , 2017, 1-6.
[46]
Anonymous, The Ayurvedic Pharmacopoeia of India, Part-I In: Government
of India, Ministry of Health and Family Welfare, Department
of Health, New Delhi, India ; 1st English ed.; . , 1989.
[47]
The United States Pharmacopeia. 30th Revision/National Formulary, 25th ed; The United States Pharmacopeial Convention: Rochville, 2005.
[48]
The Japanese Pharmacopoeia, 15th ed; Society of Japanese Pharmacopoeia: Tokyo, 2006.
[49]
Vietnamese Pharmacopoeia. 2005.
[51]
Jackson, B.P.; Snowdon, D.W. Atlas of Microscopy of Medicinal Plants, Culinary Herbs and Spices; Belhaven Press, 1990.
[52]
Sultana, S.; Khan, M.A.; Ahmad, M. Authentication of herbal medicine neem (Azadirachta indica A. Juss.) by using taxonomic and pharmacognostic techniques. Pak. J. Bot., 2011, 43, 141-150.
[53]
Yadav, R.N.S.; Agarwala, M. Phytochemical analysis of some medicinal plants. J. Phytol., 2011, 3(12), 10-14.
[54]
Mir, M.A.; Sawhney, S.S.; Jassal, M.M.S. Qualitative and quantitative analysis of phytochemicals of Taraxacum officinale. Wudpec J. Pharm. Pharmocol., 2013, 2(1), 1-5.
[60]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal, 2013.Article ID 162750
[74]
Wang, B.; Brown, D.; Gao, Y. Mobile. International Conference
on Image Processing (ICIP), 20th IEEE , Melbourne, . 2013, pp. 4417-4421.
[82]
Kebapci, H.; Yanikoglu, B.; Unal, G. Plant image retrieval using
color and texture features. Comput. J. Adv. Access, 2009, 82-87.
[90]
Gonzalez, R.; Woods, R. Digital Image Processing, 3rd ed .
[91]
Xiaofeng, W.; Deshuang, H.; Jixiang, D.U. Feature extraction and recognition for leaf images. Comp. Eng. App., 2006, 42(3), 190-193.
[93]
Arun, C.H.; Emmanuel, W.S.; Durairaj, D.C. Texture feature extraction for identification of medicinal plants and comparison of different classifiers. Int. J. Comput. Appl., 2013, 62(12), 1-9.
[94]
Yanikoglu, B.A.; Aptoula, E.; Tirkaz, C. Sabanci-Okan System at Image Clef 2012: Combining Features and Classifiers for Plant Identification; CLEF Online Working Notes/Labs/Workshop, 2012, pp. 1-13.
[108]
Zhao, Z.Q.; Ma, L.H.; Cheung, Y.M. Ap Leaf: An efficient android-based plant leaf identification system. Neurocomputing, 2015, 151, 1112-1119.
[112]
Kumar, N.; Belhumeur, P.N.; Biswas, A. Leafsnap: A computer vision system for automatic plant species identification; , 2012.
[114]
Herdiyeni, Y.; Wahyuni, N.K.S. Mobile International Conference on Advanced Computer Science and Information Systems (ICACSIS), 2012, pp. 301-306.
[120]
Cerutti, G.; Tougne, L.; Mille, J. A model-based approach for compound leaves understanding and identification. 2013.
[123]
Goëau, H.; Joly, A.; Bonnet, P. 2013.
[127]
Foggia, P.; Sansone, C.; Vento, M. 200915th International Conference Vietri sul Mare, , pp. 8-11.
[129]
Bebis, G.; Boyle, R.; Parvin, B.
[130]
Charters, J.; Wang, Z.; Chi, Z. Eagle: A novel descriptor for identifying plant species using leaf lamina vascular features. IEEE Intl. Conf., 2014, pp. 1-6.
[131]
Prasad, S.; Kumar, P.; Tripathi, R.C. 2011.
[132]
A shape-based retrieval scheme for leaf images. Advances in Multimedia Information Processing-PCM; Nam, Y.; Hwang, E. Lecture notes in Computer ScienceSpringer: Berlin, Heidelberg, 2005.
[134]
Pham, N.H.; Le, T.L.; Grard, P. Computer aided plant identification system. 2013 International Conference on Computing, Management and Telecommunications (ComManTel), 2013, pp. 134-139.
[135]
Rejeb Sfar, A.; Boujemaa, N.; Geman, D. Identification of plants from multiple images and botanical idkeys. Proceedings of the 3rd ACM Conference on International Conference on Multimedia Retrieval, New York, USA2013, , pp. 191-198.
[136]
Venkatesh, S.K.; Raghavendra, R. Local gabor phase quantization scheme for robust leaf classification. 2011Third National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG), Hubli, Karnataka, India2011, pp. 211-214.
[137]
Wang, X.F.; Du, J.X.; Zhang, G.J. Recognition of leaf images based on shape features using a hypersphere classifier. 2005.
[138]
Zhai, C.M.; Du, J.X. Applying extreme learning machine to plant species identification. International Conference on Information and Automation, Changsha, China2008, pp. 879-884.
[139]
Gu, X.; Du, J.X.; Wang, X.F. Leaf recognition based on the combination of wavelet transform and gaussian interpolation.
[140]
Hussin, N.A.C.; Jamil, N.; Nordin, S. Plant species identification by using scale invariant feature transform (sift) and grid based colour moment (gbcm). IEEE Conference on Open Systems (ICOS), Kuching, Malaysia2013, pp. 226-230.
[142]
Huang, Z.K.; Wang, Z.F. Bark classification using RBPNN in different color space. Neu. Infor. Proc. Lett. Revi., 2007, 11(1), 7-13.
[143]
Boudra, S.; Yahiaoui, I.; Behloul, A. , 2017.
[144]
Wendel, A.; Sternig, S.; Godec, M. Automated identification of tree species from images of the bark, leaves and needles. 16th Computer Vision Winter Workshop, 2011, pp. 67-70.
[145]
Tan, W.N.; Tan, Y.F.; Koo, A.C. Petals’ shape descriptor for blooming flowers recognition. Fourth International Conference, 2012.
[146]
Tan, W.N.; Sem, R.; Tan, Y.F. Blooming flower recognition by using eigen values of shape features. Sixth International Conference on Digital Image Processing, 2014.
[147]
Cho, S.Y.; Lim, P.T. A novel virus infection clustering for flower images identification. 18th International Conference on Pattern Recognition, 2006, pp. 1038-1041.
[148]
Pardee, W.; Yusungnern, P.; Sripian, P. Flower Identification System by Image Processing. 3rd International Conference on Creative Technology CRETECH, 2015, Vol. 1, pp. 1-4.
[149]
Muhammad Ashraq, S. Classification Modeling for Malaysian Blooming Flower Images Using Neural Networks., 2013.
[150]
Apriyanti, D.H.; Arymurthy, A.M.; Handoko, L.T. Identification of orchid species using content-based flower image retrieval. 2013.
[151]
Zawbaa, H.M.; Abbass, M.; Basha, S.H. An automatic flower classification approach using machine learning algorithms. International Conference on Advances in Computing, Communications and Informatics (ICACCI), , pp. 895-901.
[152]
Nilsback, M.E.; Zisserman, A. A visual vocabulary for flower classification. 2006.
[155]
Arivazhagan, S.; Shebiah, R.N.; Nidhyanandhan, S.S. Fruit recognition using color and texture features. J. Emer. Trend. Comp. Infor. Sci., 2010, 1(2), 90-94.
[158]
Holalad, H.; Warrier, P.; Sabarad, A. An FPGA based efficient fruit recognition system using minimum distance classifier. J. Inf. Eng. Appl., 2012, 2(6), 1-10.
[159]
Unay, D.; Gosselin, B. Artificial neural network-based segmentation and apple grading by machine vision 2005.
[161]
Mitra, S.K.; Kannan, R. A note on unintentional adulterations in Ayurvedic herbs. Ethnobotan Leaflet., 2007, 2007(1), 11-15.
[162]
Evans, W.C. Trease and Evans’ Pharmacognosy E-Book; Elsevier Health Sciences, 2009.
[166]
Zhu, H.; Zhao, M. Study on the microscopic identification of the adulterated plant origin powdered seasonings. Discour. J. Agr. Food Sci., 2014, 2(9), 264-269.
[167]
Bishr, M.M.; Haggag, E.G.; Moawed, M.M. Characterization of fennel fruits: Types and quality (I). Life Sci. J., 2012, 9(2), 686-691.