Extraction and Identification of Two Flavonoids in Phlomoides hyoscyamoides as an Endemic Plant of Iran: The Role of Quercetin in the Activation of the Glutathione Peroxidase, the Improvement of the Hydroxyproline and Protein Oxidation in Bile Duct-Ligated Rats

Page: [629 - 640] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Cholestatic liver disease, a serious chronic condition that develops progressive hepatic degeneration through free radicals.

Objective: The present study was designed to extract and identify two flavonoids in Phlomoides hyoscyamoides plant, native to Iran and evaluate the role of quercetin identified on the liver injury among bile ductligated rats.

Methods: This study was conducted on 25 male Wistar rats within three groups of sham control, mere bile duct-ligated, and bile duct-ligated with quercetin. The bile duct-ligated animals received quercetin at a dose of 50 mg/kg/day for 10 days, followed by biochemical tests, oxidative stress markers, activity of antioxidant enzymes and hematoxylin and eosin staining. Molecular docking was used to explore the interactive behavior of quercetin with glutathione peroxidase.

Results: According to analyses of the obtained extract, two main active ingredients of P. hyoscyamoides were rutin and quercetin. Bile duct-ligated group showed a significant liver necrosis, a clear increase in plasma and tissue oxidative stress parameters, and a decrease in glutathione peroxidase activity as compared to sham control group. Quercetin injection in bile duct-ligated rats resulted in significant decrease in hydroxyproline, protein carbonyl and histopathologic indexes and significant increase in glutathione peroxidase activity (P-value≤0.05). Based on the molecular docking, the quercetin was able to regulate the glutathione peroxidase activity.

Conclusion: The quercetin acts as an enzyme inducer by renewing the glutathione peroxidase activity and inhibiting the oxidation of proteins and hence decreases the oxidative stress. These results could be a sign of confirming the positive role of quercetin in attenuating the liver damage and degeneration.

Keywords: Phlomoides hyoscyamoides, quercetin, Bile Duct-Ligated (BDL), glutathione peroxidase, oxidative stress, molecular docking.

Graphical Abstract

[1]
Fernández-Martínez, E.; Pérez-Hernández, N.; Muriel, P.; Pérez-Alvarez, V.; Shibayama, M.; Tsutsumi, V. The thalidomide analog 3-phthalimido-3-(3,4-dimethoxyphenyl)-propanoic acid improves the biliary cirrhosis in the rat. Exp. Toxicol. Pathol., 2009, 61(5), 471-479.
[http://dx.doi.org/10.1016/j.etp.2008.11.001] [PMID: 19095429]
[2]
Chang, M.L.; Yeh, C.T.; Chang, P.Y.; Chen, J.C. Comparison of murine cirrhosis models induced by hepatotoxin administration and common bile duct ligation. World J. Gastroenterol., 2005, 11(27), 4167-4172.
[http://dx.doi.org/10.3748/wjg.v11.i27.4167] [PMID: 16015684]
[3]
SH M. SA, M.; AR, D. Evaluation of the protective effects of quercetin in biliary cirrhotic rats. Tehran Univ. Med. J., 2013, 71(1), 1-6.
[4]
López-Reyes, A.G.; Arroyo-Curras, N.; Cano, B.G.; Lara-Díaz, V.J.; Guajardo-Salinas, G.E.; Islas, J.F.; Morales-Oyarvide, V.; Morales-Garza, L.A.; Galvez-Gastelum, F.J.; Grijalva, G.; Moreno-Cuevas, J.E. Black bean extract ameliorates liver fibrosis in rats with CCl4-induced injury. Ann. Hepatol., 2008, 7(2), 130-135.
[http://dx.doi.org/10.1016/S1665-2681(19)31868-X] [PMID: 18626430]
[5]
Krishnappa, P.; Venkatarangaiah, K. Venkatesh; Shivamogga Rajanna, S.K.; Kashi Prakash Gupta, R. Antioxidant and prophylactic effects of Delonix elata L., stem bark extracts, and flavonoid isolated quercetin against carbon tetrachloride-induced hepatotoxicity in rats. BioMed Res. Int., 2014, 2014,507851.
[http://dx.doi.org/10.1155/2014/507851] [PMID: 24987689]
[6]
Mansourian, M.; Sadeghi, H.; Doustimotlagh, A.H. Activation of the glutathione peroxidase by metformin in the bile-duct ligation-induced liver injury: in vivo combined with molecular docking studies. Curr. Pharm. Des., 2018, 24(27), 3256-3263.
[http://dx.doi.org/10.2174/1381612824666181003114108] [PMID: 30280660]
[7]
Lee, C.C.; Shen, S.R.; Lai, Y.J.; Wu, S.C. Rutin and quercetin, bioactive compounds from tartary buckwheat, prevent liver inflammatory injury. Food Funct., 2013, 4(5), 794-802.
[http://dx.doi.org/10.1039/c3fo30389f] [PMID: 23584161]
[8]
Mofidi Najjar, F.; Ghadari, R.; Yousefi, R.; Safari, N.; Sheikhhasani, V.; Sheibani, N.; Moosavi-Movahedi, A.A. Studies to reveal the nature of interactions between catalase and curcumin using computational methods and optical techniques. Int. J. Biol. Macromol., 2017, 95, 550-556.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.050] [PMID: 27865955]
[9]
Rechinger, K.H. Flora Iranica; Akademische Druck-u; Verlagsanstalt: Graz, 1982, Vol. 150, .
[10]
Mozaffarian, V. A dictionary of Iranian plant names: Latin, English, Persian; Farhang Moaser Publisher: Tehran, 1998.
[11]
Flora, S.J. Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxid. Med. Cell. Longev., 2009, 2(4), 191-206.
[http://dx.doi.org/10.4161/oxim.2.4.9112] [PMID: 20716905]
[12]
Lin, S.Y.; Wang, Y.Y.; Chen, W.Y.; Chuang, Y.H.; Pan, P.H.; Chen, C.J. Beneficial effect of quercetin on cholestatic liver injury. J. Nutr. Biochem., 2014, 25(11), 1183-1195.
[http://dx.doi.org/10.1016/j.jnutbio.2014.06.003] [PMID: 25108658]
[13]
Zheng, Y.Z.; Deng, G.; Liang, Q.; Chen, D.F.; Guo, R.; Lai, R.C. Antioxidant activity of quercetin and its glucosides from propolis: A theoretical study. Sci. Rep., 2017, 7(1), 7543.
[http://dx.doi.org/10.1038/s41598-017-08024-8] [PMID: 28790397]
[14]
Pashikanti, S.; de Alba, D.R.; Boissonneault, G.A.; Cervantes-Laurean, D. Rutin metabolites: novel inhibitors of nonoxidative advanced glycation end products. Free Radic. Biol. Med., 2010, 48(5), 656-663.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.11.019] [PMID: 19969069]
[15]
Ahmed, O.M.; Moneim, A.A.; Yazid, I.A.; Mahmoud, A.M. Antihyperglycemic, antihyperlipidemic and antioxidant effects and the probable mechanisms of action of Ruta graveolens infusion and rutin in nicotinamide-streptozotocin-induced diabetic rats. Diabetol. Croat., 2010, 39(1), 15-35.
[16]
Pan, P.H.; Lin, S.Y.; Wang, Y.Y.; Chen, W.Y.; Chuang, Y.H.; Wu, C.C.; Chen, C.J. Protective effects of rutin on liver injury induced by biliary obstruction in rats. Free Radic. Biol. Med., 2014, 73, 106-116.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.05.001] [PMID: 24815012]
[17]
Vieira, E.K.; Bona, S.; Di Naso, F.C.; Porawski, M.; Tieppo, J.; Marroni, N.P. Quercetin treatment ameliorates systemic oxidative stress in cirrhotic rats. ISRN Gastroenterol., 2011.2011604071
[http://dx.doi.org/10.5402/2011/604071] [PMID: 21991520]
[18]
Chen, C.; Zhou, J.; Ji, C. Quercetin: a potential drug to reverse multidrug resistance. Life Sci., 2010, 87(11-12), 333-338.
[http://dx.doi.org/10.1016/j.lfs.2010.07.004] [PMID: 20637779]
[19]
Jagtap, S.; Meganathan, K.; Wagh, V.; Winkler, J.; Hescheler, J.; Sachinidis, A. Chemoprotective mechanism of the natural compounds, epigallocatechin-3-O-gallate, quercetin and curcumin against cancer and cardiovascular diseases. Curr. Med. Chem., 2009, 16(12), 1451-1462.
[http://dx.doi.org/10.2174/092986709787909578] [PMID: 19355899]
[20]
Wu, W.; Li, R.; Li, X.; He, J.; Jiang, S.; Liu, S.; Yang, J. Quercetin as an antiviral agent inhibits influenza A virus (IAV) entry. Viruses, 2015, 8(1), 6.
[http://dx.doi.org/10.3390/v8010006] [PMID: 26712783]
[21]
Testa, R.; Bonfigli, A.R.; Genovese, S.; De Nigris, V.; Ceriello, A. The possible role of flavonoids in the prevention of diabetic complications. Nutrients, 2016, 8(5), 310.
[http://dx.doi.org/10.3390/nu8050310] [PMID: 27213445]
[22]
Rivera, L.; Morón, R.; Sánchez, M.; Zarzuelo, A.; Galisteo, M. Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity (Silver Spring), 2008, 16(9), 2081-2087.
[http://dx.doi.org/10.1038/oby.2008.315] [PMID: 18551111]
[23]
Peres, W.; Tuñón, M.J.; Collado, P.S.; Herrmann, S.; Marroni, N.; González-Gallego, J. The flavonoid quercetin ameliorates liver damage in rats with biliary obstruction. J. Hepatol., 2000, 33(5), 742-750.
[http://dx.doi.org/10.1016/S0168-8278(00)80305-0] [PMID: 11097482]
[24]
Costa, J.D.S.; Ramos, R.D.S.; Costa, K.D.S.L.; Brasil, D.D.S.B.; Silva, C.H.T.P.D.; Ferreira, E.F.B.; Borges, R.D.S.; Campos, J.M.; Macêdo, W.J.D.C.; Santos, C.B.R.D. An In Silico Study of the Antioxidant Ability for Two Caffeine Analogs Using Molecular Docking and Quantum Chemical Methods. Molecules, 2018, 23(11), 2801.
[http://dx.doi.org/10.3390/molecules23112801] [PMID: 30380600]
[25]
Gupta, M.; Sharma, R.; Kumar, A.; Kumar, A. Docking techniques in pharmacology: How much promising? Comput. Biol. Chem., 2018, 76, 210-217.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.06.005] [PMID: 30067954]
[26]
Nasab, R.R.; Mansourian, M.; Hassanzadeh, F.; Shahlaei, M. Exploring the interaction between epidermal growth factor receptor tyrosine kinase and some of the synthesized inhibitors using combination of in-silico and in-vitro cytotoxicity methods. Res. Pharm. Sci., 2018, 13(6), 509-522.
[http://dx.doi.org/10.4103/1735-5362.245963] [PMID: 30607149]
[27]
Sadeghi, H.; Azarmehr, N.; Razmkhah, F.; Sadeghi, H.; Danaei, N.; Omidifar, N.; Vakilpour, H.; Pourghadamyari, H.; Doustimotlagh, A.H. The hydroalcoholic extract of watercress attenuates protein oxidation, oxidative stress, and liver damage after bile duct ligation in rats. J. Cell. Biochem., 2019, 120(9), 14875-14884.
[http://dx.doi.org/10.1002/jcb.28749] [PMID: 31016763]
[28]
Cuevas, M.J.; Tieppo, J.; Marroni, N.P.; Tuñón, M.J.; González-Gallego, J. Suppression of amphiregulin/epidermal growth factor receptor signals contributes to the protective effects of quercetin in cirrhotic rats. J. Nutr., 2011, 141(7), 1299-1305.
[http://dx.doi.org/10.3945/jn.111.140954] [PMID: 21562239]
[29]
Tieppo, J.; Vercelino, R.; Dias, A.S.; Silva Vaz, M.F.; Silveira, T.R.; Marroni, C.A.; Marroni, N.P.; Henriques, J.A.; Picada, J.N. Evaluation of the protective effects of quercetin in the hepatopulmonary syndrome. Food Chem. Toxicol., 2007, 45(7), 1140-1146.
[http://dx.doi.org/10.1016/j.fct.2006.12.020] [PMID: 17306429]
[30]
Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem., 1996, 239(1), 70-76.
[http://dx.doi.org/10.1006/abio.1996.0292] [PMID: 8660627]
[31]
Javadian, N.; Rahimi, N.; Javadi-Paydar, M.; Doustimotlagh, A.H.; Dehpour, A.R. The modulatory effect of nitric oxide in pro- and anti-convulsive effects of vasopressin in PTZ-induced seizures threshold in mice. Epilepsy Res., 2016, 126, 134-140.
[http://dx.doi.org/10.1016/j.eplepsyres.2016.07.006] [PMID: 27497813]
[32]
Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979, 95(2), 351-358.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[33]
Heidari, R.; Moezi, L.; Asadi, B.; Ommati, M.M.; Azarpira, N. Hepatoprotective effect of boldine in a bile duct ligated rat model of cholestasis/cirrhosis. PharmaNutrition, 2017, 5(3), 109-117.
[http://dx.doi.org/10.1016/j.phanu.2017.07.001]
[34]
Sarhadi Kholari, F.; Dehpour, A.R.; Nourbakhsh, M.; Doustimotlagh, A.H.; Bagherieh, M.; Golestani, A. Erythrocytes Membrane Alterations Reflecting Liver Damage in CCl4-Induced Cirrhotic Rats: The Ameliorative Effect of Naltrexone. Acta Med. Iran., 2016, 54(10), 631-639.
[PMID: 27888590]
[35]
Gornall, A.G.; Bardawill, C.J.; David, M.M. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem., 1949, 177(2), 751-766.
[PMID: 18110453]
[36]
Doustimotlagh, A.H.; Dehpour, A.R.; Nourbakhsh, M.; Golestani, A. Alteration in membrane protein, antioxidant status and hexokinase activity in erythrocytes of CCl4- induced cirrhotic rats. Acta Med. Iran., 2014, 52(11), 795-803.
[PMID: 25415810]
[37]
Doustimotlagh, A.H.; Dehpour, A.R.; Etemad-Moghadam, S.; Alaeddini, M.; Kheirandish, Y.; Golestani, A.; Golestani, A. Nitrergic and opioidergic systems affect radiographic density ‎and histomorphometric indices in bile-duct-ligated cirrhotic rats. Histol. Histopathol., 2017, 32(7), 743-749.
[PMID: 27782295]
[38]
Mansourian, M.; Madadkar-Sobhani, A.; Mahnam, K.; Fassihi, A.; Saghaie, L. Characterization of adenosine receptor in its native environment: insights from molecular dynamics simulations of palmitoylated/glycosylated, membrane-integrated human A(2B) adenosine receptor. J. Mol. Model., 2012, 18(9), 4309-4324.
[http://dx.doi.org/10.1007/s00894-012-1427-y] [PMID: 22570080]
[39]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[40]
Epp, O.; Ladenstein, R.; Wendel, A. The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution. Eur. J. Biochem., 1983, 133(1), 51-69.
[http://dx.doi.org/10.1111/j.1432-1033.1983.tb07429.x] [PMID: 6852035]
[41]
Mansourian, M.; Saghaie, L.; Fassihi, A.; Madadkar-Sobhani, A.; Mahnam, K. Linear and nonlinear QSAR modeling of 1, 3, 8-substituted-9-deazaxanthines as potential selective A2B AR antagonists. Med. Chem. Res., 2013, 22(10), 4549-4567.
[http://dx.doi.org/10.1007/s00044-012-0453-8]
[42]
Nasab, R.R.; Mansourian, M.; Hassanzadeh, F. Synthesis, antimicrobial evaluation and docking studies of some novel quinazolinone Schiff base derivatives. Res. Pharm. Sci., 2018, 13(3), 213-221.
[http://dx.doi.org/10.4103/1735-5362.228942] [PMID: 29853931]
[43]
Mansourian, M.; Fassihi, A.; Saghaie, L.; Madadkar-Sobhani, A.; Mahnam, K.; Abbasi, M. QSAR and docking analysis of A2B adenosine receptor antagonists based on non-xanthine scaffold. Med. Chem. Res., 2015, 24(1), 394-407.
[http://dx.doi.org/10.1007/s00044-014-1133-7]
[44]
Fassihi, A.; Mahnam, K.; Moeinifard, B.; Bahmanziari, M.; Aliabadi, H.S.; Zarghi, A.; Sabet, R.; Salimi, M.; Mansourian, M. Synthesis, calcium-channel blocking activity, and conformational analysis of some novel 1,4-dihydropyridines: application of PM3 and DFT computational methods. Med. Chem. Res., 2012, 21(10), 2749-2761.
[http://dx.doi.org/10.1007/s00044-011-9807-x]
[45]
Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 1998, 19(14), 1639-1662.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639:AID-JCC10>3.0.CO;2-B]
[46]
Mansourian, M.; Mahnam, K.; Madadkar-Sobhani, A.; Fassihi, A.; Saghaie, L. Insights into the human A1 adenosine receptor from molecular dynamics simulation: structural study in the presence of lipid membrane. Med. Chem. Res., 2015, 24(10), 3645-3659.
[http://dx.doi.org/10.1007/s00044-015-1409-6]
[47]
Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 1996, 14(1), 33-38. 27-28.
[http://dx.doi.org/10.1016/0263-7855(96)00018-5] [PMID: 8744570]
[48]
Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng., 1995, 8(2), 127-134.
[http://dx.doi.org/10.1093/protein/8.2.127] [PMID: 7630882]
[49]
Ohta, Y.; Kongo, M.; Kishikawa, T. Melatonin exerts a therapeutic effect on cholestatic liver injury in rats with bile duct ligation. J. Pineal Res., 2003, 34(2), 119-126.
[http://dx.doi.org/10.1034/j.1600-079X.2003.00018.x] [PMID: 12562503]
[50]
Srinivasan, R.; Natarajan, D.; Shivakumar, M.S. Antioxidant Compound Quercetin-3-O-α-L-rhamnoside (1→ 6)-β-D-glucose (Rutin) isolated from ethyl acetate leaf extracts of Memecylon edule Roxb (Melastamataceae). Free Radic. Antioxid., 2015, 5(1), 35-42.
[http://dx.doi.org/10.5530/fra.2015.1.6]
[51]
Meena, M.C.; Patni, V. Isolation and identification of flavonoid “quercetin” from Citrullus colocynthis (Linn.). Schrad. Asian J. Exp. Sci., 2008, 22(1), 137-142.
[52]
Shukla, P.; Gopalkrishna, B.; Shukla, P. Isolation of rutin from Phyllanthus amarus. Int. J. Pharm. Sci. Res., 2012, 3(4), 1198-1201.
[53]
Spahis, S.; Delvin, E.; Borys, J.M.; Levy, E. Oxidative stress as a critical factor in nonalcoholic fatty liver disease pathogenesis. Antioxid. Redox Signal., 2017, 26(10), 519-541.
[http://dx.doi.org/10.1089/ars.2016.6776] [PMID: 27452109]
[54]
Bayir, H. Reactive oxygen species. Crit. Care Med., 2005, 33(12)(Suppl.), S498-S501.
[http://dx.doi.org/10.1097/01.CCM.0000186787.64500.12] [PMID: 16340433]
[55]
Sundari, P.N.; Wilfred, G.; Ramakrishna, B. Does oxidative protein damage play a role in the pathogenesis of carbon tetrachloride-induced liver injury in the rat? Biochim. Biophys. Acta, 1997, 1362(2-3), 169-176.
[http://dx.doi.org/10.1016/S0925-4439(97)00065-3] [PMID: 9540847]
[56]
Terzioglu, D.; Uslu, L.; Simsek, G.; Atukeren, P.; Erman, H.; Gelisgen, R.; Ayvaz, S.; Aksu, B.; Uzun, H. The Effects of Hyperbaric Oxygen Treatment on Total Antioxidant Capacity and Prolidase Activity after Bile Duct Ligation in Rats. J. Invest. Surg., 2017, 30(6), 376-382.
[http://dx.doi.org/10.1080/08941939.2016.1257666] [PMID: 27922759]
[57]
Kabirifar, R.; Ghoreshi, Z.A.; Safari, F.; Karimollah, A.; Moradi, A.; Eskandari-Nasab, E. Quercetin protects liver injury induced by bile duct ligation via attenuation of Rac1 and NADPH oxidase1 expression in rats. HBPD INT, 2017, 16(1), 88-95.
[http://dx.doi.org/10.1016/S1499-3872(16)60164-9] [PMID: 28119263]
[58]
Iwai, I.; Shimadzu, K.; Kobayashi, Y.; Hirao, T.; Etou, T. Increased carbonyl protein level in the stratum corneum of inflammatory skin disorders: A non-invasive approach. J. Dermatol., 2010, 37(8), 693-698.
[http://dx.doi.org/10.1111/j.1346-8138.2010.00867.x] [PMID: 20649709]
[59]
Doustimotlagh, A.H.; Dehpour, A.R.; Golestani, A. Involvement of Nitrergic and Opioidergic Systems in the Oxidative Stress Induced by BDL Rats. Br. J. Med. Med. Res., 2016, 17(2), 1-10.
[http://dx.doi.org/10.9734/BJMMR/2016/27568]
[60]
Aksu, B.; Umit, H.; Kanter, M.; Guzel, A.; Aktas, C.; Civelek, S.; Uzun, H. Effects of methylene blue in reducing cholestatic oxidative stress and hepatic damage after bile-duct ligation in rats. Acta Histochem., 2010, 112(3), 259-269.
[http://dx.doi.org/10.1016/j.acthis.2008.12.002] [PMID: 19217652]
[61]
Doustimotlagh, A.H.; Dehpour, A.R.; Etemad-Moghadam, S.; Alaeddini, M.; Ostadhadi, S.; Golestani, A. A study on OPG/RANK/RANKL axis in osteoporotic bile duct-ligated rats and the involvement of nitrergic and opioidergic systems. Res. Pharm. Sci., 2018, 13(3), 239-249.
[http://dx.doi.org/10.4103/1735-5362.228954] [PMID: 29853933]
[62]
Verma, R.; Kushwah, L.; Gohel, D.; Patel, M.; Marvania, T.; Balakrishnan, S. Evaluating the ameliorative potential of quercetin against the bleomycin-induced pulmonary fibrosis in wistar rats. Pulm. Med., 2013, 2013921724
[http://dx.doi.org/10.1155/2013/921724] [PMID: 24396596]
[63]
Han, J.M.; Kim, H.G.; Choi, M.K.; Lee, J.S.; Park, H.J.; Wang, J.H.; Lee, J.S.; Son, S.W.; Hwang, S.Y.; Son, C.G. Aqueous extract of Artemisia iwayomogi Kitamura attenuates cholestatic liver fibrosis in a rat model of bile duct ligation. Food Chem. Toxicol., 2012, 50(10), 3505-3513.
[http://dx.doi.org/10.1016/j.fct.2012.07.018] [PMID: 22824087]
[64]
Orellana, M.; Rodrigo, R.; Thielemann, L.; Guajardo, V. Bile duct ligation and oxidative stress in the rat: effects in liver and kidney. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2000, 126(2), 105-111.
[PMID: 11050682]
[65]
Ale-Ebrahim, M.; Eidi, A.; Mortazavi, P.; Tavangar, S.M.; Tehrani, D.M. Hepatoprotective and antifibrotic effects of sodium molybdate in a rat model of bile duct ligation. J. Trace Elem. Med. Biol., 2015, 29, 242-248.
[http://dx.doi.org/10.1016/j.jtemb.2014.07.002] [PMID: 25084733]
[66]
Liu, C.M.; Zheng, Y.L.; Lu, J.; Zhang, Z.F.; Fan, S.H.; Wu, D.M.; Ma, J.Q. Quercetin protects rat liver against lead-induced oxidative stress and apoptosis. Environ. Toxicol. Pharmacol., 2010, 29(2), 158-166.
[http://dx.doi.org/10.1016/j.etap.2009.12.006] [PMID: 21787598]
[67]
Coballase-Urrutia, E.; Pedraza-Chaverri, J.; Cárdenas-Rodríguez, N.; Huerta-Gertrudis, B.; García-Cruz, M.E.; Montesinos-Correa, H.; Sánchez-González, D.J.; Camacho-Carranza, R.; Espinosa-Aguirre, J.J. Acetonic and methanolic extracts of Heterotheca inuloides, and quercetin, decrease CCl4-oxidative stress in several rat tissues. Evid. Based Complement. Alternat. Med., 2013, 2013659165
[http://dx.doi.org/10.1155/2013/659165] [PMID: 23365610]
[68]
Silva, D.R.; Sardi, J.C.O.; Freires, I.A.; Silva, A.C.B.; Rosalen, P.L. In silico approaches for screening molecular targets in Candida albicans: A proteomic insight into drug discovery and development. Eur. J. Pharmacol., 2019, 842, 64-69.
[http://dx.doi.org/10.1016/j.ejphar.2018.10.016] [PMID: 30326213]
[69]
Fukuhara, R.; Kageyama, T. Structure, gene expression, and evolution of primate glutathione peroxidases. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2005, 141(4), 428-436.
[http://dx.doi.org/10.1016/j.cbpc.2005.05.002] [PMID: 15967696]
[70]
Kim, H.G.; Han, J.M.; Lee, H.W.; Lee, J.S.; Son, S.W.; Choi, M.K.; Lee, D.S.; Wang, J.H.; Son, C.G. CGX, a multiple herbal drug, improves cholestatic liver fibrosis in a bile duct ligation-induced rat model. J. Ethnopharmacol., 2013, 145(2), 653-662.
[http://dx.doi.org/10.1016/j.jep.2012.12.005] [PMID: 23228913]
[71]
Prasad, P.R.; Singh, H.B.; Butcher, R.J. Synthesis, Structure and Antioxidant Activity of Cyclohexene-Fused Selenuranes and Related Derivatives. Molecules, 2015, 20(7), 12670-12685.
[http://dx.doi.org/10.3390/molecules200712670] [PMID: 26184146]
[72]
Kawada, N.; Seki, S.; Inoue, M.; Kuroki, T. Effect of antioxidants, resveratrol, quercetin, and N-acetylcysteine, on the functions of cultured rat hepatic stellate cells and Kupffer cells. Hepatology, 1998, 27(5), 1265-1274.
[http://dx.doi.org/10.1002/hep.510270512] [PMID: 9581680]
[73]
Kim, Y.J.; Bae, Y.C.; Suh, K.T.; Jung, J.S. Quercetin, a flavonoid, inhibits proliferation and increases osteogenic differentiation in human adipose stromal cells. Biochem. Pharmacol., 2006, 72(10), 1268-1278.
[http://dx.doi.org/10.1016/j.bcp.2006.08.021] [PMID: 16996034]
[74]
Leyva-López, N.; Gutierrez-Grijalva, E.P.; Ambriz-Perez, D.L.; Heredia, J.B. Flavonoids as cytokine modulators: a possible therapy for inflammation-related diseases. Int. J. Mol. Sci., 2016, 17(6), 921.
[http://dx.doi.org/10.3390/ijms17060921] [PMID: 27294919]
[75]
Chen, X. Protective effects of quercetin on liver injury induced by ethanol. Pharmacogn. Mag., 2010, 6(22), 135-141.
[http://dx.doi.org/10.4103/0973-1296.62900] [PMID: 20668581]
[76]
Mariani, C.; Braca, A.; Vitalini, S.; De Tommasi, N.; Visioli, F.; Fico, G. Flavonoid characterization and in vitro antioxidant activity of Aconitum anthora L. (Ranunculaceae). Phytochemistry, 2008, 69(5), 1220-1226.
[http://dx.doi.org/10.1016/j.phytochem.2007.12.009] [PMID: 18226822]