Biodegradable Polyester of Poly (Ethylene glycol)-sebacic Acid as a Backbone for β -Cyclodextrin-polyrotaxane: A Promising Gene Silencing Vector

Page: [274 - 287] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: Polyrotaxane, a macromolecular interlocked assembly, consisting of cyclodextrin has excellent inclusion capabilities and functionalization capacity, which makes it a versatile material as a vector for gene delivery applications.

Objective: A biodegradable linear aliphatic polyester axle composed of Polyethylene Glycol (PEG) and Sebacic Acid (SA) was used to fabricate the β-Cyclodextrin (β-CD) based polyrotaxane as a cationic polymeric vector and evaluated for its potential gene silencing efficiency.

Methods: The water-soluble aliphatic polyester was synthesized by the solvent esterification process and characterized using viscometry, GPC, FT-IR and 1H NMR spectroscopy. The synthesized polyester was further evaluated for its biodegradability and cellular cytotoxicity. Hence, this water-soluble polyester was used for the step-wise synthesis of polyrotaxane, via threading and blocking reactions. Threading of β-CD over PEG-SA polyester axle was conducted in water, followed by end-capping of polypseudorotaxane using 2,4,6-trinitrobenzenesulfonic acid to yield polyester-based polyrotaxane. For gene delivery application, cationic polyrotaxane (PRTx+) was synthesized and evaluated for its gene loading and gene silencing efficiency.

Results and Discussion: The resulting novel macromolecular assembly was found to be safe for use in biomedical applications. Further, characterization by GPC and 1H NMR techniques revealed successful formation of PE-β-CD-PRTx with a threading efficiency of 16%. Additionally, the cellular cytotoxicity assay indicated biosafety of the synthesized polyrotaxane, exploring its potential for gene delivery and other biomedical applications. Further, the biological profile of PRTx+: siRNA complexes was evaluated by measuring their zeta potential and gene silencing efficiency, which were found to be comparable to Lipofectamine 3000, the commercial transfecting agent.

Conclusion: The combinatory effect of various factors such as biodegradability, favourable complexation ability, near zero zeta potentials, good cytotoxicity properties of poly (ethylene glycol)-sebacic acid based β-Cyclodextrin-polyrotaxane makes it a promising gene delivery vector for therapeutic applications.

Keywords: Polyester, cyclodextrin, polyrotaxane, biodegradation, siRNA, GFP, gene silencing.

Graphical Abstract

[1]
Pack DW, Hoffman AS, Pun S, Stayton PS. Design and development of polymers for gene delivery. Nat Rev Drug Discov 2005; 4(7): 581-93.
[http://dx.doi.org/10.1038/nrd1775] [PMID: 16052241]
[2]
Lungwitz U, Breunig M, Blunk T, Göpferich A. Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm 2005; 60(2): 247-66.
[http://dx.doi.org/10.1016/j.ejpb.2004.11.011] [PMID: 15939236]
[3]
Kodama Y, Nakamura T, Kurosaki T, et al. Biodegradable nanoparticles composed of dendrigraft poly-L-lysine for gene delivery. Eur J Pharm Biopharm 2014; 87(3): 472-9.
[http://dx.doi.org/10.1016/j.ejpb.2014.04.013] [PMID: 24813391]
[4]
Tang MX, Redemann CT, Szoka FC Jr. In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug Chem 1996; 7(6): 703-14.
[http://dx.doi.org/10.1021/bc9600630] [PMID: 8950489]
[5]
Boussif O, Lezoualc’h F, Zanta MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc Natl Acad Sci USA 1995; 92(16): 7297-301.
[http://dx.doi.org/10.1073/pnas.92.16.7297] [PMID: 7638184]
[6]
Gonzalez H, Hwang SJ, Davis ME. New class of polymers for the delivery of macromolecular therapeutics. Bioconjug Chem 1999; 10(6): 1068-74.
[http://dx.doi.org/10.1021/bc990072j] [PMID: 10563777]
[7]
Harada A. Preparation and structures of supramolecules between cyclodextrins and polymers. Coord Chem Rev 1996; 148: 115-33.
[http://dx.doi.org/10.1016/0010-8545(95)01157-9]
[8]
Harada A, Takashima Y, Yamaguchi H. Cyclodextrin-based supramolecular polymers. Chem Soc Rev 2009; 38(4): 875-82.
[http://dx.doi.org/10.1039/b705458k] [PMID: 19421567]
[9]
Badwaik V, Mondjinou Y, Kulkarni A, Liu L, Demoret A, Thompson DH. Efficient pDNA delivery using cationic 2-Hydroxypropyl-β-Cyclodextrin Pluronic-Based polyrotaxanes. Macromol Biosci 2016; 16(1): 63-73.
[http://dx.doi.org/10.1002/mabi.201500220] [PMID: 26257319]
[10]
van de Manakker F, Vermonden T, van Nostrum CF, Hennink WE. Cyclodextrin-based polymeric materials: Synthesis, properties, and pharmaceutical/biomedical applications. Biomacromolecules 2009; 10(12): 3157-75.
[http://dx.doi.org/10.1021/bm901065f] [PMID: 19921854]
[11]
Loethen S, Kim JM, Thompson DH. Biomedical applications of cyclodextrin based polyrotaxanes. J Macromol Sci Part C Polym Rev 2007; 47(3): 383-418.
[12]
Gibson HW, Liu S, Gong C, Ji Q, Joseph E. Studies of the formation of poly (ester rotaxane) s from diacid chlorides, diols, and crown ethers and their properties. Macromolecules 1997; 30(13): 3711-27.
[http://dx.doi.org/10.1021/ma961362n]
[13]
Koyama Y, Suzuki Y, Asakawa T, Kihara N, Nakazono K, Takata T. Polymer architectures assisted by dynamic covalent bonds: Synthesis and properties of boronate-functionalized polyrotaxane and graft polyrotaxane. Polym J 2012; 44: 30-7.
[14]
Lee M, Moore RB, Gibson HW. Supramolecular pseudorotaxane graft copolymer from a crown ether polyester and a complementary paraquat-terminated polystyrene guest. Macromolecules 2011; 44(15): 5987-93.
[http://dx.doi.org/10.1021/ma201241t]
[15]
Araki J, Zhao C, Ito K. Efficient production of polyrotaxanes from α-cyclodextrin and poly (ethylene glycol). Macromolecules 2005; 38(17): 7524-7.
[http://dx.doi.org/10.1021/ma050290+]
[16]
Kulkarni A, DeFrees K, Schuldt RA, et al. Multi-armed cationic cyclodextrin: Poly(ethylene glycol) polyrotaxanes as efficient gene silencing vectors. Integr Biol 2013; 5(1): 115-21.
[http://dx.doi.org/10.1039/c2ib20107k] [PMID: 23042106]
[17]
Mondjinou YA, Hyun S-H, Xiong M, Collins CJ, Thong PL, Thompson DH. Impact of Mixed β-Cyclodextrin ratios on pluronic rotaxanation efficiency and product solubility. ACS Appl Mater Interfaces 2015; 7(43): 23831-6.
[http://dx.doi.org/10.1021/acsami.5b01016] [PMID: 26502827]
[18]
Iguchi H, Uchida S, Koyama Y, Takata T. Polyester-containing α-cyclodextrin-based polyrotaxane: Synthesis by living ring-opening polymerization, polypseudorotaxanation, and end capping using nitrile N-oxide. ACS Macro Lett 2013; 2(6): 527-30.
[http://dx.doi.org/10.1021/mz4002518]
[19]
Wang P-J, Wang J, Ye L, Zhang A-Y, Feng Z-G. Synthesis and characterization of polyrotaxanes comprising α-cyclodextrins and poly (ε-caprolactone) end-capped with poly (N-isopropylacrylamide)s. Polymer 2012; 53(12): 2361-8.
[http://dx.doi.org/10.1016/j.polymer.2012.03.060]
[20]
Wang PJ, Ye L, Zhang AY, Feng ZG. Synthesis and characterization of polyrotaxanes comprising α‐cyclodextrins and poly (ε‐caprolactone) end‐capped with poly (butyl methacrylate) s. Polym Int 2014; 63(6): 1025-34.
[http://dx.doi.org/10.1002/pi.4605]
[21]
Shin KM, Dong T, He Y, et al. Inclusion complex formation between α-cyclodextrin and biodegradable aliphatic polyesters. Macromol Biosci 2004; 4(12): 1075-83.
[http://dx.doi.org/10.1002/mabi.200400118] [PMID: 15586392]
[22]
Shin KM, Dong T, He Y, Inoue Y. Morphological change of poly (ε‐caprolactone) with a wide range of molecular weight via formation of inclusion complex with α‐cyclodextrin. J Polym Sci, B, Polym Phys 2005; 43(12): 1433-40.
[http://dx.doi.org/10.1002/polb.20449]
[23]
Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci, B, Polym Phys 2011; 49(12): 832-64.
[http://dx.doi.org/10.1002/polb.22259] [PMID: 21769165]
[24]
Ji Y, Liu X, Huang M, et al. Development of self-assembled multi-arm polyrotaxanes nanocarriers for systemic plasmid delivery in vivo. Biomaterials 2019; 192: 416-28.
[http://dx.doi.org/10.1016/j.biomaterials.2018.11.027] [PMID: 30500723]
[25]
Ahn B, Kim S, Kim Y, Yang J. Synthesis and characterization of the biodegradable copolymers from succinic acid and adipic acid with 1, 4‐butanediol. J Appl Polym Sci 2001; 82(11): 2808-26.
[http://dx.doi.org/10.1002/app.2135]
[26]
Brioude MdM. Guimarães DH, Fiúza RdP, Prado LASdA, Boaventura JS, José NM. Synthesis and characterization of aliphatic polyesters from glycerol, by-product of biodiesel production, and adipic acid. Mater Res 2007; 10(4): 335-9.
[http://dx.doi.org/10.1590/S1516-14392007000400003]
[27]
Nikolic MS, Djonlagic J. Synthesis and characterization of biodegradable poly (butylene succinate-co-butylene adipate) s. Polym Degrad Stabil 2001; 74(2): 263-70.
[http://dx.doi.org/10.1016/S0141-3910(01)00156-2]
[28]
Tserki V, Matzinos P, Pavlidou E, Vachliotis D, Panayiotou C. Biodegradable aliphatic polyesters. Part I. Properties and biodegradation of poly (butylene succinate-co-butylene adipate). Polym Degrad Stabil 2006; 91(2): 367-76.
[http://dx.doi.org/10.1016/j.polymdegradstab.2005.04.035]
[29]
Anastas PT, Zimmerman JB. Peer reviewed: Design through the 12 principles of green engineering. Environ Sci Technol 2003; 37(5): 94A-101A.
[30]
Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci 2007; 32(8): 762-98.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.05.017]
[31]
Li JJ, Zhao F, Li J. Polyrotaxanes for applications in life science and biotechnology. Appl Microbiol Biotechnol 2011; 90(2): 427-43.
[http://dx.doi.org/10.1007/s00253-010-3037-x] [PMID: 21360153]
[32]
Yamada Y, Nomura T, Harashima H, Yamashita A, Katoono R, Yui N. Intranuclear DNA release is a determinant of transfection activity for a non-viral vector: Biocleavable polyrotaxane as a supramolecularly dissociative condenser for efficient intranuclear DNA release. Biol Pharm Bull 2010; 33(7): 1218-22.
[http://dx.doi.org/10.1248/bpb.33.1218] [PMID: 20606316]
[33]
Ooya T, Choi HS, Yamashita A, et al. Biocleavable polyrotaxane-plasmid DNA polyplex for enhanced gene delivery. J Am Chem Soc 2006; 128(12): 3852-3.
[http://dx.doi.org/10.1021/ja055868+] [PMID: 16551060]
[34]
Yamashita A, Kanda D, Katoono R, et al. Supramolecular control of polyplex dissociation and cell transfection: Efficacy of amino groups and threading cyclodextrins in biocleavable polyrotaxanes. J Control Release 2008; 131(2): 137-44.
[http://dx.doi.org/10.1016/j.jconrel.2008.07.011] [PMID: 18700157]
[35]
Kulkarni A, DeFrees K, Schuldt RA, et al. Cationic α-cyclodextrin: Poly(ethylene glycol) polyrotaxanes for siRNA delivery. Mol Pharm 2013; 10(4): 1299-305.
[http://dx.doi.org/10.1021/mp300449t] [PMID: 23398604]
[36]
Badwaik VD, Aicart E, Mondjinou YA, Johnson MA, Bowman VD, Thompson DH. Structure-property relationship for in vitro siRNA delivery performance of cationic 2-hydroxypropyl-β-cyclodextrin: PEG-PPG-PEG polyrotaxane vectors. Biomaterials 2016; 84: 86-98.
[http://dx.doi.org/10.1016/j.biomaterials.2015.11.032] [PMID: 26826298]
[37]
Dandekar P, Jain R, Keil M, et al. Enhanced uptake and siRNA-mediated knockdown of a biologically relevant gene using cyclodextrin polyrotaxane. J Mater Chem B Mater Biol Med 2015; 3(13): 2590-8.
[http://dx.doi.org/10.1039/C4TB01821D]
[38]
Sanadhya SG, Oswal S, Parmar KC. Synthesis and characterization of aliphatic-aromatic polyesters using interfacial polycondensation technique. J Chem Pharm Res 2014; 6: 705-14.
[39]
Collins CJ, McCauliff LA, Hyun S-H, et al. Synthesis, characterization, and evaluation of pluronic-based β-cyclodextrin polyrotaxanes for mobilization of accumulated cholesterol from Niemann-Pick type C fibroblasts. Biochemistry 2013; 52(19): 3242-53.
[http://dx.doi.org/10.1021/bi3010889] [PMID: 23560535]
[40]
Mann A, Richa R, Ganguli M. DNA condensation by poly-L-lysine at the single molecule level: Role of DNA concentration and polymer length. J Control Release 2008; 125(3): 252-62.
[http://dx.doi.org/10.1016/j.jconrel.2007.10.019] [PMID: 18068848]
[41]
Pawlak JA, Lemper AL, Pattison VA. Solution polycondensation method 1977. Available from: http://shodhganga.inflibnet.ac.in/jspui/bitstream/10603/145620/14/11_chapter%201.pdf
[42]
Zhou X-M. Synthesis and characterization of polyester copolymers based on poly (butylene succinate) and poly (ethylene glycol). Mater Sci Eng C 2012; 32(8): 2459-63.
[http://dx.doi.org/10.1016/j.msec.2012.07.025]
[43]
Zhao T, Beckham HW. Direct synthesis of cyclodextrin-rotaxanated poly (ethylene glycol) s and their self-diffusion behavior in dilute solution. Macromolecules 2003; 36(26): 9859-65.
[http://dx.doi.org/10.1021/ma035513f]
[44]
Mayumi K, Ito K, Kato K. Polyrotaxane and slide-ring materials. Royal Society of Chemistry 2015.
[http://dx.doi.org/10.1039/9781782622284]
[45]
Lyu S, Untereker D. Degradability of polymers for implantable biomedical devices. Int J Mol Sci 2009; 10(9): 4033-65.
[http://dx.doi.org/10.3390/ijms10094033] [PMID: 19865531]
[46]
Kim J, Lee K-W, Hefferan TE, Currier BL, Yaszemski MJ, Lu L. Synthesis and evaluation of novel biodegradable hydrogels based on poly(ethylene glycol) and sebacic acid as tissue engineering scaffolds. Biomacromolecules 2008; 9(1): 149-57.
[http://dx.doi.org/10.1021/bm700924n] [PMID: 18072747]
[47]
Liu G, Li Y, Yang L, et al. Cytotoxicity study of polyethylene glycol derivatives. RSC Advances 2017; 7(30): 18252-9.
[http://dx.doi.org/10.1039/C7RA00861A]
[48]
Kunath K, von Harpe A, Fischer D, et al. Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: Comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J Control Release 2003; 89(1): 113-25.
[http://dx.doi.org/10.1016/S0168-3659(03)00076-2] [PMID: 12695067]
[49]
Okon EU, Hammed G, El Wafa PA, Abraham O, Case N, Henry E. In-vitro cytotoxicity of Polyethyleneimine on HeLa and vero cells. IJIAS 2014; 5(3): 192.
[50]
Yang C, Wang X, Li H, Tan E, Lim CT, Li J. Cationic polyrotaxanes as gene carriers: Physicochemical properties and real-time observation of DNA complexation, and gene transfection in cancer cells. J Phys Chem B 2009; 113(22): 7903-11.
[http://dx.doi.org/10.1021/jp901302f] [PMID: 19422177]
[51]
Yang C, Wang X, Li H, Goh SH, Li J. Synthesis and characterization of polyrotaxanes consisting of cationic α-cyclodextrins threaded on poly[(ethylene oxide)-ran-(propylene oxide)] as gene carriers. Biomacromolecules 2007; 8(11): 3365-74.
[http://dx.doi.org/10.1021/bm700472t] [PMID: 17929967]