Background: The solute carrier family 7 (SLC7) can be categorically divided into two subfamilies, the L-type amino acid transporters (LATs) including SLC7A5-13, and SLC7A15, and the cationic amino acid transporters (CATs) including SLC7A1-4 and SLC7A14. Members of the CAT family transport predominantly cationic amino acids by facilitating diffusion with intracellular substrates. LAT1 (also known as SLC7A5), is defined as a heteromeric amino acid transporter (HAT) interacting with the glycoprotein CD98 (SLC3A2) through a conserved disulfide to uptake not only large neutral amino acids, but also several pharmaceutical drugs to cells.
Methods: In this review, we provide an overview of the interaction of the structure-function of LAT1 and its essential role in cancer, specifically, its role at the blood-brain barrier (BBB) to facilitate the transport of thyroid hormones, pharmaceuticals (e.g., I-DOPA, gabapentin), and metabolites into the brain.
Results: LAT1 expression increases as cancers progress, leading to higher expression levels in highgrade tumors and metastases. In addition, LAT1 plays a crucial role in cancer-associated reprogrammed metabolic networks by supplying tumor cells with essential amino acids.
Conclusion: The increasing understanding of the role of LAT1 in cancer has led to an increase in interest surrounding its potential as a drug target for cancer treatment.
Keywords: LAT1, cancer, structure, transporter, inhibitor, heteromeric amino acid transporter (HAT).