Prostate cancer is the second leading cause of cancer death in the United States. Treatment options for confined disease are generally successful in prolonging life but long-term cures (10-15 years) are elusive for the majority of patients. The prognosis for advanced extra-capsular prostate cancer is grim. However, we are now entering the era of gene therapy options for treatment of prostate cancer. The human genome project coupled with genomics and proteomics are providing information that will lead to selection of genes for treatment of prostate cancer. The problem is the science of delivery lags behind knowledge of gene function. Thus, it is important to develop therapies that do not require delivery to 100percent of tumor cells but which nevertheless kills the entire cancer by virtue of the bystander effect or other means. This review covers the use, in gene therapy, of apoptotic inducing molecules such as Fas Ligand, and TRAIL which are believed to induce bystander killing activity and Bax which also may function in a similar way.
Keywords: Fas Ligand, bystander killing activity, surgical castration, immuno histochemistry, apoptosis inducing genes, cis diamminedichloroplatinum, anti apoptotic proteins, chemotherapeutic agents, voltage dependent anion, Bax expression, tetracycline transcriptional