Synthesis and Antimicrobial Activity of Adamantyl Substituted Pyridoxine Derivatives

Page: [1360 - 1369] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Adamantane derivatives possess multiple pharmacological activities such as antiviral, anticancer, antimycobacterial, antidiabetic, antiparkinsonian and others. The interest of medicinal chemists in adamantane compounds is due to their unique spatial structure, high lipophilicity, and carbon cage rigidity. As a result, these molecules can easily penetrate biological lipid membranes and often have unique target-specific activity profile. Another pharmacophore studied in this work is pyridoxine (vitamin B6). Pyridoxine plays highly important roles in living cells as a key cofactor of many enzymes. On the other hand, its molecular scaffold is a valuable structural platform which has led to the development of several launched drugs (Pyritinol, Pirisudanol, Cycletanine, Mangafodipir) and a wide number of preclinical and clinical drug candidates.

Objective: The objective of this study is a synthesis of pyridoxine-adamantane and pyridoxinecyclooctane dipharmacophore molecules. The underlying idea was to assess the antibacterial and antiviral potential of such dipharmacophores, based on multiple examples of promising antiinfective agents which have in their structures adamantane and pyridoxine moieties. Another specific reason was to explore the ability of pyridoxine pharmacophore to suppress the potential of microbial pathogens to develop resistance to drug molecules.

Methods: In this study, a series of pyridoxine-adamantane and pyridoxine-cyclooctane dipharmacophore molecules were synthesized based on reactions of three different cycloalkyl amines with the corresponding electrophilic derivatives of pyridoxine aldehydes, chlorides and acetates. All synthesized compounds have been tested for their in vitro activity against M. tuberculosis H37Rv strain and H3N2 (A/Aichi/2/68) influenza virus.

Results: Series of pyridoxine-adamantane and pyridoxine-cyclooctane dipharmacophore molecules were synthesized based on reactions of three different cycloalkylamines with the corresponding electrophilic derivatives of pyridoxine aldehydes, chlorides and acetates. Reaction of cycloalkylamines with pyridoxine derivatives, in which meta-hydroxyl and ortho-hydroxymethyl groups are protected by acetyl groups, represents a useful alternative to reductive amination of aldehydes and nucleophilic substitution of alkyl halides. According to a tentative mechanism, it proceeds via paraand ortho-pyridinone methides which readily react with nucleophiles. None of the synthesized dipharmacophore compounds showed activity against M. tuberculosis H37Rv strain. At the same time, three compounds demonstrated some antiviral activity against H3N2 (A/Aichi/2/68) influenza virus (EC50 52-88 µg/mL) that was comparable to the activity of Amantadine, though lower than the activity of Rimantadine. The results of this work can be useful in the design of physiologically active derivatives of pyridoxine and adamantane.

Conclusion: The results of this work can be useful in the design of physiologically active derivatives of pyridoxine and adamantane.

Keywords: Pyridoxine, adamantane derivatives, antimycobacterial activity, antiviral activity, M. tuberculosis, dipharmacophore molecules.

Graphical Abstract

[1]
Wanka, L.; Iqbal, K.; Schreiner, P.R. The lipophilic bullet hits the targets: medicinal chemistry of adamantane derivatives. Chem. Rev., 2013, 113(5), 3516-3604.
[http://dx.doi.org/10.1021/cr100264t] [PMID: 23432396]
[2]
Liu, J.; Obando, D.; Liao, V.; Lifa, T.; Codd, R. The many faces of the adamantyl group in drug design. Eur. J. Med. Chem., 2011, 46(6), 1949-1963.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.047] [PMID: 21354674]
[3]
Lamoureux, G.; Artavia, G. Use of the adamantane structure in medicinal chemistry. Curr. Med. Chem., 2010, 17(26), 2967-2978.
[http://dx.doi.org/10.2174/092986710792065027] [PMID: 20858176]
[4]
Sacksteder, K.A.; Protopopova, M.; Barry, C.E., III; Andries, K.; Nacy, C.A. Discovery and development of SQ109: A new antitubercular drug with a novel mechanism of action. Future Microbiol., 2012, 7(7), 823-837.
[http://dx.doi.org/10.2217/fmb.12.56] [PMID: 22827305]
[5]
Beena; Kumar, D.; Kumbukgolla, W.; Jayaweera, S.; Bailey, M.; Alling, T.; Ollinger, J.; Parish, T.; Rawat, D.S. Antibacterial activity of adamantyl substituted cyclohexane diamine derivatives against methicillin resistant Staphylococcus aureus and Mycobacterium tuberculosis. RSC Advances, 2014, 4(23), 11962-11966.
[http://dx.doi.org/10.1039/c4ra00224e]
[6]
Scherman, M.S.; North, E.J.; Jones, V.; Hess, T.N.; Grzegorzewicz, A.E.; Kasagami, T.; Kim, I.H.; Merzlikin, O.; Lenaerts, A.J.; Lee, R.E.; Jackson, M.; Morisseau, C.; McNeil, M.R. Screening a library of 1600 adamantyl ureas for anti-Mycobacterium tuberculosis activity in vitro and for better physical chemical properties for bioavailability. Bioorg. Med. Chem., 2012, 20(10), 3255-3262.
[http://dx.doi.org/10.1016/j.bmc.2012.03.058] [PMID: 22522007]
[7]
Klimochkin, Y.N.; Shiryaev, V.A.; Leonova, M.V. Antiviral properties of cage compounds. New prospects. Russ. Chem. Bull., 2015, 64(7), 1473-1496.
[http://dx.doi.org/10.1007/s11172-015-1035-y]
[8]
Göktaş, F.; Vanderlinden, E.; Naesens, L.; Cesur, N.; Cesur, Z. Microwave assisted synthesis and anti-influenza virus activity of 1-adamantyl substituted N-(1-thia-4-azaspiro[4.5]decan-4-yl)carboxamide derivatives. Bioorg. Med. Chem., 2012, 20(24), 7155-7159.
[http://dx.doi.org/10.1016/j.bmc.2012.09.064] [PMID: 23117173]
[9]
Shideler, C.E. Vitamin B6: an overview. Am. J. Med. Technol., 1983, 49(1), 17-22.
[PMID: 6342384]
[10]
Sapozhnikov, S.V.; Shtyrlin, N.V.; Kayumov, A.R.; Zamaldinova, A.E.; Iksanova, A.G.; Nikitina, E.V.; Krylova, E.S.; Grishaev, D.Yu.; Balakin, K.V.; Shtyrlin, Yu.G. New quaternary ammonium pyridoxine derivatives: synthesis and antibacterial activity. Med. Chem. Res., 2017, 26(12), 3188-3202.
[http://dx.doi.org/10.1007/s00044-017-2012-9]
[11]
Pugachev, M.V.; Shtyrlin, N.V.; Sysoeva, L.P.; Nikitina, E.V.; Abdullin, T.I.; Iksanova, A.G.; Ilaeva, A.A.; Musin, R.Z.; Berdnikov, E.A.; Shtyrlin, Y.G. Synthesis and antibacterial activity of novel phosphonium salts on the basis of pyridoxine. Bioorg. Med. Chem., 2013, 21(14), 4388-4395.
[http://dx.doi.org/10.1016/j.bmc.2013.04.051] [PMID: 23683836]
[12]
Shtyrlin, Y.G.; Petukhov, A.V.; Strelnik, A.D.; Shtyrlin, N.V.; Iksanova, A.G.; Pugachev, M.V.; Pavelyev, R.S.; Dzyurkevich, M.S.; Garipov, M.R.; Balakin, K.V. Chemistry of pyridoxine in drug design. Russ. Chem. Bull., 2019, 68(5), 911-945.
[http://dx.doi.org/10.1007/s11172-019-2504-5]
[13]
Strelnik, A.D.; Petukhov, A.S.; Zueva, I.V.; Zobov, V.V.; Petrov, K.A.; Nikolsky, E.E.; Balakin, K.V.; Bachurin, S.O.; Shtyrlin, Y.G. Novel potent pyridoxine-based inhibitors of AChE and BChE, structural analogs of pyridostigmine, with improved in vivo safety profile. Bioorg. Med. Chem. Lett., 2016, 26(16), 4092-4094.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.070] [PMID: 27377327]
[14]
Dzyurkevich, M.S.; Babkov, D.A.; Shtyrlin, N.V.; Mayka, O.Yu.; Iksanova, A.G.; Vassiliev, P.M.; Balakin, K.V.; Spasov, A.A.; Tarasov, V.V.; Barreto, G.; Shtyrlin, Y.G.; Aliev, G. Pyridoxine dipharmacophore derivatives as potent glucokinase activators for the treatment of type 2 diabetes mellitus. Sci. Rep., 2017, 7(1), 16072-16078.
[http://dx.doi.org/10.1038/s41598-017-16405-2] [PMID: 29167582]
[15]
Cohen, A.; Hughes, E. Synthetical experiments in the B group of vitamins. Part V. Novel derivatives of pyridoxine. J. Chem. Soc., 1952, 4384-4386.
[http://dx.doi.org/10.1039/jr9520004384]
[16]
Serwa, R.; Nam, T.G.; Valgimigli, L.; Culbertson, S.; Rector, C.L.; Jeong, B.S.; Pratt, D.A.; Porter, N.A. Preparation and investigation of vitamin B6-derived aminopyridinol antioxidants. Chemistry, 2010, 16(47), 14106-14114.
[http://dx.doi.org/10.1002/chem.201001382] [PMID: 20967898]
[17]
Shtyrlin, N.V.; Dobrynin, A.B.; Pugachev, M.V.; Madzhidov, T.I.; Sysoeva, L.P.; Musin, R.Z.; Litvinov, I.A.; Klimovitskii, E.N.; Shtyrlin, Y.G. Experimental and theoretical study on 6-substituted pyridoxine derivatives. synthesis of cyclic 2,4,5,6-Tetrakis-(hydroxymethyl)pyridin-3-ol Acetonides. Russ. J. Org. Chem., 2011, 47(1), 100-108.
[http://dx.doi.org/10.1134/S107042801101012X]
[18]
Iwata, M.; Kuzuhara, H.; Emoto, S. A novel acetyl migration reaction from oxygen to oxygen in a pyridoxine derivative promoted by metal ions. Chem. Lett., 1976, 5(1), 17-18.
[http://dx.doi.org/10.1246/cl.1976.17]
[19]
Martin, A.; Camacho, M.; Portaels, F.; Palomino, J.C. Resazurin microtiter assay plate testing of Mycobacterium tuberculosis susceptibilities to second-line drugs: rapid, simple, and inexpensive method. Antimicrob. Agents Chemother., 2003, 47(11), 3616-3619.
[http://dx.doi.org/10.1128/AAC.47.11.3616-3619.2003] [PMID: 14576129]
[20]
Suslov, E.; Zarubaev, V.V.; Slita, A.V.; Ponomarev, K.; Korchagina, D.; Ayine-Tora, D.M.; Reynisson, J.; Volcho, K.; Salakhutdinov, N. Anti-influenza activity of diazaadamantanes combined with monoterpene moieties. Bioorg. Med. Chem. Lett., 2017, 27(19), 4531-4535.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.062] [PMID: 28886889]
[21]
Yazarians, J.A.; Jiménez, B.L.; Boyce, G.R. A regioselective etherification of pyridoxine via an ortho-pyridinone methide intermediate. Tetrahedron Lett., 2017, 58(23), 2258-2260.
[http://dx.doi.org/10.1016/j.tetlet.2017.04.082]
[22]
Perry-Feigenbaum, R.; Baran, P.S.; Shabat, D.; Shabat, D. The pyridinone-methide elimination. Org. Biomol. Chem., 2009, 7(23), 4825-4828.
[http://dx.doi.org/10.1039/b915265b] [PMID: 19907770]
[23]
Loubinoux, B.; Miazimbakana, J.; Gerardin, P. Reactivity of new precursors of quinone methides. Tetrahedron Lett., 1989, 30(15), 1939-1942.
[http://dx.doi.org/10.1016/S0040-4039(00)99619-9]