Effect of Steroidal Hormone Pregnenolone on Proliferation and Differentiation of MC3T3-E1 Osteoblast like Cells

Page: [1139 - 1145] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: Bone remodeling is a complex process that includes continuous resorption by osteoclast cells and bone formation by osteoblast cells. Bone fragility is a common health issue of the elderly population, particularly in postmenopausal women. It has been established that steroidal hormones have an important role in bone homeostasis. Therefore hormone replacement therapy could have beneficial effects on bone health as compared to other treatments.

Objectives: An imbalance between the rate of bone formation and bone resorption leads to the fragility of bones. During the current study, we aimed to explore the ability of pregnenolone (1) (PRE), on proliferation and differentiation of MC3T3-E1 cells. We further aimed to investigate the underlying mechanism of action for the anabolic effect of PRE (1).

Methods: The effects of pregnenolone (1) on proliferation, differentiation, and mineralization of MC3T3 osteoblast-like cells were determined. Cell viability was analyzed using MTT assay and flow cytometry. ALP activity and alizarin staining were employed to evaluate the effect of pregnenolone on osteoblast differentiation. Moreover, western blot for analysis of certain important proteins, crucial for the regulation of bone homeostasis, such as BMP2 and RANKL, was also performed.

Results and Discussions: Our results showed that pregnenolone (1) at a concentration of 5 μM caused a significant (p< 0.05) rise in the growth of MC3T3-E1 cells, whereas a comparable effect was observed in osteoblast differentiating assays. A significant decrease in RANKL expression was observed at (0.04 – 1 μM). Our results, therefore, indicated the possible role of pregnenolone (1) in positive regulation of bone homeostasis by suppressing RANKL expression.

Conclusion: Taken together, our results indicate that pregnenolone (1) has the potential to enhance osteoblast proliferation, as inferred from the increased number of cells. These results demonstrated that pregnenolone (1) could be a potential anabolic agent for the treatment of fragility related disorders.

Keywords: Bone fragility diseases, osteoblast cells, osteoclast cells, MC3T3-E1, pregnenolone, alkaline phosphatase.

Graphical Abstract

[1]
Thu, H.E.; Mohamed, I.N.; Hussain, Z.; Shuid, A.N. Dihydrotestosterone, a robust promoter of osteoblastic proliferation and differentiation: Understanding of time-mannered and dose-dependent control of bone forming cells. Iran. J. Basic Med. Sci., 2017, 20(8), 894-904.
[PMID: 29085581]
[2]
Li, S.; Jiang, H.; Gu, X. Echinacoside suppresses dexamethasone-induced growth inhibition and apoptosis in osteoblastic MC3T3-E1 cells. Exp. Ther. Med., 2018, 16(2), 643-648.
[http://dx.doi.org/10.3892/etm.2018.6199] [PMID: 30112029]
[3]
Park, S.; Namkung, J.; Oh, S.; Lee, S. Efficient synthesis and stimulatory effect of C‐10 exo‐methylene artemisinin on MC3T3‐E1 preosteoblast differentiation to osteoblasts. Bull. Korean Chem. Soc., 2016, 37, 2058-2061.
[http://dx.doi.org/10.1002/bkcs.10998]
[4]
Wan, Hasan W.N.; Abd Ghafar, N.; Chin, K.Y.; Ima-Nirwana, S.. Annatto-derived tocotrienol stimulates osteogenic activity in preosteoblastic MC3T3-E1 cells: A temporal sequential study. Drug Des. Devel. Ther., 2018, 12, 1715-1726.
[http://dx.doi.org/10.2147/DDDT.S168935] [PMID: 29942115]
[5]
Khan, A.H.; Jafri, L.; Ahmed, S.; Noordin, S. Osteoporosis and its perspective in Pakistan: A review of evidence and issues for addressing fragility fractures. Ann. Med. Surg. (Lond.), 2018, 29, 19-25.
[http://dx.doi.org/10.1016/j.amsu.2018.03.019] [PMID: 29692892]
[6]
Lu, X.; Ding, Y.; Niu, Q.; Xuan, S.; Yang, Y.; Jin, Y.; Wang, H. ClC-3 chloride channel mediates the role of parathyroid hormone [1-34] on osteogenic differentiation of osteoblasts. PLoS One, 2017, 12(4), e0176196
[http://dx.doi.org/10.1371/journal.pone.0176196] [PMID: 28437476]
[7]
Kim, M.K.; Lee, H.N.; Jenjob, R.; Lee, J.; Yang, S.G. Calcium-triggered pulsatile delivery of parathyroid hormone from microbeads for osteoporosis treatment. Biomacromolecules, 2017, 18(10), 3099-3105.
[http://dx.doi.org/10.1021/acs.biomac.7b00750] [PMID: 28850775]
[8]
Maurya, S.W.; Dev, K.; Singh, K.B.; Rai, R.; Siddiqui, I.R.; Singh, D.; Maurya, R. Synthesis and biological evaluation of heterocyclic analogues of pregnenolone as novel anti-osteoporotic agents. Bioorg. Med. Chem. Lett., 2017, 27(6), 1390-1396.
[http://dx.doi.org/10.1016/j.bmcl.2017.02.004] [PMID: 28202325]
[9]
Wu, X.; Zhang, M. Effects of androgen and progestin on the proliferation and differentiation of osteoblasts. Exp. Ther. Med., 2018, 16(6), 4722-4728.
[http://dx.doi.org/10.3892/etm.2018.6772] [PMID: 30542427]
[10]
Li, X.L.; Yu, Y.Q.; Qiu, L.H.; Guo, J.J.; Shao, L.N.; Wang, S.M.; Yang, D. [Effects of Porphyromonas endodontalis lipopolysaccharides on the expression of monocyte chemotactic protein-1 in mouse osteoblasts]. Shanghai Kou Qiang Yi Xue, 2018, 27(1), 1-5.
[PMID: 29946631]
[11]
Yan, X.; Wu, H.; Wu, Z.; Hua, F.; Liang, D.; Sun, H.; Bian, J.S. The new synthetic H2Sreleasing SDSS protects MC3T3-E1 osteoblasts against H2O2-induced apoptosis by suppressing oxidative stress, inhibiting MAPKs, and activating the PI3K/Akt pathway. Front. Pharmacol., 2017, 8, 7.
[http://dx.doi.org/10.3389/fphar.2017.00007]
[12]
Suh, K.S.; Chon, S.; Choi, E.M. Bergenin increases osteogenic differentiation and prevents methylglyoxal-induced cytotoxicity in MC3T3-E1 osteoblasts. Cytotechnology, 2018, 70(1), 215-224.
[http://dx.doi.org/10.1007/s10616-017-0135-y] [PMID: 28895006]
[13]
Yazid, M.D.; Ariffin, S.H.Z.; Senafi, S.; Razak, M.A.; Wahab, R.M.A. Determination of the differentiation capacities of murines’ primary mononucleated cells and MC3T3-E1 cells. Cancer Cell Int., 2010, 10, 42.
[http://dx.doi.org/10.1186/1475-2867-10-42] [PMID: 20979664]
[14]
Kwak, E.J.; Lee, Y.S.; Choi, E.M. Effect of magnolol on the function of osteoblastic MC3T3-E1 cells. Mediators Inflamm., 2012, 2012, 829650
[http://dx.doi.org/10.1155/2012/829650] [PMID: 22474400]
[15]
Lo, Y.C.; Chang, Y.H.; Wei, B.L.; Huang, Y.L.; Chiou, W.F. Betulinic acid stimulates the differentiation and mineralization of osteoblastic MC3T3-E1 cells: Involvement of BMP/Runx2 and β-catenin signals. J. Agric. Food Chem., 2010, 58(11), 6643-6649.
[http://dx.doi.org/10.1021/jf904158k] [PMID: 20443623]
[16]
Weinstein, R.S.; Jilka, R.L.; Parfitt, A.M.; Manolagas, S.C. The effects of androgen deficiency on murine bone remodeling and bone mineral density are mediated via cells of the osteoblastic lineage. Endocrinology, 1997, 138(9), 4013-4021.
[http://dx.doi.org/10.1210/endo.138.9.5359] [PMID: 9275093]
[17]
Diamond, T.H.; Higano, C.S.; Smith, M.R.; Guise, T.A.; Singer, F.R. Osteoporosis in men with prostate carcinoma receiving androgen-deprivation therapy: Recommendations for diagnosis and therapies. Cancer, 2004, 100(5), 892-899.
[http://dx.doi.org/10.1002/cncr.20056] [PMID: 14983482]
[18]
Daniell, H.W.; Dunn, S.R.; Ferguson, D.W.; Lomas, G.; Niazi, Z.; Stratte, P.T. Progressive osteoporosis during androgen deprivation therapy for prostate cancer. J. Urol., 2000, 163, 181-186.
[19]
Grigoriou, V.; Shapiro, I.M.; Cavalcanti-Adam, E.A.; Composto, R.J.; Ducheyne, P.; Adams, C.S. Apoptosis and survival of osteoblast-like cells are regulated by surface attachment. J. Biol. Chem., 2005, 280(3), 1733-1739.
[http://dx.doi.org/10.1074/jbc.M402550200] [PMID: 15522882]
[20]
Fang, H.; Zhou, L.; Shen, L.; Zhou, H.; Fang, Y.; Fan, H. Effects of icariin on the proliferation and differentiation of MC3T3-E1. Int. J. Clin. Exp. Med., 2017, 10, 14876-14882.
[21]
Narla, R.R.; Ott, S.M. Bones and the sex hormones. Kidney Int., 2018, 94(2), 239-242.
[http://dx.doi.org/10.1016/j.kint.2018.03.021] [PMID: 30031443]
[22]
Zeng, X.; Feng, Q.; Zhao, F.; Sun, C.; Zhou, T.; Yang, J.; Zhan, X. Puerarin inhibits TRPM3/miR-204 to promote MC3T3-E1 cells proliferation, differentiation and mineralization. Phytother. Res., 2018, 32(6), 996-1003.
[http://dx.doi.org/10.1002/ptr.6034] [PMID: 29368357]
[23]
Wu, R.; Li, Q.; Pei, X.; Hu, K. Effects of brucine on the OPG/RANKL/RANK signaling pathway in MDA-MB-231 and MC3T3-E1 cell co-culture system. Evid. Based Complement. Alternat. Med., 2017.,Article ID 1693643
[http://dx.doi.org/10.1155/2017/1693643]
[24]
Heo, S.Y.; Ko, S.C.; Nam, S.Y.; Oh, J.; Kim, Y.M.; Kim, J.I.; Kim, N.; Yi, M.; Jung, W.K. Fish bone peptide promotes osteogenic differentiation of MC3T3-E1 pre-osteoblasts through upregulation of MAPKs and Smad pathways activated BMP-2 receptor. Cell Biochem. Funct., 2018, 36(3), 137-146.
[http://dx.doi.org/10.1002/cbf.3325] [PMID: 29392739]
[25]
Maeda, T.; Matsunuma, A.; Kawane, T.; Horiuchi, N. Simvastatin promotes osteoblast differentiation and mineralization in MC3T3-E1 cells. Biochem. Biophys. Res. Commun., 2001, 280(3), 874-877.
[http://dx.doi.org/10.1006/bbrc.2000.4232] [PMID: 11162604]
[26]
Zhao, H.; Zhao, N.; Zheng, P.; Xu, X.; Liu, M.; Luo, D.; Xu, H.; Ju, D. Prevention and treatment of osteoporosis using Chinese medicinal plants: Special emphasis on mechanisms of immune modulation. J. Immunol. Res., 2018., 20186345857
[http://dx.doi.org/10.1155/2018/6345857] [PMID: 29675436]
[27]
Shan, Z.; Cheng, N.; Huang, R.; Zhao, B.; Zhou, Y. Puerarin promotes the proliferation and differentiation of MC3T3-E1 cells via microRNA-106b by targeting receptor activator of nuclear factor-κB ligand. Exp. Ther. Med., 2018, 15(1), 55-60.
[PMID: 29375675]
[28]
Streicher, C.; Heyny, A.; Andrukhova, O.; Haigl, B.; Slavic, S.; Schüler, C.; Kollmann, K.; Kantner, I.; Sexl, V.; Kleiter, M.; Hofbauer, L.C.; Kostenuik, P.J.; Erben, R.G. Estrogen regulates bone turnover by targeting RANKL expression in bone lining cells. Sci. Rep., 2017, 7(1), 6460.
[http://dx.doi.org/10.1038/s41598-017-06614-0] [PMID: 28744019]
[29]
Onal, M.; Xiong, J.; Chen, X.; Thostenson, J.D.; Almeida, M.; Manolagas, S.C.; O’Brien, C.A. Receptor activator of nuclear factor κB ligand (RANKL) protein expression by B lymphocytes contributes to ovariectomy-induced bone loss. J. Biol. Chem., 2012, 287(35), 29851-29860.
[http://dx.doi.org/10.1074/jbc.M112.377945] [PMID: 22782898]
[30]
Chmielnicka, M.; Woźniacka, A.; Torzecka, J.D. The influence of corticosteroid treatment on the OPG/RANK/RANKL pathway and osteocalcin in patients with pemphigus. Postepy Dermatol. Alergol., 2014, 31(5), 281-288.
[http://dx.doi.org/10.5114/pdia.2014.44016] [PMID: 25395923]