In silico Studies, Synthesis and Antitubercular Activity of Some Novel Quinoline - Azitidinone Derivatives

Page: [134 - 143] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Diarylquinolines like Bedaquiline have shown promising antitubercular activity by their action of Mycobacterial ATPase.

Objective: The structural features necessary for a good antitubercular activity for a series of quinoline derivatives were explored through computational chemistry tools like QSAR and combinatorial library generation. In the current study, 3-Chloro-4-(2-mercaptoquinoline-3-yl)-1- substitutedphenylazitidin-2-one derivatives have been designed and synthesized based on molecular modeling studies as anti-tubercular agents.

Methods: 2D and 3D QSAR analyses were used to designed compounds having a quinoline scaffold. The synthesized compounds were evaluated against active and dormant strains of Mycobacterium tuberculosis (MTB) H37 Ra and Mycobacterium bovis BCG. The compounds were also tested for cytotoxicity against MCF-7, A549 and Panc-1 cell lines using MTT assay. The binding affinity of designed compounds was gauged by molecular docking studies.

Results: Statistically significant QSAR models generated by the SA-MLR method for 2D QSAR exhibited r2 = 0.852, q2 = 0.811, whereas 3D QSAR with SA-kNN showed q2 = 0.77. The synthesized compounds exhibited MIC in the range of 1.38-14.59(μg/ml). These compounds showed some crucial interaction with MTB ATPase.

Conclusion: The present study has shown some promising results which can be further explored for lead generation.

Keywords: QSAR, combilib, molecular docking, quinolone, mycobacterial ATPase, QSAR.

Graphical Abstract

[1]
Global Tuberculosis Report, 2018. (Available from:. https://www.who.int/teams/global-tuberculosis-programme/tb-reports
[2]
Singh, S.; Roy, K.K.; Khan, S.R.; Kashyap, V.K.; Sharma, A.; Jaiswal, S.; Sharma, S.K.; Krishnan, M.Y.; Chaturvedi, V.; Lal, J.; Sinha, S.; Dasgupta, A.; Srivastava, R.; Saxena, A.K. Novel, potent, orally bioavailable and selective mycobacterial ATP synthase inhibitors that demonstrated activity against both replicating and non-replicating M. tuberculosis. Bioorg. Med. Chem., 2015, 23(4), 742-752.
[http://dx.doi.org/10.1016/j.bmc.2014.12.060] [PMID: 25614114]
[3]
Xu, Z.; Gao, C.; Ren, Q.C.; Song, X.F.; Feng, L.S.; Lv, Z.S. Recent advances of pyrazole-containing derivatives as anti-tubercular agents. Eur. J. Med. Chem., 2017, 139, 429-440.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.059] [PMID: 28818767]
[4]
Jain, P.P.; Degani, M.S.; Raju, A.; Ray, M.; Rajan, M.G.R. Rational drug design based synthesis of novel arylquinolines as anti-tuberculosis agents. Bioorg. Med. Chem. Lett., 2013, 23(22), 6097-6105.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.027] [PMID: 24095091]
[5]
Haagsma, A.C.; Podasca, I.; Koul, A.; Andries, K.; Guillemont, J.; Lill, H.; Bald, D. Probing the interaction of the diarylquinoline TMC207 with its target mycobacterial ATP synthase. PLoS One, 2011, 6(8)e23575
[http://dx.doi.org/10.1371/journal.pone.0023575] [PMID: 21858172]
[6]
Marella, A.; Tanwar, O.P.; Saha, R.; Ali, M.R.; Srivastava, S.; Akhter, M.; Shaquiquzzaman, M.; Alam, M.M. Quinoline: a versatile heterocyclic. Saudi Pharm. J., 2013, 21(1), 1-12.
[http://dx.doi.org/10.1016/j.jsps.2012.03.002] [PMID: 23960814]
[7]
Rajkumar, R.; Udayakumar, D.S.; Madan, K. Molecular hybridization approach for phenothiazine incorporated 1,2,3-triazole hybrids as promising antimicrobial agents: Design, synthesis, molecular docking and in silico ADME studies. Eur. J. Med. Chem., 2019, 15, 263-282.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.010]
[8]
Lu, P.; Lill, H.; Bald, D. ATP synthase in mycobacteria: special features and implications for a function as drug target. Biochim. Biophys. Acta, 2014, 1837(7), 1208-1218.
[http://dx.doi.org/10.1016/j.bbabio.2014.01.022] [PMID: 24513197]
[9]
Svensson, E.M.; Murray, S.; Karlsson, M.O.; Dooley, K.E. Rifampicin and rifapentine significantly reduce concentrations of bedaquiline, a new anti-TB drug. J. Antimicrob. Chemother., 2015, 70(4), 1106-1114.
[PMID: 25535219]
[10]
Field, S.K. Bedaquiline for the treatment of multidrug-resistant tuberculosis: great promise or disappointment? Ther. Adv. Chronic Dis., 2015, 6(4), 170-184.
[http://dx.doi.org/10.1177/2040622315582325] [PMID: 26137207]
[11]
Nayak, N.; Ramprasad, J.; Dalimba, U. Synthesis and antitubercular and antibacterial activity of some active fluorine containing quinoline–pyrazole hybrid derivatives. J. Fluor. Chem., 2016, 183, 59-68.
[http://dx.doi.org/10.1016/j.jfluchem.2016.01.011]
[12]
Muscia, G.C.; Buldain, G.Y.; Asís, S.E. Design, synthesis and evaluation of acridine and fused-quinoline derivatives as potential anti-tuberculosis agents. Eur. J. Med. Chem., 2014, 73, 243-249.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.013] [PMID: 24412719]
[13]
Patel, S.R.; Gangwal, R.; Sangamwar, A.T.; Jain, R. Synthesis, biological evaluation and 3D-QSAR study of hydrazide, semicarbazide and thiosemicarbazide derivatives of 4-(adamantan-1-yl)quinoline as anti-tuberculosis agents. Eur. J. Med. Chem., 2014, 85, 255-267.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.100] [PMID: 25089809]
[14]
Mandewale, M.C.; Patil, U.C.; Shedge, S.V.; Dappadwad, U.R.; Yamgarm, R.S. A review on quinoline hydrazone derivatives as a new class of potent antitubercular and anticancer agents. Beni-Suef Uni. J. Basic Appl. Sci., 2017, 4(6), 354-361.
[15]
Mungra, D.C.; Patel, M.P.; Rajani, D.P.; Patel, R.G. Synthesis and identification of β-aryloxyquinolines and their pyrano[3,2-c]chromene derivatives as a new class of antimicrobial and antituberculosis agents. Eur. J. Med. Chem., 2011, 46(9), 4192-4200.
[http://dx.doi.org/10.1016/j.ejmech.2011.06.022] [PMID: 21741732]
[16]
Keri, R.S.; Patil, S.A. Quinoline: a promising antitubercular target. Biomed. Pharmacother., 2014, 68(8), 1161-1175.
[http://dx.doi.org/10.1016/j.biopha.2014.10.007] [PMID: 25458785]
[17]
Asati, V.; Ghode, P.; Bajaj, S.; Jain, S.K.; Bharti, S.K. 3D-QSAR and molecular docking studies on oxadiazole substituted benzimidazole derivatives: validation of experimental inhibitory potencies towards COX-2. Curr. Comput. Aided Drug Des., 2019, 15(4), 277-293.
[http://dx.doi.org/10.2174/1573409914666181003153249] [PMID: 30280671]
[18]
Mistry, M.M.; Jauhari, S. Synthesis and in vitro antimicrobial and anti-tubercular evaluation of some quinoline-based azitidinone and thiazolidinone analogues. Med. Chem. Res., 2013, 22, 635-646.
[http://dx.doi.org/10.1007/s00044-012-0060-8]
[19]
Khazi, A.M.; Mulla, J.A.; Palkar, M.B.; Maddi, V.S.; Khazi, I.A. Three-dimensional QSAR using the k-nearest neighbor method and its interpretation. J. Chem. Inf. Model., 2012, 46(1), 24-31.
[20]
Ajmani, S.; Jadhav, K.; Kulkarni, S.A. Three-dimensional QSAR using the k-nearest neighbor method and its interpretation. J. Chem. Inf. Model., 2006, 46(1), 24-31.
[http://dx.doi.org/10.1021/ci0501286] [PMID: 16426036]
[21]
Pawar, V.; Lokwani, D.; Bhandari, S.; Mitra, D.; Sabde, S.; Bothara, K.; Madgulkar, A. Design of potential reverse transcriptase inhibitor containing isatin nucleus using molecular modeling studies. Bioorg. Med. Chem., 2010, 18(9), 3198-3211.
[http://dx.doi.org/10.1016/j.bmc.2010.03.030] [PMID: 20381364]
[22]
Ghosh, P.; Bagchi, M.C. Anti-tubercular drug designing by structure based screening of combinatorial libraries. J. Mol. Model., 2011, 17(7), 1607-1620.
[http://dx.doi.org/10.1007/s00894-010-0861-y] [PMID: 20953648]
[23]
Chitre, T.S.; Asgaonkar, K.D.; Patil, S.M.; Kumar, S.; Khedkar, V.M.; Garud, D.R. QSAR, docking studies of 1,3-thiazinan-3-yl isonicotinamide derivatives for antitubercular activity. Comput. Biol. Chem., 2017, 68, 211-218.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.03.015] [PMID: 28411471]
[24]
Veerasamy, R.; Rajak, H.; Jain, A.; Sivadasan, S.; Varghese, C.P.; Agrawal, R.K. Validation of QSAR Models - Strategies and Importance. Inter. J. Drug Design Dis., 2011, 2(3), 511-519.
[25]
Raparti, V.; Chitre, T.; Bothara, K.; Kumar, V.; Dangre, S.; Khachane, C.; Gore, S.; Deshmane, B. Novel 4-(morpholin-4-yl)-N′-(arylidene)benzohydrazides: synthesis, antimycobacterial activity and QSAR investigations. Eur. J. Med. Chem., 2009, 44(10), 3954-3960.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.023] [PMID: 19464085]
[26]
Singh, U.; Akhtar, S.; Mishra, A.; Sarkar, D. A novel screening method based on menadione mediated rapid reduction of tetrazolium salt for testing of anti-mycobacterial agents. J. Microbiol. Methods, 2011, 84(2), 202-207.
[http://dx.doi.org/10.1016/j.mimet.2010.11.013] [PMID: 21129420]
[27]
Joshi, R.R.; Barchha, A.; Khedkar, V.M.; Pissurlenkar, R.R.S.; Sarkar, S.; Sarkar, D.; Joshi, R.R.; Joshi, R.A.; Shah, A.K.; Coutinho, E.C. Targeting dormant tuberculosis bacilli: results for molecules with a novel pyrimidone scaffold. Chem. Biol. Drug Des., 2015, 85(2), 201-207.
[http://dx.doi.org/10.1111/cbdd.12373] [PMID: 24917467]
[28]
Shaikh, M.H.; Subhedar, D.D.; Arkile, M.; Khedkar, V.M.; Jadhav, N.; Sarkar, D.; Shingate, B.B. Synthesis and bioactivity of novel triazole incorporated benzothiazinone derivatives as antitubercular and antioxidant agent. Bioorg. Med. Chem. Lett., 2016, 26(2), 561-569.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.071] [PMID: 26642768]
[29]
Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 2004, 47(7), 1750-1759.
[http://dx.doi.org/10.1021/jm030644s] [PMID: 15027866]
[30]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Glide: a new approach for rapid, accurate docking and scoring. 1. method and assessment of docking accuracy. J. Med. Chem., 2006, 49, 6177-6196..
[http://dx.doi.org/10.1021/jm051256o] [PMID: 17034125]