Petra/Osiris/Molinspiration and Molecular Docking Analyses of 3-Hydroxy-Indolin-2-one Derivatives as Potential Antiviral Agents

Page: [123 - 133] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Studies on the interaction between bioactive molecules and HIV-1 virus have been the focus of recent research in the scope of medicinal chemistry and pharmacology.

Objective: Investigating the structural parameters and physico-chemical properties of elucidating and identifying the antiviral pharmacophore sites.

Methods: A mixed computational Petra/Osiris/Molinspiration/DFT (POM/DFT) based model has been developed for the identification of physico-chemical parameters governing the bioactivity of 22 3-hydroxy-indolin-2-one derivatives of diacetyl-L-tartaric acid and aromatic amines containing combined antiviral/antitumor/antibacterial pharmacophore sites. Molecular docking study was carried out with HIV-1 integrase (pdb ID: 5KGX) in order to provide information about interactions in the binding site of the enzyme.

Results: The POM analyses of physico-chemical properties and geometrical parameters of compounds 3a-5j, show that they are bearing a two combined (O,O)-pockets leading to a special platform which is able to coordinate two transition metals. The increased activity of series 3a-5j, as compared to standard drugs, contains (Osp2,O sp3,O sp2)-pharmacophore site. The increase in bioactivity from 4b (R1, R2 = H, H) to 3d (R1, R2 = 4-Br, 2-OCH3) could be attributed to the existence of π-charge transfer from para-bromo-phenyl to its amid group (COδ---NHδ+). Similar to the indole-based reference ligand (pdb: 7SK), compound 3d forms hydrogen bonding interactions between the residues Glu170, Thr174 and His171 of HIV-1 integrase in the catalytic core domain of the enzyme.

Conclusion: Study confirmed the importance of oxygen atoms, especially from the methoxy group of the phenyl ring, and electrophilic amide nitrogen atom for the formation of interactions.

Keywords: 3-Hydroxy-indolin-2-ones, POM analyses, HIV antiviral activity, pharmacophore, molecular docking, HIV-1 integrase.

Graphical Abstract

[1]
Volberding, P.A.; Lagakos, S.W.; Grimes, J.M.; Stein, D.S.; Balfour, H.H.; Reichman, R.C.; Bartlett, J.A.; Hirsch, M.S.; Phair, J.P.; Mitsuyasu, R.T. The duration of zidovudine benefit in persons with asymptomatic HIV infection. Prolonged evaluation of protocol 019 of the AIDS clinical trials group. JAMA, 1994, 272(6), 437-442.
[http://dx.doi.org/10.1001/jama.1994.03520060037029] [PMID: 7913730]
[2]
Quercia, R.; Perno, C.F.; Koteff, J.; Moore, K.; McCoig, C.; St Clair, M.; Kuritzkes, D. Twenty-five years of lamivudine. Current and future use for the treatment of HIV-1 infection. J. Acquir. Immune Defic. Syndr., 2018, 78(2), 125-135.
[http://dx.doi.org/10.1097/QAI.0000000000001660] [PMID: 29474268]
[3]
Chander, S.; Tang, C.R.; Penta, A.; Wang, P.; Bhagwat, D.P.; Vanthuyne, N.; Albalat, M.; Patel, P.; Sankpal, S.; Zheng, Y.T.; Sankaranarayanan, M. Hit optimization studies of 3-hydroxy-indolin-2-one analogs as potential anti-HIV-1 agents. Bioorg. Chem., 2018, 79, 212-222.
[http://dx.doi.org/10.1016/j.bioorg.2018.04.027] [PMID: 29775947]
[4]
Greenwald, J.; Le, V.; Butler, S.L.; Bushman, F.D.; Choe, S. The mobility of an HIV-1 integrase active site loop is correlated with catalytic activity. Biochemistry, 1999, 38(28), 8892-8898.
[http://dx.doi.org/10.1021/bi9907173] [PMID: 10413462]
[5]
Wielens, J.; Headey, S.J.; Jeevarajah, D.; Rhodes, D.I.; Deadman, J.; Chalmers, D.K.; Scanlon, M.J.; Parker, M.W. Crystal structure of the HIV-1 integrase core domain in complex with sucrose reveals details of an allosteric inhibitory binding site. FEBS Lett., 2010, 584(8), 1455-1462.
[http://dx.doi.org/10.1016/j.febslet.2010.03.016] [PMID: 20227411]
[6]
Patel, P.A.; Kvaratskhelia, N.; Mansour, Y.; Antwi, J.; Feng, L.; Koneru, P.; Kobe, M.J.; Jena, N.; Shi, G.; Mohamed, M.S.; Li, C.; Kessl, J.J.; Fuchs, J.R. Indole-based allosteric inhibitors of HIV-1 integrase. Bioorg. Med. Chem. Lett., 2016, 26(19), 4748-4752.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.037] [PMID: 27568085]
[7]
Mabkhot, Y.N.; Arfan, M.; Zgou, H.; Genc, Z.K.; Genc, M.; Rauf, A.; Bawazeer, S.; Ben Hadda, T. How to improve antifungal bioactivity: POM and DFT study of some chiral amides derivatives of diacetyl-L-tartaric acid and amines. Res. Chem. Intermed., 2016, 42, 8055-8068.
[http://dx.doi.org/10.1007/s11164-016-2578-8]
[8]
Rauf, A.; Uddin, G.; Siddiqui, B.S.; Khan, H.; Rehman, M.; Warad, I.; Ben Hadda, T.; Patel, S.; Khan, A.; Farooq, U. POM analysis of phytotoxic agents from pistacia integerrima stewart. Curr. Bioact. Compd., 2015, 11, 231-238.
[http://dx.doi.org/10.2174/1573407211666151012191902]
[9]
Sajid, Z.; Ahmad, M.; Aslam, S.; Ashfaq, U.A.; Zahoor, A.F.; Saddique, F.A.; Parvez, M.; Hameed, A.; Sultan, S.; Zgou, H.; Ben Hadda, T. Novel armed pyrazolobenzothiazine derivatives: synthesis, X-ray crystal structure and POM analyses of biological activity against drug resistant clinical isolate of Staphylococus aureus. Pharm. Chem. J., 2016, 50, 172-180.
[http://dx.doi.org/10.1007/s11094-016-1417-y]
[10]
Hadda, T.B.; Genc, Z.K.; Masand, V.H.; Nebbache, N.; Warad, I.; Jodeh, S.; Genc, M.; Mabkhot, Y.N.; Barakat, A.; Salgado-Zamora, H. Computational POM and DFT evaluation of experimental in-vitro cancer inhibition of staurosporine-ruthenium(II) complexes: The power force of organometallics in drug design. Acta Chim. Slov., 2015, 62(3), 679-688.
[http://dx.doi.org/10.17344/acsi.2015.1357] [PMID: 26454603]
[11]
Hakkou, Z.; Maciuk, A.; Leblais, V.; Bouanani, N.E.; Mekhfi, H.; Bnouham, M.; Aziz, M.; Ziyyat, A.; Rauf, A.; Hadda, T.B.; Shaheen, U.; Patel, S.; Fischmeister, R.; Legssyer, A. Antihypertensive and vasodilator effects of methanolic extract of Inula viscosa: Biological evaluation and POM analysis of cynarin, chlorogenic acid as potential hypertensive. Biomed. Pharmacother., 2017, 93, 62-69.
[http://dx.doi.org/10.1016/j.biopha.2017.06.015] [PMID: 28623784]
[12]
Mabkhot, Y.N.; Alatibi, F.; El-Sayed, N.N.; Al-Showiman, S.; Kheder, N.A.; Wadood, A.; Rauf, A.; Bawazeer, S.; Hadda, T.B. Antimicrobial activity of some novel armed thiophene derivatives and Petra/Osiris/Molinspiration (POM) analyses. Molecules, 2016, 21(2), 222-238.
[http://dx.doi.org/10.3390/molecules21020222] [PMID: 26901173]
[13]
Hocquet, A.; Langgård, M. An evaluation of the MM+ force field. J. Mol. Model., 1998, 4, 94-112.
[http://dx.doi.org/10.1007/s008940050128]
[14]
Stewart, J.J.P. Optimization of parameters for semiempirical methods IV: extension of MNDO, AM1, and PM3 to more main group elements. J. Mol. Model., 2004, 10(2), 155-164.
[http://dx.doi.org/10.1007/s00894-004-0183-z] [PMID: 14997367]
[15]
Hsu, K.C.; Chen, Y.F.; Lin, S.R.; Yang, J.M. iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics, 2011, 12(Suppl. 1), S33.
[http://dx.doi.org/10.1186/1471-2105-12-S1-S33] [PMID: 21342564]
[16]
Christ, F.; Voet, A.; Marchand, A.; Nicolet, S.; Desimmie, B.A.; Marchand, D.; Bardiot, D.; Van der Veken, N.J.; Van Remoortel, B.; Strelkov, S.V.; De Maeyer, M.; Chaltin, P.; Debyser, Z. Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat. Chem. Biol., 2010, 6(6), 442-448.
[http://dx.doi.org/10.1038/nchembio.370] [PMID: 20473303]
[17]
Feng, L.; Sharma, A.; Slaughter, A.; Jena, N.; Koh, Y.; Shkriabai, N.; Larue, R.C.; Patel, P.A.; Mitsuya, H.; Kessl, J.J.; Engelman, A.; Fuchs, J.R.; Kvaratskhelia, M. The A128T resistance mutation reveals aberrant protein multimerization as the primary mechanism of action of allosteric HIV-1 integrase inhibitors. J. Biol. Chem., 2013, 288(22), 15813-15820.
[http://dx.doi.org/10.1074/jbc.M112.443390] [PMID: 23615903]
[18]
Slaughter, A.; Jurado, K.A.; Deng, N.; Feng, L.; Kessl, J.J.; Shkriabai, N.; Larue, R.C.; Fadel, H.J.; Patel, P.A.; Jena, N.; Fuchs, J.R.; Poeschla, E.; Levy, R.M.; Engelman, A.; Kvaratskhelia, M. The mechanism of H171T resistance reveals the importance of Nδ-protonated His171 for the binding of allosteric inhibitor BI-D to HIV-1 integrase. Retrovirology, 2014, 11, 100.
[http://dx.doi.org/10.1186/s12977-014-0100-1] [PMID: 25421939]