Identification of Three Differentially Expressed miRNAs as Potential Biomarkers for Lung Adenocarcinoma Prognosis

Page: [148 - 156] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Objective: The aim of this study areto screen MicroRNAs (miRNAs) related to the prognosis of lung adenocarcinoma (LUAD) and to explore the possible molecular mechanisms.

Methods: The data for a total of 535 patients with LUAD data were downloaded from The Cancer Genome Atlas (TCGA) database. The miRNAs for LUAD prognosis were screened by both Cox risk proportional regression model and Last Absolute Shrinkage and Selection Operator (LASSO) regression model. The performances of the models were verified by time-dependent Receiver Operating Characteristic (ROC) curve. The possible biological processes linked to the miRNAs’ target genes were analyzed by Gene Ontology (GO), Kyoto gene and genome encyclopedia (KEGG).

Results: Among 127 differentially expressed miRNAs identified from the screening analysis, there are 111 up-regulated and 16 down-regulated miRNAs. Three of them, hsa-miR-1293, hsa-miR-490 and hsa-miR- 5571, were also significantly associated with the survival of the LUAD patients. The targets of the three miRNAs are significantly enriched in systemic lupus erythematosus pathways.

Conclusion: Hsa-miR-1293, hsa-miR-490 and hsa-miR-5571 can be potentially used as novel biomarkers for the prognosis prediction of LUAD.

Keywords: Lung adenocarcinoma, miRNAs, TCGA, prognosis, biomarkers, computational approaches.

[1]
Mao, M.; Wu, Z.; Chen, J. MicroRNA-187-5p suppresses cancer cell progression in non-small cell lung cancer (NSCLC) through down-regulation of CYP1B1. Biochem. Biophys. Res. Commun., 2016, 478(2), 649-655.
[http://dx.doi.org/10.1016/j.bbrc.2016.08.001] [PMID: 27495872]
[2]
Kadara, H.; Kabbout, M.; Wistuba, I.I. Pulmonary adenocarcinoma: a renewed entity in 2011. Respirology, 2012, 17(1), 50-65.
[http://dx.doi.org/10.1111/j.1440-1843.2011.02095.x] [PMID: 22040022]
[3]
Lin, K.; Xu, T.; He, B.S.; Pan, Y.Q.; Sun, H.L.; Peng, H.X.; Hu, X.X.; Wang, S.K. MicroRNA expression profiles predict progression and clinical outcome in lung adenocarcinoma. OncoTargets Ther., 2016, 9, 5679-5692.
[http://dx.doi.org/10.2147/OTT.S111241] [PMID: 27695346]
[4]
Calin, G.A.; Croce, C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer, 2006, 6(11), 857-866.
[http://dx.doi.org/10.1038/nrc1997] [PMID: 17060945]
[5]
Costa-Pinheiro, P.; Montezuma, D.; Henrique, R.; Jerónimo, C. Diagnostic and prognostic epigenetic biomarkers in cancer. Epigenomics, 2015, 7(6), 1003-1015.
[http://dx.doi.org/10.2217/epi.15.56] [PMID: 26479312]
[6]
Zhang, B.; Pan, X.; Cobb, G.P.; Anderson, T.A. microRNAs as oncogenes and tumor suppressors. Dev. Biol., 2007, 302(1), 1-12.
[http://dx.doi.org/10.1016/j.ydbio.2006.08.028] [PMID: 16989803]
[7]
(a)Lan, T.; Lu, Y.; Xiao, Z.; Xu, H.; He, J.; Hu, Z.; Mao, W. A six-microRNA signature can better predict overall survival of patients with esophagus adenocarcinoma. PeerJ., 2019, 7e7353.
[http://dx.doi.org/10.7717/peerj.7353] [PMID: 31380150]
(b)Ma, T.; Hu, Y.; Guo, Y.; Yan, B. Tumor-promoting activity of long noncoding RNA LINC00466 in lung adenocarcinoma via miR-144-regulated HOXA10 axis. Am. J. Pathol., 2019, 189(11), 2154-2170.
[http://dx.doi.org/10.1016/j.ajpath.2019.06.014] [PMID: 31381886]
[8]
Raffone, A.; Travaglino, A.; Mascolo, M.; Carbone, L.; Guida, M.; Insabato, L.; Zullo, F. TCGA molecular groups of endometrial cancer: Pooled data about prognosis. Gynecol. Oncol., 2019, 155(2), 374-383.
[http://dx.doi.org/10.1016/j.ygyno.2019.08.019] [PMID: 31472940]
[9]
Zheng, R.; Mao, W.; Du, Z.; Zhang, J.; Wang, M.; Hu, M. Three differential expression profiles of miRNAs as potential biomarkers for lung adenocarcinoma. Biochem. Biophys. Res. Commun., 2018, 507(1-4), 377-382.
[http://dx.doi.org/10.1016/j.bbrc.2018.11.046] [PMID: 30442364]
[10]
Xi, W.D.; Liu, Y.J.; Sun, X.B.; Shan, J.; Yi, L.; Zhang, T.T. Bioinformatics analysis of RNA-seq data revealed critical genes in colon adenocarcinoma. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(13), 3012-3020.
[PMID: 28742206]
[11]
Lopez, G.; Costanza, J.; Colleoni, M.; Fontana, L.; Ferrero, S.; Miozzo, M.; Fusco, N. Molecular insights into the classification of luminal breast cancers: the genomic heterogeneity of progesterone-negative tumors. Int. J. Mol. Sci., 2019, 20(3)E510
[http://dx.doi.org/10.3390/ijms20030510] [PMID: 30691046]
[12]
Lu, W.; Goldberg, Y.; Fine, J.P. On the robustness of the adaptive lasso to model misspecification. Biometrika, 2012, 99(3), 717-731.
[http://dx.doi.org/10.1093/biomet/ass027] [PMID: 25294946]
[13]
Li, Y.; Ge, D.; Gu, J.; Xu, F.; Zhu, Q.; Lu, C. A large cohort study identifying a novel prognosis prediction model for lung adenocarcinoma through machine learning strategies. BMC Cancer, 2019, 19(1), 886.
[http://dx.doi.org/10.1186/s12885-019-6101-7] [PMID: 31488089]
[14]
Dennis, G., Jr; Sherman, B.T.; Hosack, D.A.; Yang, J.; Gao, W.; Lane, H.C.; Lempicki, R.A. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol., 2003, 4(5), 3.
[http://dx.doi.org/10.1186/gb-2003-4-5-p3] [PMID: 12734009]
[15]
Lee, E.; Takita, C.; Wright, J.L.; Slifer, S.H.; Martin, E.R.; Urbanic, J.J.; Langefeld, C.D.; Lesser, G.J.; Shaw, E.G.; Hu, J.J. Genome-wide enriched pathway analysis of acute post-radiotherapy pain in breast cancer patients: a prospective cohort study. Hum. Genomics, 2019, 13(1), 28.
[http://dx.doi.org/10.1186/s40246-019-0212-8] [PMID: 31196165]
[16]
Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; Kuhn, M.; Bork, P.; Jensen, L.J.; von Mering, C. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res., 2015, 43(Database issue), D447-D452.
[http://dx.doi.org/10.1093/nar/gku1003] [PMID: 25352553]
[17]
Angeles Serrano, M.; De Los Rios, P. Interfaces and the edge percolation map of random directed networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2007, 76(5 Pt 2)056121
[http://dx.doi.org/10.1103/PhysRevE.76.056121] [PMID: 18233732]
[18]
Rhodes, D.R.; Yu, J.; Shanker, K.; Deshpande, N.; Varambally, R.; Ghosh, D.; Barrette, T.; Pandey, A.; Chinnaiyan, A.M. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia, 2004, 6(1), 1-6.
[http://dx.doi.org/10.1016/S1476-5586(04)80047-2] [PMID: 15068665]
[19]
Selamat, S.A.; Chung, B.S.; Girard, L.; Zhang, W.; Zhang, Y.; Campan, M.; Siegmund, K.D.; Koss, M.N.; Hagen, J.A.; Lam, W.L.; Lam, S.; Gazdar, A.F.; Laird-Offringa, I.A. Genome-scale analysis of DNA methylation in lung adenocarcinoma and integration with mRNA expression. Genome Res., 2012, 22(7), 1197-1211.
[http://dx.doi.org/10.1101/gr.132662.111] [PMID: 22613842]
[20]
(a)Yang, X.; Liu, Y.; Lian, F.; Guo, L.; Wen, P.; Liu, X.Y.; Lin, D.M. Lepidic and micropapillary growth pattern and expression of Napsin A can stratify patients of stage I lung adenocarcinoma into different prognostic subgroup. Int. J. Clin. Exp. Pathol., 2014, 7(4), 1459-1468.
[PMID: 24817941]
(b)Ou, S.H.; Zell, J.A.; Ziogas, A.; Anton-Culver, H. Prognostic factors for survival of stage I nonsmall cell lung cancer patients: a population-based analysis of 19,702 stage I patients in the California Cancer Registry from 1989 to 2003. Cancer, 2007, 110(7), 1532-1541.
[http://dx.doi.org/10.1002/cncr.22938] [PMID: 17702091]
[21]
(a)An, J.C.; Shi, H.B.; Hao, W.B.; Zhu, K.; Ma, B. miR-944 inhibits lung adenocarcinoma tumorigenesis by targeting STAT1 interaction. Oncol. Lett., 2019, 17(4), 3790-3798.
[http://dx.doi.org/10.3892/ol.2019.10045] [PMID: 30881499]
(b)Hu, W.B.; Wang, L.; Huang, X.R.; Li, F. MicroRNA-204 targets SOX4 to inhibit metastasis of lung adenocarcinoma. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(4), 1553-1562.
[PMID: 30840278]
(c)Dai, B.; Kong, D.L.; Tian, J.; Liu, T.W.; Zhou, H.; Wang, Z.F. microRNA-1205 promotes cell growth by targeting APC2 in lung adenocarcinoma. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(3), 1125-1133.
[PMID: 30779081]
[22]
Wang, W.; Ding, M.; Duan, X.; Feng, X.; Wang, P.; Jiang, Q.; Cheng, Z.; Zhang, W.; Yu, S.; Yao, W. Diagnostic value of plasma microRNAs for lung cancer using support vector machine model. J. Cancer, 2019, 10(21), 5090-5098.
[http://dx.doi.org/10.7150/jca.30528] [PMID: 31602261]
[23]
Gu, H.; Yang, T.; Fu, S.; Chen, X.; Guo, L.; Ni, Y. MicroRNA-490-3p inhibits proliferation of A549 lung cancer cells by targeting CCND1. Biochem. Biophys. Res. Commun., 2014, 444(1), 104-108.
[http://dx.doi.org/10.1016/j.bbrc.2014.01.020] [PMID: 24440705]
[24]
Li, J.; Feng, Q.; Wei, X.; Yu, Y. MicroRNA-490 regulates lung cancer metastasis by targeting poly r(C)-binding protein 1. Tumour Biol., 2016, 37(11), 15221-15228.
[http://dx.doi.org/10.1007/s13277-016-5347-9] [PMID: 27683057]
[25]
Kang, J.G.; Majerciak, V.; Uldrick, T.S.; Wang, X.; Kruhlak, M.; Yarchoan, R.; Zheng, Z.M. Kaposi’s sarcoma-associated herpesviral IL-6 and human IL-6 open reading frames contain miRNA binding sites and are subject to cellular miRNA regulation. J. Pathol., 2011, 225(3), 378-389.
[http://dx.doi.org/10.1002/path.2962] [PMID: 21984125]
[26]
De Sarkar, N.; Roy, R.; Mitra, J.K.; Ghose, S.; Chakraborty, A.; Paul, R.R.; Mukhopadhyay, I.; Roy, B. A quest for miRNA bio-marker: a track back approach from gingivo buccal cancer to two different types of precancers. PLoS One, 2014, 9(8)e104839
[http://dx.doi.org/10.1371/journal.pone.0104839] [PMID: 25126847]
[27]
Hu, S.; Yuan, Y.; Song, Z.; Yan, D.; Kong, X. Kaposi’s sarcoma-associated herpesviral IL-6 and human IL-6 open reading frames contain miRNA binding sites and are subject to cellular miRNA regulation. J. Pathol., 2018, 225(5), 378-389.
[28]
Pu, Q.; Huang, Y.; Lu, Y.; Peng, Y.; Zhang, J.; Feng, G.; Wang, C.; Liu, L.; Dai, Y. Tissue-specific and plasma microRNA profiles could be promising biomarkers of histological classification and TNM stage in non-small cell lung cancer. Thorac. Cancer, 2016, 7(3), 348-354.
[http://dx.doi.org/10.1111/1759-7714.12317] [PMID: 27148421]
[29]
Zacharias, M.; Brcic, L.; Eidenhammer, S.; Popper, H. Bulk tumour cell migration in lung carcinomas might be more common than epithelial-mesenchymal transition and be differently regulated. BMC Cancer, 2018, 18(1), 717.
[http://dx.doi.org/10.1186/s12885-018-4640-y] [PMID: 29976164]
[30]
Ni, J.; Qiu, L.J.; Hu, L.F.; Cen, H.; Zhang, M.; Wen, P.F.; Wang, X.S.; Pan, H.F.; Ye, D.Q. Lung, liver, prostate, bladder malignancies risk in systemic lupus erythematosus: evidence from a meta-analysis. Lupus, 2014, 23(3), 284-292.
[http://dx.doi.org/10.1177/0961203313520060] [PMID: 24429300]
[31]
Song, L.; Wang, Y.; Zhang, J.; Song, N.; Xu, X.; Lu, Y. The risks of cancer development in systemic lupus erythematosus (SLE) patients: a systematic review and meta-analysis. Arthritis Res. Ther., 2018, 20(1), 270.
[http://dx.doi.org/10.1186/s13075-018-1760-3] [PMID: 30522515]