Current Computer-Aided Drug Design

Author(s): Subhash C. Basak and Marjan G. Vracko

DOI: 10.2174/157340991601200106122854

Parsimony Principle and its Proper use/ Application in Computer-assisted Drug Design and QSAR

Page: [1 - 5] Pages: 5

  • * (Excluding Mailing and Handling)

[1]
Statistical and Machine Learning Approaches for Network Analysis, Matthias Dehmer and Subhash C. Basak, Editors, Wiley, Hoboken, New Jersey, USA, 2012..
[2]
Advances in Mathematical Chemistry and Applications, Volume 1 & 2, Subhash C. Basak, Guillermo Restrepo, and Jose Luis Villaveces, Editors, Elsevier & Bentham Science Publishers, 2015. .
[3]
Basak, S.C.; Bhattacharjee, A.K.; Vracko, M. Big data and new drug discovery: Tackling “Big Data” for virtual screening of large compound databases. Curr. Comput. Aided Drug Des., 2015, 11, 197-201.
[4]
Basak, S.C. Role of mathematical chemodescriptors and proteomics-based biodescriptors in drug discovery. Drug Dev. Res., 2010, 72, 1-9.
[5]
Wiener, H. Structural determination of paraffin boiling points. J. Am. Chem. Soc., 1947, 69, 17-20.
[6]
Majumdar, S.; Basak, S.C. Beware of Naïve q2, use True q2: Some comments on QSAR model building and cross validation. Curr. Comput. Aided Drug Des., 2018, 14, 5-6.
[7]
Prothero, J. The Principles of Literature, https://www.researchgate.net/publication/267333463_The_Principles_of_Literature Accessed on 20 September 2018.
[8]
Simplicity, Stanford Encyclopedia of Philosophy; https://plato.stanford.edu/entries/simplicity/ Accessed on 22 September 2018.
[9]
Hoffmann, R.; Minkin, V.I.; Carpenter, B.K. Ockham’s Razor and Chemistry. Hyle International Journal for Philosophy of Chemistry, 1997, 3, 3-28.
[10]
Basak, S.C.; Magnuson, V.R.; Niemi, G.J.; Regal, R.R. Determining structural similarity of chemicals using graph theoretic indices. Discrete Appl. Math., 1988, 19, 17-44.
[11]
Mahalanobis, P.C. On the generalized distance in statistics. Proc. Nat. Inst. Sci. India, 1936, 2, 49-55.
[12]
Cummins, D.J. Pharmaceutical drug discovery: Designing the blockbuster drug. In: Screening methods for experimentation in industry, drug discovery, and genetics; Angela , Dean., and; Susan , Lewis., Eds.; Springer New York, 2006; pp. 69-114.
[13]
Basak, S.C. Mathematical descriptors for the prediction of property, bioactivity, and toxicity of chemicals from their structure: A chemical-cum-biochemical approach. Curr. Comput. Aided Drug Des., 2013, 9, 449-462.
[14]
Vracko, M.; , F.A..; Witzmann, F.A. Basak, S.C. Editorial. A possible chemo-biodescriptor framework for the prediction of toxicity of nanosubstances: An integrated computational approach. Curr. Comput. Aided Drug Des., 2018, 14, 2-4.
[15]
Basak, S.C.; Vracko, M.; Witzmann, F.A. Mathematical nanotoxicoproteomics: Quantitative characterization of effects of multi-walled carbon nanotubes (MWCNT) and TiO2 nanobelts (TiO2-NB) on protein expression patterns in human intestinal cells. Curr. Comput. Aided Drug Des., 2016, 12, 259-264.
[16]
Basak, S.C.; Majumdar, S. Chemodescriptor based QSARs of structurally homogeneous versus heterogeneous chemical data sets: Some comments on the congenericity principle vis-à-vis diversity begets diversity principl. Curr. Comput. Aided Drug Des., 2016, 12, 84-86.
[18]
Bertalanffy, L.V. An outline of general system theory. The British Journal for the Philosophy of Science., 1950, 1, 134-165.