Current Cancer Drug Targets

Author(s): Xinjie Lu*

DOI: 10.2174/1568009619666190802135714

The Role of Large Neutral Amino Acid Transporter (LAT1) in Cancer

Page: [863 - 876] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: The solute carrier family 7 (SLC7) can be categorically divided into two subfamilies, the L-type amino acid transporters (LATs) including SLC7A5-13, and SLC7A15, and the cationic amino acid transporters (CATs) including SLC7A1-4 and SLC7A14. Members of the CAT family transport predominantly cationic amino acids by facilitating diffusion with intracellular substrates. LAT1 (also known as SLC7A5), is defined as a heteromeric amino acid transporter (HAT) interacting with the glycoprotein CD98 (SLC3A2) through a conserved disulfide to uptake not only large neutral amino acids, but also several pharmaceutical drugs to cells.

Methods: In this review, we provide an overview of the interaction of the structure-function of LAT1 and its essential role in cancer, specifically, its role at the blood-brain barrier (BBB) to facilitate the transport of thyroid hormones, pharmaceuticals (e.g., I-DOPA, gabapentin), and metabolites into the brain.

Results: LAT1 expression increases as cancers progress, leading to higher expression levels in highgrade tumors and metastases. In addition, LAT1 plays a crucial role in cancer-associated reprogrammed metabolic networks by supplying tumor cells with essential amino acids.

Conclusion: The increasing understanding of the role of LAT1 in cancer has led to an increase in interest surrounding its potential as a drug target for cancer treatment.

Keywords: LAT1, cancer, structure, transporter, inhibitor, heteromeric amino acid transporter (HAT).

[1]
Verrey, F.; Closs, E.I.; Wagner, C.A.; Palacin, M.; Endou, H.; Kanai, Y. CATs and HATs: The SLC7 family of amino acid transporters. Pflugers Arch., 2004, 447(5), 532-542.
[http://dx.doi.org/10.1007/s00424-003-1086-z] [PMID: 14770310]
[2]
Wolf, S.; Janzen, A.; Vékony, N.; Martiné, U.; Strand, D.; Closs, E.I. Expression of solute carrier 7A4 (SLC7A4) in the plasma membrane is not sufficient to mediate amino acid transport activity. Biochem. J., 2002, 364(Pt 3), 767-775.
[http://dx.doi.org/10.1042/bj20020084] [PMID: 12049641]
[3]
Hyde, R.; Taylor, P.M.; Hundal, H.S. Amino acid transporters: Roles in amino acid sensing and signalling in animal cells. Biochem. J., 2003, 373(Pt 1), 1-18.
[http://dx.doi.org/10.1042/bj20030405] [PMID: 12879880]
[4]
Matherly, L.H.; Wilson, M.R.; Hou, Z. The major facilitative folate transporters SLC19A1 and SLC46A1: Biology and role in antifolate chemotherapy of cancer. Drug Metab. Dispos., 2014, 42, 632-649.
[http://dx.doi.org/10.1124/dmd.113.055723] [PMID: 24396145]
[5]
Desmoulin, S.K.; Hou, Z.; Gangjee, A.; Matherly, L.H. The human proton-coupled folate transporter: Biology and therapeutic applications to cancer. Cancer Biol. Ther., 2012, 13(14), 1355-1373.
[http://dx.doi.org/10.4161/cbt.22020] [PMID: 22954694]
[6]
Trippett, T.M.; Bertino, J.R. Therapeutic strategies targeting proteins that regulate folate and reduced folate transport. J. Chemother., 1999, 11(1), 3-10.
[http://dx.doi.org/10.1179/joc.1999.11.1.3] [PMID: 10078775]
[7]
Nies, A.T.; Koepsell, H.; Winter, S.; Burk, O.; Klein, K.; Kerb, R.; Zanger, U.M.; Keppler, D.; Schwab, M.; Schaeffeler, E. Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver. Hepatology, 2009, 50(4), 1227-1240.
[http://dx.doi.org/10.1002/hep.23103] [PMID: 19591196]
[8]
Koepsell, H. The SLC22 family with transporters of organic cations, anions and zwitterions. Mol. Aspects Med., 2013, 34(2-3), 413-435.
[http://dx.doi.org/10.1016/j.mam.2012.10.010] [PMID: 23506881]
[9]
Mastroberardino, L.; Spindler, B.; Pfeiffer, R.; Skelly, P.J.; Loffing, J.; Shoemaker, C.B.; Verrey, F. Amino-acid transport by heterodimers of 4F2hc/CD98 and members of a permease family. Nature, 1998, 395(6699), 288-291.
[http://dx.doi.org/10.1038/26246] [PMID: 9751058]
[10]
Closs, E.I.; Boissel, J.P.; Habermeier, A.; Rotmann, A. Structure and function of cationic amino acid transporters (CATs). J. Membr. Biol., 2006, 213(2), 67-77.
[http://dx.doi.org/10.1007/s00232-006-0875-7] [PMID: 17417706]
[11]
Kucharzik, T.; Lugering, A.; Yan, Y.; Driss, A.; Charrier, L.; Sitaraman, S.; Merlin, D. Activation of epithelial CD98 glycoprotein perpetuates colonic inflammation. Lab. Invest., 2005, 85(7), 932-941.
[http://dx.doi.org/10.1038/labinvest.3700289] [PMID: 15880135]
[12]
Lemaître, G.; Gonnet, F.; Vaigot, P.; Gidrol, X.; Martin, M.T.; Tortajada, J.; Waksman, G. CD98, a novel marker of transient amplifying human keratinocytes. Proteomics, 2005, 5(14), 3637-3645.
[http://dx.doi.org/10.1002/pmic.200401224] [PMID: 16097038]
[13]
Haynes, B.F.; Hemler, M.E.; Mann, D.L.; Eisenbarth, G.S.; Shelhamer, J.; Mostowski, H.S.; Thomas, C.A.; Strominger, J.L.; Fauci, A.S. Characterization of a monoclonal antibody (4F2) that binds to human monocytes and to a subset of activated lymphocytes. J. Immunol., 1981, 126(4), 1409-1414.
[PMID: 7204970]
[14]
Cantor, J.; Browne, C.D.; Ruppert, R.; Féral, C.C.; Fässler, R.; Rickert, R.C.; Ginsberg, M.H. CD98hc facilitates B cell proliferation and adaptive humoral immunity. Nat. Immunol., 2009, 10(4), 412-419.
[http://dx.doi.org/10.1038/ni.1712] [PMID: 19270713]
[15]
Fogelstrand, P.; Féral, C.C.; Zargham, R.; Ginsberg, M.H. Dependence of proliferative vascular smooth muscle cells on CD98hc (4F2hc, SLC3A2). J. Exp. Med., 2009, 206(11), 2397-2406.
[http://dx.doi.org/10.1084/jem.20082845] [PMID: 19841087]
[16]
Estrach, S.; Lee, S.A.; Boulter, E.; Pisano, S.; Errante, A.; Tissot, F.S.; Cailleteau, L.; Pons, C.; Ginsberg, M.H.; Féral, C.C. CD98hc (SLC3A2) loss protects against ras-driven tumorigenesis by modulating integrin-mediated mechanotransduction. Cancer Res., 2014, 74(23), 6878-6889.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0579] [PMID: 25267066]
[17]
Feral, C.C.; Nishiya, N.; Fenczik, C.A.; Stuhlmann, H.; Slepak, M.; Ginsberg, M.H. CD98hc (SLC3A2) mediates integrin signaling. Proc. Natl. Acad. Sci. USA, 2005, 102(2), 355-360.
[http://dx.doi.org/10.1073/pnas.0404852102] [PMID: 15625115]
[18]
Bajaj, J.; Konuma, T.; Lytle, N.K.; Kwon, H.Y.; Ablack, J.N.; Cantor, J.M.; Rizzieri, D.; Chuah, C.; Oehler, V.G.; Broome, E.H.; Ball, E.D.; van der Horst, E.H.; Ginsberg, M.H.; Reya, T. CD98-mediated adhesive signaling enables the establishment and propagation of acute myelogenous leukemia. Cancer Cell, 2016, 30(5), 792-805.
[http://dx.doi.org/10.1016/j.ccell.2016.10.003] [PMID: 27908736]
[19]
Prager, G.W.; Féral, C.C.; Kim, C.; Han, J.; Ginsberg, M.H. CD98hc (SLC3A2) interaction with the integrin beta subunit cytoplasmic domain mediates adhesive signaling. J. Biol. Chem., 2007, 282(33), 24477-24484.
[http://dx.doi.org/10.1074/jbc.M702877200] [PMID: 17597067]
[20]
Yanagida, O.; Kanai, Y.; Chairoungdua, A.; Kim, D.K.; Segawa, H.; Nii, T.; Cha, S.H.; Matsuo, H.; Fukushima, J.; Fukasawa, Y.; Tani, Y.; Taketani, Y.; Uchino, H.; Kim, J.Y.; Inatomi, J.; Okayasu, I.; Miyamoto, K.; Takeda, E.; Goya, T.; Endou, H. Human L-type amino acid transporter 1 (LAT1): Characterization of function and expression in tumor cell lines. Biochim. Biophys. Acta, 2001, 1514(2), 291-302.
[http://dx.doi.org/10.1016/S0005-2736(01)00384-4] [PMID: 11557028]
[21]
Kaira, K.; Oriuchi, N.; Otani, Y.; Shimizu, K.; Tanaka, S.; Imai, H.; Yanagitani, N.; Sunaga, N.; Hisada, T.; Ishizuka, T.; Dobashi, K.; Kanai, Y.; Endou, H.; Nakajima, T.; Endo, K.; Mori, M. Fluorine-18-alpha-methyltyrosine positron emission tomography for diagnosis and staging of lung cancer: a clinicopathologic study. Clin. Cancer Res., 2007, 13(21), 6369-6378.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1294] [PMID: 17975149]
[22]
Kaira, K.; Oriuchi, N.; Takahashi, T.; Nakagawa, K.; Ohde, Y.; Okumura, T.; Murakami, H.; Shukuya, T.; Kenmotsu, H.; Naito, T.; Kanai, Y. L-type amino acid transporter 1 (LAT1) expression in malignant pleural mesothelioma. Anticancer Res., 2011, 31(12), 4075-4082.
[23]
Wempe, M.F.; Rice, P.J.; Lightner, J.W.; Jutabha, P.; Hayashi, M.; Anzai, N.; Wakui, S.; Kusuhara, H.; Sugiyama, Y.; Endou, H. Metabolism and pharmacokinetic studies of JPH203, an L-amino acid transporter 1 (LAT1) selective compound. Drug Metab. Pharmacokinet., 2012, 27(1), 155-161.
[http://dx.doi.org/10.2133/dmpk.DMPK-11-RG-091] [PMID: 21914964]
[24]
Poncet, N.; Mitchell, F.E.; Ibrahim, A.F.; McGuire, V.A.; English, G.; Arthur, J.S.; Shi, Y.B.; Taylor, P.M. The catalytic subunit of the system L1 amino acid transporter (slc7a5) facilitates nutrient signalling in mouse skeletal muscle. PLoS One, 2014, 9(2)e89547
[http://dx.doi.org/10.1371/journal.pone.0089547] [PMID: 24586861]
[25]
Verrey, F.; System, L. System L: heteromeric exchangers of large, neutral amino acids involved in directional transport. Pflugers Arch., 2003, 445(5), 529-533.
[http://dx.doi.org/10.1007/s00424-002-0973-z] [PMID: 12634921]
[26]
Bodoy, S.; Martín, L.; Zorzano, A.; Palacín, M.; Estévez, R.; Bertran, J. Identification of LAT4, a novel amino acid transporter with system L activity. J. Biol. Chem., 2005, 280(12), 12002-12011.
[http://dx.doi.org/10.1074/jbc.M408638200] [PMID: 15659399]
[27]
Jin, S.E.; Jin, H.E.; Hong, S.S. Targeting L-type amino acid transporter 1 for anticancer therapy: Clinical impact from diagnostics to therapeutics. Expert Opin. Ther. Targets, 2015, 19(10), 1319-1337.
[http://dx.doi.org/10.1517/14728222.2015.1044975] [PMID: 25968633]
[28]
Napolitano, L.; Scalise, M.; Galluccio, M.; Pochini, L.; Albanese, L.M.; Indiveri, C. LAT1 is the transport competent unit of the LAT1/CD98 heterodimeric amino acid transporter. Int. J. Biochem. Cell Biol., 2015, 67, 25-33.
[http://dx.doi.org/10.1016/j.biocel.2015.08.004] [PMID: 26256001]
[29]
Dickens, D.; Webb, S.D.; Antonyuk, S.; Giannoudis, A.; Owen, A.; Rädisch, S.; Hasnain, S.S.; Pirmohamed, M. Transport of gabapentin by LAT1 (SLC7A5). Biochem. Pharmacol., 2013, 85(11), 1672-1683.
[http://dx.doi.org/10.1016/j.bcp.2013.03.022] [PMID: 23567998]
[30]
Uchino, H.; Kanai, Y.; Kim, D.K.; Wempe, M.F.; Chairoungdua, A.; Morimoto, E.; Anders, M.W.; Endou, H. Transport of amino acid-related compounds mediated by L-type amino acid transporter 1 (LAT1): Insights into the mechanisms of substrate recognition. Mol. Pharmacol., 2002, 61(4), 729-737.
[http://dx.doi.org/10.1124/mol.61.4.729] [PMID: 11901210]
[31]
Yan, R.; Zhao, X.; Lei, J.; Zhou, Q. Structure of the human LAT1-4F2hc heteromeric amino acid transporter complex. Nature, 2019, 568(7750), 127-130.
[http://dx.doi.org/10.1038/s41586-019-1011-z] [PMID: 30867591]
[32]
Dickens, D.; Chiduza, G.N.; Wright, G.S.; Pirmohamed, M.; Antonyuk, S.V.; Hasnain, S.S. Modulation of LAT1 (SLC7A5) transporter activity and stability by membrane cholesterol. Sci. Rep., 2017, 7, 43580.
[http://dx.doi.org/10.1038/srep43580] [PMID: 28272458]
[33]
Costa, M.; Rosell, A.; Álvarez-Marimon, E.; Zorzano, A.; Fotiadis, D.; Palacín, M. Expression of human heteromeric amino acid transporters in the yeast Pichia pastoris. Protein Expr. Purif., 2013, 87(1), 35-40.
[http://dx.doi.org/10.1016/j.pep.2012.10.003] [PMID: 23085088]
[34]
Shaffer, P.L.; Goehring, A.; Shankaranarayanan, A.; Gouaux, E. Structure and mechanism of a Na+-independent amino acid transporter. Science, 2009, 325(5943), 1010-1014.
[http://dx.doi.org/10.1126/science.1176088] [PMID: 19608859]
[35]
Rosell, A.; Meury, M.; Álvarez-Marimon, E.; Costa, M.; Pérez-Cano, L.; Zorzano, A.; Fernández-Recio, J.; Palacín, M.; Fotiadis, D. Structural bases for the interaction and stabilization of the human amino acid transporter LAT2 with its ancillary protein 4F2hc. Proc. Natl. Acad. Sci. USA, 2014, 111(8), 2966-2971.
[http://dx.doi.org/10.1073/pnas.1323779111] [PMID: 24516142]
[36]
Estévez, R.; Camps, M.; Rojas, A.M.; Testar, X.; Devés, R.; Hediger, M.A.; Zorzano, A.; Palacín, M. The amino acid transport system y+L/4F2hc is a heteromultimeric complex. FASEB J., 1998, 12(13), 1319-1329.
[http://dx.doi.org/10.1096/fasebj.12.13.1319] [PMID: 9761775]
[37]
Gao, X.; Zhou, L.; Jiao, X.; Lu, F.; Yan, C.; Zeng, X.; Wang, J.; Shi, Y. Mechanism of substrate recognition and transport by an amino acid antiporter. Nature, 2010, 463(7282), 828-832.
[http://dx.doi.org/10.1038/nature08741] [PMID: 20090677]
[38]
Ilgü, H.; Jeckelmann, J.M.; Gapsys, V.; Ucurum, Z.; de Groot, B.L.; Fotiadis, D. Insights into the molecular basis for substrate binding and specificity of the wild-type L-arginine/agmatine antiporter AdiC. Proc. Natl. Acad. Sci. USA, 2016, 113(37), 10358-10363.
[http://dx.doi.org/10.1073/pnas.1605442113] [PMID: 27582465]
[39]
Casagrande, F.; Ratera, M.; Schenk, A.D.; Chami, M.; Valencia, E.; Lopez, J.M.; Torrents, D.; Engel, A.; Palacin, M.; Fotiadis, D. Projection structure of a member of the amino acid/polyamine/organocation transporter superfamily. J. Biol. Chem., 2008, 283(48), 33240-33248.
[http://dx.doi.org/10.1074/jbc.M806917200] [PMID: 18819925]
[40]
Fang, Y.; Kolmakova-Partensky, L.; Miller, C. A bacterial arginine-agmatine exchange transporter involved in extreme acid resistance. J. Biol. Chem., 2007, 282(1), 176-182.
[http://dx.doi.org/10.1074/jbc.M610075200] [PMID: 17099215]
[41]
Shih, A.Y.; Murphy, T.H. xCt cystine transporter expression in HEK293 cells: pharmacology and localization. Biochem. Biophys. Res. Commun., 2001, 282(5), 1132-1137.
[http://dx.doi.org/10.1006/bbrc.2001.4703] [PMID: 11302733]
[42]
Sato, H.; Tamba, M.; Kuriyama-Matsumura, K.; Okuno, S.; Bannai, S. Molecular cloning and expression of human xCT, the light chain of amino acid transport system xc-. Antioxid. Redox Signal., 2000, 2(4), 665-671.
[http://dx.doi.org/10.1089/ars.2000.2.4-665] [PMID: 11213471]
[43]
Lewerenz, J.; Hewett, S.J.; Huang, Y.; Lambros, M.; Gout, P.W.; Kalivas, P.W.; Massie, A.; Smolders, I.; Methner, A.; Pergande, M.; Smith, S.B.; Ganapathy, V.; Maher, P. The cystine/glutamate antiporter system x(c)(-) in health and disease: From molecular mechanisms to novel therapeutic opportunities. Antioxid. Redox Signal., 2013, 18(5), 522-555.
[http://dx.doi.org/10.1089/ars.2011.4391] [PMID: 22667998]
[44]
Lim, J.K.M.; Delaidelli, A.; Minaker, S.W.; Zhang, H.F.; Colovic, M.; Yang, H.; Negri, G.L.; von Karstedt, S.; Lockwood, W.W.; Schaffer, P.; Leprivier, G.; Sorensen, P.H. Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance. Proc. Natl. Acad. Sci. USA, 2019, 116(19), 9433-9442.
[http://dx.doi.org/10.1073/pnas.1821323116] [PMID: 31000598]
[45]
Conrad, M.; Sato, H. The oxidative stress-inducible cystine/glutamate antiporter, system x (c) (-): Cystine supplier and beyond. Amino Acids, 2012, 42(1), 231-246.
[http://dx.doi.org/10.1007/s00726-011-0867-5] [PMID: 21409388]
[46]
Bansal, A.; Simon, M.C. Glutathione metabolism in cancer progression and treatment resistance. J. Cell Biol., 2018, 217(7), 2291-2298.
[http://dx.doi.org/10.1083/jcb.201804161] [PMID: 29915025]
[47]
de Sá, Junior, P.L.; Câmara, D.A.D.; Porcacchia, A.S.; Fonseca, P.M.M.; Jorge, S.D.; Araldi, R.P.; Ferreira, A.K. The roles of ROS in cancer heterogeneity and therapy. Oxid. Med. Cell. Longev., 2017.20172467940
[http://dx.doi.org/10.1155/2017/2467940] [PMID: 29123614]
[48]
Gorrini, C.; Harris, I.S.; Mak, T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov., 2013, 12(12), 931-947.
[http://dx.doi.org/10.1038/nrd4002] [PMID: 24287781]
[49]
Lo, M.; Wang, Y.Z.; Gout, P.W. The x(c)- cystine/glutamate antiporter: a potential target for therapy of cancer and other diseases. J. Cell. Physiol., 2008, 215(3), 593-602.
[http://dx.doi.org/10.1002/jcp.21366] [PMID: 18181196]
[50]
Haining, Z.; Kawai, N.; Miyake, K.; Okada, M.; Okubo, S.; Zhang, X.; Fei, Z.; Tamiya, T. Relation of LAT1/4F2hc expression with pathological grade, proliferation and angiogenesis in human gliomas. BMC Clin. Pathol., 2012, 12(1), 4.
[51]
Fuchs, B.C.; Bode, B.P. Amino acid transporters ASCT2 and LAT1 in cancer: Partners in crime? Semin. Cancer Biol., 2005, 15(4), 254-266.
[http://dx.doi.org/10.1016/j.semcancer.2005.04.005] [PMID: 15916903]
[52]
Yamauchi, K.; Sakurai, H.; Kimura, T.; Wiriyasermkul, P.; Nagamori, S.; Kanai, Y.; Kohno, N. System L amino acid transporter inhibitor enhances anti-tumor activity of cisplatin in a head and neck squamous cell carcinoma cell line. Cancer Lett., 2009, 276(1), 95-101.
[http://dx.doi.org/10.1016/j.canlet.2008.10.035] [PMID: 19058911]
[53]
Fuchs, B.C.; Finger, R.E.; Onan, M.C.; Bode, B.P. ASCT2 silencing regulates mammalian target-of-rapamycin growth and survival signaling in human hepatoma cells. Am. J. Physiol. Cell Physiol., 2007, 293(1), C55-C63.
[http://dx.doi.org/10.1152/ajpcell.00330.2006] [PMID: 17329400]
[54]
Klionsky, D.J. Autophagy revisited: A conversation with Christian de Duve. Autophagy, 2008, 4(6), 740-743.
[http://dx.doi.org/10.4161/auto.6398] [PMID: 18567941]
[55]
White, E. The role for autophagy in cancer. J. Clin. Invest., 2015, 125(1), 42-46.
[http://dx.doi.org/10.1172/JCI73941] [PMID: 25654549]
[56]
Yue, Z.; Jin, S.; Yang, C.; Levine, A.J.; Heintz, N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl. Acad. Sci. USA, 2003, 100(25), 15077-15082.
[http://dx.doi.org/10.1073/pnas.2436255100] [PMID: 14657337]
[57]
Degenhardt, K.; Mathew, R.; Beaudoin, B.; Bray, K.; Anderson, D.; Chen, G.; Mukherjee, C.; Shi, Y.; Gélinas, C.; Fan, Y.; Nelson, D.A.; Jin, S.; White, E. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell, 2006, 10(1), 51-64.
[http://dx.doi.org/10.1016/j.ccr.2006.06.001] [PMID: 16843265]
[58]
Napolitano, L.; Galluccio, M.; Scalise, M.; Parravicini, C.; Palazzolo, L.; Eberini, I.; Indiveri, C. Novel insights into the transport mechanism of the human amino acid transporter LAT1 (SLC7A5). Probing critical residues for substrate translocation. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(4), 727-736.
[http://dx.doi.org/10.1016/j.bbagen.2017.01.013] [PMID: 28088504]
[59]
Liang, N.; Zhang, C.; Dill, P.; Panasyuk, G.; Pion, D.; Koka, V.; Gallazzini, M.; Olson, E.N.; Lam, H.; Henske, E.P.; Dong, Z.; Apte, U.; Pallet, N.; Johnson, R.L.; Terzi, F.; Kwiatkowski, D.J.; Scoazec, J.Y.; Martignoni, G.; Pende, M. Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex. J. Exp. Med., 2014, 211(11), 2249-2263.
[http://dx.doi.org/10.1084/jem.20140341] [PMID: 25288394]
[60]
Hansen, C.G.; Ng, Y.L.D.; Lam, W.L.M.; Plouffe, S.W.; Guan, K.L. The Hippo pathway effectors YAP and TAZ promote cell growth by modulating amino acid signaling to mTORC1. Cell Res., 2015, 25(12), 1299-1313.
[http://dx.doi.org/10.1038/cr.2015.140] [PMID: 26611634]
[61]
White, E. Deconvoluting the context-dependent role for autophagy in cancer. Nat. Rev. Cancer, 2012, 12(6), 401-410.
[http://dx.doi.org/10.1038/nrc3262] [PMID: 22534666]
[62]
Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov., 2009, 8(7), 579-591.
[http://dx.doi.org/10.1038/nrd2803] [PMID: 19478820]
[63]
Yoshida, G.J. Metabolic reprogramming: The emerging concept and associated therapeutic strategies. J. Exp. Clin. Cancer Res., 2015, 34, 111.
[http://dx.doi.org/10.1186/s13046-015-0221-y] [PMID: 26445347]
[64]
Rabanal-Ruiz, Y. Otten, E.G.; Korolchuk, V.I. mTORC1 as the main gateway to autophagy. Essays Biochem., 2017, 61(6), 565-584.
[http://dx.doi.org/10.1042/EBC20170027] [PMID: 29233869]
[65]
Imai, H.; Kaira, K.; Oriuchi, N.; Shimizu, K.; Tominaga, H.; Yanagitani, N.; Sunaga, N.; Ishizuka, T.; Nagamori, S.; Promchan, K.; Nakajima, T.; Yamamoto, N.; Mori, M.; Kanai, Y. Inhibition of L-type amino acid transporter 1 has antitumor activity in non-small cell lung cancer. Anticancer Res., 2010, 30(12), 4819-4828.
[PMID: 21187458]
[66]
Rajasinghe, L.D.; Hutchings, M.; Gupta, S.V. Delta-tocotrienol modulates glutamine dependence by inhibiting ASCT2 and LAT1 transporters in non-small cell lung cancer (NSCLC) cells: A metabolomic approach. Metabolites, 2019, 9(3), 9.
[http://dx.doi.org/10.3390/metabo9030050] [PMID: 30871192]
[67]
Nakanishi, K.; Matsuo, H.; Kanai, Y.; Endou, H.; Hiroi, S.; Tominaga, S.; Mukai, M.; Ikeda, E.; Ozeki, Y.; Aida, S.; Kawai, T. LAT1 expression in normal lung and in atypical adenomatous hyperplasia and adenocarcinoma of the lung. Virchows Arch., 2006, 448(2), 142-150.
[http://dx.doi.org/10.1007/s00428-005-0063-7] [PMID: 16175382]
[68]
Kaira, K.; Oriuchi, N.; Imai, H.; Shimizu, K.; Yanagitani, N.; Sunaga, N.; Hisada, T.; Kawashima, O.; Iijima, H.; Ishizuka, T.; Kanai, Y.; Endou, H.; Nakajima, T.; Mori, M. Expression of L-type amino acid transporter 1 (LAT1) in neuroendocrine tumors of the lung. Pathol. Res. Pract., 2008, 204(8), 553-561.
[http://dx.doi.org/10.1016/j.prp.2008.02.003] [PMID: 18440724]
[69]
Le Vee, M.; Jouan, E.; Lecureur, V.; Fardel, O. Aryl hydrocarbon receptor-dependent up-regulation of the heterodimeric amino acid transporter LAT1 (SLC7A5)/CD98hc (SLC3A2) by diesel exhaust particle extract in human bronchial epithelial cells. Toxicol. Appl. Pharmacol., 2016, 290, 74-85.
[http://dx.doi.org/10.1016/j.taap.2015.11.014] [PMID: 26621329]
[70]
Mitra, S.K.; Schlaepfer, D.D. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr. Opin. Cell Biol., 2006, 18(5), 516-523.
[http://dx.doi.org/10.1016/j.ceb.2006.08.011] [PMID: 16919435]
[71]
Nawashiro, H.; Otani, N.; Shinomiya, N.; Fukui, S.; Ooigawa, H.; Shima, K.; Matsuo, H.; Kanai, Y.; Endou, H. L-type amino acid transporter 1 as a potential molecular target in human astrocytic tumors. Int. J. Cancer, 2006, 119(3), 484-492.
[http://dx.doi.org/10.1002/ijc.21866] [PMID: 16496379]
[72]
Kaira, K.; Oriuchi, N.; Imai, H.; Shimizu, K.; Yanagitani, N.; Sunaga, N.; Hisada, T.; Tanaka, S.; Ishizuka, T.; Kanai, Y.; Endou, H.; Nakajima, T.; Mori, M. l-type amino acid transporter 1 and CD98 expression in primary and metastatic sites of human neoplasms. Cancer Sci., 2008, 99(12), 2380-2386.
[http://dx.doi.org/10.1111/j.1349-7006.2008.00969.x] [PMID: 19018776]
[73]
Takeuchi, K.; Ogata, S.; Nakanishi, K.; Ozeki, Y.; Hiroi, S.; Tominaga, S.; Aida, S.; Matsuo, H.; Sakata, T.; Kawai, T. LAT1 expression in non-small-cell lung carcinomas: Analyses by semiquantitative reverse transcription-PCR (237 cases) and immunohistochemistry (295 cases). Lung Cancer, 2010, 68(1), 58-65.
[http://dx.doi.org/10.1016/j.lungcan.2009.05.020] [PMID: 19559497]
[74]
Dann, S.G.; Ryskin, M.; Barsotti, A.M.; Golas, J.; Shi, C.; Miranda, M.; Hosselet, C.; Lemon, L.; Lucas, J.; Karnoub, M.; Wang, F.; Myers, J.S.; Garza, S.J.; Follettie, M.T.; Geles, K.G.; Klippel, A.; Rollins, R.A.; Fantin, V.R. Reciprocal regulation of amino acid import and epigenetic state through Lat1 and EZH2. EMBO J., 2015, 34(13), 1773-1785.
[http://dx.doi.org/10.15252/embj.201488166] [PMID: 25979827]
[75]
Yazawa, T.; Shimizu, K.; Kaira, K.; Nagashima, T.; Ohtaki, Y.; Atsumi, J.; Obayashi, K.; Nagamori, S.; Kanai, Y.; Oyama, T.; Takeyoshi, I. Clinical significance of coexpression of L-type amino acid transporter 1 (LAT1) and ASC amino acid transporter 2 (ASCT2) in lung adenocarcinoma. Am. J. Transl. Res., 2015, 7(6), 1126-1139.
[PMID: 26279756]
[76]
Kaira, K.; Oriuchi, N.; Imai, H.; Shimizu, K.; Yanagitani, N.; Sunaga, N.; Hisada, T.; Ishizuka, T.; Kanai, Y.; Endou, H.; Nakajima, T.; Mori, M. Prognostic significance of L-type amino acid transporter 1 (LAT1) and 4F2 heavy chain (CD98) expression in early stage squamous cell carcinoma of the lung. Cancer Sci., 2009, 100(2), 248-254.
[http://dx.doi.org/10.1111/j.1349-7006.2008.01029.x] [PMID: 19068093]
[77]
Kaira, K.; Oriuchi, N.; Imai, H.; Shimizu, K.; Yanagitani, N.; Sunaga, N.; Hisada, T.; Kawashima, O.; Kamide, Y.; Ishizuka, T.; Kanai, Y.; Nakajima, T.; Mori, M. Prognostic significance of L-type amino acid transporter 1 (LAT1) and 4F2 heavy chain (CD98) expression in surgically resectable stage III non-small cell lung cancer. Exp. Ther. Med., 2010, 1(5), 799-808.
[http://dx.doi.org/10.3892/etm.2010.117] [PMID: 22993604]
[78]
Nicklin, P.; Bergman, P.; Zhang, B.; Triantafellow, E.; Wang, H.; Nyfeler, B.; Yang, H.; Hild, M.; Kung, C.; Wilson, C.; Myer, V.E.; MacKeigan, J.P.; Porter, J.A.; Wang, Y.K.; Cantley, L.C.; Finan, P.M.; Murphy, L.O. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell, 2009, 136(3), 521-534.
[http://dx.doi.org/10.1016/j.cell.2008.11.044] [PMID: 19203585]
[79]
Liang, Z.; Cho, H.T.; Williams, L.; Zhu, A.; Liang, K.; Huang, K.; Wu, H.; Jiang, C.; Hong, S.; Crowe, R.; Goodman, M.M.; Shim, H. Potential biomarker of L-type amino acid transporter 1 in breast cancer progression. Nucl. Med. Mol. Imaging, 2011, 45(2), 93-102.
[http://dx.doi.org/10.1007/s13139-010-0068-2] [PMID: 24899987]
[80]
Matsuda, N.; Suzuki, T.; Tanaka, K.; Nakano, A. Rma1, a novel type of RING finger protein conserved from Arabidopsis to human, is a membrane-bound ubiquitin ligase. J. Cell Sci., 2001, 114(Pt 10), 1949-1957.
[PMID: 11329381]
[81]
Jeon, Y.J.; Khelifa, S.; Ratnikov, B.; Scott, D.A.; Feng, Y.; Parisi, F.; Ruller, C.; Lau, E.; Kim, H.; Brill, L.M.; Jiang, T.; Rimm, D.L.; Cardiff, R.D.; Mills, G.B.; Smith, J.W.; Osterman, A.L.; Kluger, Y.; Ronai, Z.A. Regulation of glutamine carrier proteins by RNF5 determines breast cancer response to ER stress-inducing chemotherapies. Cancer Cell, 2015, 27(3), 354-369.
[http://dx.doi.org/10.1016/j.ccell.2015.02.006] [PMID: 25759021]
[82]
Wang, M.; Kaufman, R.J. The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat. Rev. Cancer, 2014, 14(9), 581-597.
[http://dx.doi.org/10.1038/nrc3800] [PMID: 25145482]
[83]
Moses, M.A.; Neckers, L. The GLU that holds cancer together: targeting GLUtamine transporters in breast cancer. Cancer Cell, 2015, 27(3), 317-319.
[http://dx.doi.org/10.1016/j.ccell.2015.02.010] [PMID: 25759015]
[84]
Shennan, D.B.; Thomson, J. Inhibition of system L (LAT1/CD98hc) reduces the growth of cultured human breast cancer cells. Oncol. Rep., 2008, 20(4), 885-889.
[PMID: 18813831]
[85]
van Geldermalsen, M.; Quek, L.E.; Turner, N.; Freidman, N.; Pang, A.; Guan, Y.F.; Krycer, J.R.; Ryan, R.; Wang, Q.; Holst, J. Benzylserine inhibits breast cancer cell growth by disrupting intracellular amino acid homeostasis and triggering amino acid response pathways. BMC Cancer, 2018, 18(1), 689.
[http://dx.doi.org/10.1186/s12885-018-4599-8] [PMID: 29940911]
[86]
Tomblin, J.K.; Arthur, S.; Primerano, D.A.; Chaudhry, A.R.; Fan, J.; Denvir, J.; Salisbury, T.B. Aryl hydrocarbon receptor (AHR) regulation of L-type amino acid transporter 1 (LAT-1) expression in MCF-7 and MDA-MB-231 breast cancer cells. Biochem. Pharmacol., 2016, 106, 94-103.
[http://dx.doi.org/10.1016/j.bcp.2016.02.020] [PMID: 26944194]
[87]
Ong, Z.Y.; Chen, S.; Nabavi, E.; Regoutz, A.; Payne, D.J.; Elson, D.S.; Dexter, D.T. Dunlop, I.E.; Porter, A.E. Multibranched gold nanoparticles with intrinsic LAT-1 targeting capabilities for selective photothermal therapy of breast cancer. ACS Appl. Mater. Interfaces, 2017, 9(45), 39259-39270.
[http://dx.doi.org/10.1021/acsami.7b14851] [PMID: 29058874]
[88]
Gonzalez-Carter, D.A.; Ong, Z.Y.; McGilvery, C.M. Dunlop, I.E.; Dexter, D.T.; Porter, A.E. L-DOPA functionalized, multi-branched gold nanoparticles as brain-targeted nano-vehicles. Nanomedicine (Lond.), 2019, 15(1), 1-11.
[http://dx.doi.org/10.1016/j.nano.2018.08.011] [PMID: 30189294]
[89]
Li, L.; Di, X.; Wu, M.; Sun, Z.; Zhong, L.; Wang, Y.; Fu, Q.; Kan, Q.; Sun, J.; He, Z. Targeting tumor highly-expressed LAT1 transporter with amino acid-modified nanoparticles: Toward a novel active targeting strategy in breast cancer therapy. Nanomedicine (Lond.), 2017, 13(3), 987-998.
[http://dx.doi.org/10.1016/j.nano.2016.11.012] [PMID: 27890657]
[90]
Li, L.; Di, X.; Zhang, S.; Kan, Q.; Liu, H.; Lu, T.; Wang, Y.; Fu, Q.; Sun, J.; He, Z. Large amino acid transporter 1 mediated glutamate modified docetaxel-loaded liposomes for glioma targeting. Colloids Surf. B Biointerfaces, 2016, 141, 260-267.
[http://dx.doi.org/10.1016/j.colsurfb.2016.01.041] [PMID: 26859117]
[91]
El Ansari, R.; Craze, M.L.; Miligy, I.; Diez-Rodriguez, M.; Nolan, C.C.; Ellis, I.O.; Rakha, E.A.; Green, A.R. The amino acid transporter SLC7A5 confers a poor prognosis in the highly proliferative breast cancer subtypes and is a key therapeutic target in luminal B tumours. Breast Cancer Res., 2018, 20(1), 21.
[http://dx.doi.org/10.1186/s13058-018-0946-6] [PMID: 29566741]
[92]
Furuya, M.; Horiguchi, J.; Nakajima, H.; Kanai, Y.; Oyama, T. Correlation of L-type amino acid transporter 1 and CD98 expression with triple negative breast cancer prognosis. Cancer Sci., 2012, 103(2), 382-389.
[http://dx.doi.org/10.1111/j.1349-7006.2011.02151.x] [PMID: 22077314]
[93]
Xu, M.; Sakamoto, S.; Matsushima, J.; Kimura, T.; Ueda, T.; Mizokami, A.; Kanai, Y.; Ichikawa, T. Up-regulation of LAT1 during antiandrogen therapy contributes to progression in prostate cancer cells. J. Urol., 2016, 195(5), 1588-1597.
[http://dx.doi.org/10.1016/j.juro.2015.11.071] [PMID: 26682754]
[94]
Segawa, A.; Nagamori, S.; Kanai, Y.; Masawa, N.; Oyama, T. L-type amino acid transporter 1 expression is highly correlated with Gleason score in prostate cancer. Mol. Clin. Oncol., 2013, 1(2), 274-280.
[http://dx.doi.org/10.3892/mco.2012.54] [PMID: 24649160]
[95]
Wang, Q.; Bailey, C.G.; Ng, C.; Tiffen, J.; Thoeng, A.; Minhas, V.; Lehman, M.L.; Hendy, S.C.; Buchanan, G.; Nelson, C.C.; Rasko, J.E.; Holst, J. Androgen receptor and nutrient signaling pathways coordinate the demand for increased amino acid transport during prostate cancer progression. Cancer Res., 2011, 71(24), 7525-7536.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1821] [PMID: 22007000]
[96]
Xu, Y.; Chen, S.Y.; Ross, K.N.; Balk, S.P. Androgens induce prostate cancer cell proliferation through mammalian target of rapamycin activation and post-transcriptional increases in cyclin D proteins. Cancer Res., 2006, 66(15), 7783-7792.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4472] [PMID: 16885382]
[97]
Takeda, D.Y.; Spisák, S.; Seo, J.H.; Bell, C.; O’Connor, E.; Korthauer, K.; Ribli, D.; Csabai, I.; Solymosi, N.; Szállási, Z.; Stillman, D.R.; Cejas, P.; Qiu, X.; Long, H.W.; Tisza, V.; Nuzzo, P.V.; Rohanizadegan, M.; Pomerantz, M.M.; Hahn, W.C.; Freedman, M.L. A somatically acquired enhancer of the androgen receptor is a noncoding driver in advanced prostate cancer. Cell, 2018, 174(2), 422-432.e13.
[http://dx.doi.org/10.1016/j.cell.2018.05.037] [PMID: 29909987]
[98]
Cai, C.; He, H.H.; Chen, S.; Coleman, I.; Wang, H.; Fang, Z.; Chen, S.; Nelson, P.S.; Liu, X.S.; Brown, M.; Balk, S.P. Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell, 2011, 20(4), 457-471.
[http://dx.doi.org/10.1016/j.ccr.2011.09.001] [PMID: 22014572]
[99]
Okudaira, H.; Shikano, N.; Nishii, R. Putative transport mechanism and intracellular fate of trans-1-amino-3-18F-fluorocyclobutane-carboxylic acid in human prostate cancer. J. Nucl. Med., 2011, 52, 822-829.
[100]
Chuaqui, R.F.; Englert, C.R.; Strup, S.E.; Vocke, C.D.; Zhuang, Z.; Duray, P.H.; Bostwick, D.G.; Linehan, W.M.; Liotta, L.A.; Emmert-Buck, M.R. Identification of a novel transcript up-regulated in a clinically aggressive prostate carcinoma. Urology, 1997, 50(2), 302-307.
[http://dx.doi.org/10.1016/S0090-4295(97)00194-5] [PMID: 9255310]
[101]
Sakata, T.; Ferdous, G.; Tsuruta, T.; Satoh, T.; Baba, S.; Muto, T.; Ueno, A.; Kanai, Y.; Endou, H.; Okayasu, I. L-type amino-acid transporter 1 as a novel biomarker for high-grade malignancy in prostate cancer. Pathol. Int., 2009, 59(1), 7-18.
[http://dx.doi.org/10.1111/j.1440-1827.2008.02319.x] [PMID: 19121087]
[102]
Choi, D.W.; Kim, D.K.; Kanai, Y.; Wempe, M.F.; Endou, H.; Kim, J.K. JPH203, a selective L-type amino acid transporter 1 inhibitor, induces mitochondria-dependent apoptosis in Saos2 human osteosarcoma cells. Korean J. Physiol. Pharmacol., 2017, 21(6), 599-607.
[http://dx.doi.org/10.4196/kjpp.2017.21.6.599] [PMID: 29200902]
[103]
Häfliger, P.; Graff, J.; Rubin, M.; Stooss, A.; Dettmer, M.S.; Altmann, K.H.; Gertsch, J.; Charles, R.P. The LAT1 inhibitor JPH203 reduces growth of thyroid carcinoma in a fully immunocompetent mouse model. J. Exp. Clin. Cancer Res., 2018, 37(1), 234.
[http://dx.doi.org/10.1186/s13046-018-0907-z] [PMID: 30241549]
[104]
Oda, K.; Hosoda, N.; Endo, H.; Saito, K.; Tsujihara, K.; Yamamura, M.; Sakata, T.; Anzai, N.; Wempe, M.F.; Kanai, Y.; Endou, H. L-type amino acid transporter 1 inhibitors inhibit tumor cell growth. Cancer Sci., 2010, 101(1), 173-179.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01386.x] [PMID: 19900191]
[105]
Muto, Y.; Furihata, T.; Kaneko, M.; Higuchi, K.; Okunushi, K.; Morio, H.; Reien, Y.; Uesato, M.; Matsubara, H.; Anzai, N. Different response profiles of gastrointestinal cancer cells to an l-type amino acid transporter inhibitor, JPH203. Anticancer Res., 2019, 39(1), 159-165.
[http://dx.doi.org/10.21873/anticanres.13092] [PMID: 30591453]
[106]
Howlader, N.; Cronin, K.A.; Kurian, A.W.; Andridge, R. Differences in breast cancer survival by molecular subtypes in the United States. Cancer Epidemiol. Biomarkers Prev., 2018, 27(6), 619-626.
[http://dx.doi.org/10.1158/1055-9965.EPI-17-0627] [PMID: 29593010]
[107]
Altan, B.; Kaira, K.; Watanabe, A.; Kubo, N.; Bao, P.; Dolgormaa, G.; Bilguun, E.O.; Araki, K.; Kanai, Y.; Yokobori, T.; Oyama, T.; Nishiyama, M.; Kuwano, H.; Shirabe, K. Relationship between LAT1 expression and resistance to chemotherapy in pancreatic ductal adenocarcinoma. Cancer Chemother. Pharmacol., 2018, 81(1), 141-153.
[http://dx.doi.org/10.1007/s00280-017-3477-4] [PMID: 29149426]
[108]
Kaira, K.; Sunose, Y.; Arakawa, K.; Ogawa, T.; Sunaga, N.; Shimizu, K.; Tominaga, H.; Oriuchi, N.; Itoh, H.; Nagamori, S.; Kanai, Y.; Segawa, A.; Furuya, M.; Mori, M.; Oyama, T.; Takeyoshi, I. Prognostic significance of L-type amino-acid transporter 1 expression in surgically resected pancreatic cancer. Br. J. Cancer, 2012, 107(4), 632-638.
[http://dx.doi.org/10.1038/bjc.2012.310] [PMID: 22805328]
[109]
Therasse, P.; Arbuck, S.G.; Eisenhauer, E.A.; Wanders, J.; Kaplan, R.S.; Rubinstein, L.; Verweij, J.; Van Glabbeke, M.; van Oosterom, A.T.; Christian, M.C.; Gwyther, S.G. New guidelines to evaluate the response to treatment in solid tumors. J. Natl. Cancer Inst., 2000, 92(3), 205-216.
[http://dx.doi.org/10.1093/jnci/92.3.205] [PMID: 10655437]
[110]
Kaira, K.; Sunose, Y.; Arakawa, K.; Sunaga, N.; Shimizu, K.; Tominaga, H.; Oriuchi, N.; Nagamori, S.; Kanai, Y.; Oyama, T.; Takeyoshi, I. Clinicopathological significance of ASC amino acid transporter-2 expression in pancreatic ductal carcinoma. Histopathology, 2015, 66(2), 234-243.
[http://dx.doi.org/10.1111/his.12464] [PMID: 24845232]
[111]
Kanai, Y.; Segawa, H.; Miyamoto, Ki.; Uchino, H.; Takeda, E.; Endou, H. Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J. Biol. Chem., 1998, 273(37), 23629-23632.
[http://dx.doi.org/10.1074/jbc.273.37.23629] [PMID: 9726963]
[112]
Hayashi, K.; Jutabha, P.; Endou, H.; Anzai, N. c-Myc is crucial for the expression of LAT1 in MIA Paca-2 human pancreatic cancer cells. Oncol. Rep., 2012, 28(3), 862-866.
[http://dx.doi.org/10.3892/or.2012.1878] [PMID: 22736142]
[113]
Hayase, S.; Kumamoto, K.; Saito, K.; Kofunato, Y.; Sato, Y.; Okayama, H.; Miyamoto, K.; Ohki, S.; Takenoshita, S. L-type amino acid transporter 1 expression is upregulated and associated with cellular proliferation in colorectal cancer. Oncol. Lett., 2017, 14(6), 7410-7416.
[http://dx.doi.org/10.3892/ol.2017.7148] [PMID: 29344181]
[114]
Kim, L.C.; Cook, R.S.; Chen, J. mTORC1 and mTORC2 in cancer and the tumor microenvironment. Oncogene, 2017, 36(16), 2191-2201.
[http://dx.doi.org/10.1038/onc.2016.363] [PMID: 27748764]
[115]
Ebara, T.; Kaira, K.; Saito, J.; Shioya, M.; Asao, T.; Takahashi, T.; Sakurai, H.; Kanai, Y.; Kuwano, H.; Nakano, T. L-type amino-acid transporter 1 expression predicts the response to preoperative hyperthermo-chemoradiotherapy for advanced rectal cancer. Anticancer Res., 2010, 30(10), 4223-4227.
[PMID: 21036745]
[116]
Ogihara, K.; Naya, Y.; Sato, R.; Onda, K.; Ochiai, H. Analysis of L-type amino acid transporter in canine hepatocellular carcinoma. J. Vet. Med. Sci., 2015, 77(5), 527-534.
[http://dx.doi.org/10.1292/jvms.14-0392] [PMID: 25649314]
[117]
Bartlett, D.L.; DiBisceglie, A.M.; Dawson, L.A. Cancer of the liver.Cancer: Principles and Practice of Oncology; (9th ed. ). , 2011. 997-1018.
[118]
Li, J.; Qiang, J.; Chen, S.F.; Wang, X.; Fu, J.; Chen, Y. The impact of L-type amino acid transporter 1 (LAT1) in human hepatocellular carcinoma. Tumour Biol., 2013, 34(5), 2977-2981.
[http://dx.doi.org/10.1007/s13277-013-0861-5] [PMID: 23696029]
[119]
Namikawa, M.; Kakizaki, S.; Kaira, K.; Tojima, H.; Yamazaki, Y.; Horiguchi, N.; Sato, K.; Oriuchi, N.; Tominaga, H.; Sunose, Y.; Nagamori, S.; Kanai, Y.; Oyama, T.; Takeyoshi, I.; Yamada, M. Expression of amino acid transporters (LAT1, ASCT2 and xCT) as clinical significance in hepatocellular carcinoma. Hepatol. Res., 2015, 45(9), 1014-1022.
[http://dx.doi.org/10.1111/hepr.12431] [PMID: 25297701]
[120]
Wolf, D.A.; Wang, S.; Panzica, M.A.; Bassily, N.H.; Thompson, N.L. Expression of a highly conserved oncofetal gene, TA1/E16, in human colon carcinoma and other primary cancers: Homology to Schistosoma mansoni amino acid permease and Caenorhabditis elegans gene products. Cancer Res., 1996, 56(21), 5012-5022.
[PMID: 8895758]
[121]
Bröer, A.; Rahimi, F.; Bröer, S. Deletion of amino acid transporter ASCT2 (SLC1A5) reveals an essential role for transporters SNAT1 (SLC38A1) and SNAT2 (SLC38A2) to sustain glutaminolysis in cancer cells. J. Biol. Chem., 2016, 291(25), 13194-13205.
[http://dx.doi.org/10.1074/jbc.M115.700534] [PMID: 27129276]
[122]
Russo, F.; Linsalata, M.; Orlando, A. Probiotics against neoplastic transformation of gastric mucosa: effects on cell proliferation and polyamine metabolism. World J. Gastroenterol., 2014, 20(37), 13258-13272.
[http://dx.doi.org/10.3748/wjg.v20.i37.13258] [PMID: 25309063]
[123]
Ding, K.; Tan, S.; Huang, X.; Wang, X.; Li, X.; Fan, R.; Zhu, Y.; Lobie, P.E.; Wang, W.; Wu, Z. GSE1 predicts poor survival outcome in gastric cancer patients by SLC7A5 enhancement of tumor growth and metastasis. J. Biol. Chem., 2018, 293(11), 3949-3964.
[http://dx.doi.org/10.1074/jbc.RA117.001103] [PMID: 29367342]
[124]
Wang, J.; Chen, X.; Li, P.; Su, L.; Yu, B.; Cai, Q.; Li, J.; Yu, Y.; Liu, B.; Zhu, Z. CRKL promotes cell proliferation in gastric cancer and is negatively regulated by miR-126. Chem. Biol. Interact., 2013, 206(2), 230-238.
[http://dx.doi.org/10.1016/j.cbi.2013.09.003] [PMID: 24055140]
[125]
Wang, J.; Fei, X.; Wu, W.; Chen, X.; Su, L.; Zhu, Z.; Zhou, Y. SLC7A5 Functions as a downstream target modulated by CRKL in metastasis process of gastric cancer SGC-7901 cells. PLoS One, 2016, 11(11)e0166147
[http://dx.doi.org/10.1371/journal.pone.0166147] [PMID: 27846244]
[126]
Ichinoe, M.; Mikami, T.; Yoshida, T.; Igawa, I.; Tsuruta, T.; Nakada, N.; Anzai, N.; Suzuki, Y.; Endou, H.; Okayasu, I. High expression of L-type amino-acid transporter 1 (LAT1) in gastric carcinomas: Comparison with non-cancerous lesions. Pathol. Int., 2011, 61(5), 281-289.
[http://dx.doi.org/10.1111/j.1440-1827.2011.02650.x] [PMID: 21501294]
[127]
Yanagisawa, N.; Hana, K.; Nakada, N.; Ichinoe, M.; Koizumi, W.; Endou, H.; Okayasu, I.; Murakumo, Y. High expression of L-type amino acid transporter 1 as a prognostic marker in bile duct adenocarcinomas. Cancer Med., 2014, 3(5), 1246-1255.
[http://dx.doi.org/10.1002/cam4.272] [PMID: 24890221]
[128]
Kaira, K.; Kawashima, O.; Endoh, H.; Imaizumi, K.; Goto, Y.; Kamiyoshihara, M.; Sugano, M.; Yamamoto, R.; Osaki, T.; Tanaka, S.; Fujita, A.; Imai, H.; Kogure, Y.; Seki, Y.; Shimizu, K.; Mogi, A.; Shitara, Y.; Oyama, T.; Kanai, Y.; Asao, T. Expression of amino acid transporter (LAT1 and 4F2hc) in pulmonary pleomorphic carcinoma. Hum. Pathol., 2019, 84, 142-149.
[http://dx.doi.org/10.1016/j.humpath.2018.09.020] [PMID: 30300664]
[129]
Imai, H.; Kaira, K.; Oriuchi, N.; Yanagitani, N.; Sunaga, N.; Ishizuka, T.; Kanai, Y.; Endou, H.; Nakajima, T.; Mori, M. L-type amino acid transporter 1 expression is a prognostic marker in patients with surgically resected stage I non-small cell lung cancer. Histopathology, 2009, 54(7), 804-813.
[http://dx.doi.org/10.1111/j.1365-2559.2009.03300.x] [PMID: 19635099]
[130]
Kaira, K.; Oriuchi, N.; Takahashi, T.; Nakagawa, K.; Ohde, Y.; Okumura, T.; Murakami, H.; Shukuya, T.; Kenmotsu, H.; Naito, T.; Kanai, Y.; Endo, M.; Kondo, H.; Nakajima, T.; Yamamoto, N. LAT1 expression is closely associated with hypoxic markers and mTOR in resected non-small cell lung cancer. Am. J. Transl. Res., 2011, 3(5), 468-478.
[PMID: 22046488]
[131]
Kaira, K.; Takahashi, T.; Murakami, H.; Shukuya, T.; Kenmotsu, H.; Naito, T.; Oriuchi, N.; Kanai, Y.; Endo, M.; Kondo, H.; Nakajima, T.; Yamamoto, N. Relationship between LAT1 expression and response to platinum-based chemotherapy in non-small cell lung cancer patients with postoperative recurrence. Anticancer Res., 2011, 31(11), 3775-3782.
[PMID: 22110199]
[132]
Halldorsson, S.; Rohatgi, N.; Magnusdottir, M.; Choudhary, K.S.; Gudjonsson, T.; Knutsen, E.; Barkovskaya, A.; Hilmarsdottir, B.; Perander, M.; Mælandsmo, G.M.; Gudmundsson, S.; Rolfsson, Ó. Metabolic re-wiring of isogenic breast epithelial cell lines following epithelial to mesenchymal transition. Cancer Lett., 2017, 396, 117-129.
[http://dx.doi.org/10.1016/j.canlet.2017.03.019] [PMID: 28323032]
[133]
Barollo, S.; Bertazza, L.; Watutantrige-Fernando, S.; Censi, S.; Cavedon, E.; Galuppini, F.; Pennelli, G.; Fassina, A.; Citton, M.; Rubin, B.; Pezzani, R.; Benna, C.; Opocher, G.; Iacobone, M.; Mian, C. Overexpression of L-Type amino acid transporter 1 (LAT1) and 2 (LAT2): Novel markers of neuroendocrine tumors. PLoS One, 2016, 11(5)e0156044
[http://dx.doi.org/10.1371/journal.pone.0156044] [PMID: 27224648]
[134]
Yothaisong, S.; Namwat, N.; Yongvanit, P.; Khuntikeo, N.; Puapairoj, A.; Jutabha, P.; Anzai, N.; Tassaneeyakul, W.; Tangsucharit, P.; Loilome, W. Increase in L-type amino acid transporter 1 expression during cholangiocarcinogenesis caused by liver fluke infection and its prognostic significance. Parasitol. Int., 2017, 66(4), 471-478.
[http://dx.doi.org/10.1016/j.parint.2015.11.011] [PMID: 26657242]
[135]
Ichinoe, M.; Yanagisawa, N.; Mikami, T.; Hana, K.; Nakada, N.; Endou, H.; Okayasu, I.; Murakumo, Y. L-Type amino acid transporter 1 (LAT1) expression in lymph node metastasis of gastric carcinoma: Its correlation with size of metastatic lesion and Ki-67 labeling. Pathol. Res. Pract., 2015, 211(7), 533-538.
[http://dx.doi.org/10.1016/j.prp.2015.03.007] [PMID: 25908107]
[136]
Betsunoh, H.; Fukuda, T.; Anzai, N.; Nishihara, D.; Mizuno, T.; Yuki, H.; Masuda, A.; Yamaguchi, Y.; Abe, H.; Yashi, M.; Fukabori, Y.; Yoshida, K.; Kamai, T. Increased expression of system large amino acid transporter (LAT)-1 mRNA is associated with invasive potential and unfavorable prognosis of human clear cell renal cell carcinoma. BMC Cancer, 2013, 13, 509.
[http://dx.doi.org/10.1186/1471-2407-13-509] [PMID: 24168110]
[137]
Nakanishi, K.; Ogata, S.; Matsuo, H.; Kanai, Y.; Endou, H.; Hiroi, S.; Tominaga, S.; Aida, S.; Kasamatsu, H.; Kawai, T. Expression of LAT1 predicts risk of progression of transitional cell carcinoma of the upper urinary tract. Virchows Arch., 2007, 451(3), 681-690.
[http://dx.doi.org/10.1007/s00428-007-0457-9] [PMID: 17622555]
[138]
Elorza, A.; Soro-Arnáiz, I.; Meléndez-Rodríguez, F.; Rodríguez-Vaello, V.; Marsboom, G.; de Cárcer, G.; Acosta-Iborra, B.; Albacete-Albacete, L.; Ordóñez, A.; Serrano-Oviedo, L.; Giménez-Bachs, J.M.; Vara-Vega, A.; Salinas, A.; Sánchez-Prieto, R.; Martín del Río, R.; Sánchez-Madrid, F.; Malumbres, M.; Landázuri, M.O.; Aragonés, J. HIF2α acts as an mTORC1 activator through the amino acid carrier SLC7A5. Mol. Cell, 2012, 48(5), 681-691.
[http://dx.doi.org/10.1016/j.molcel.2012.09.017] [PMID: 23103253]
[139]
Dang, D.T.; Chun, S.Y.; Burkitt, K.; Abe, M.; Chen, S.; Havre, P.; Mabjeesh, N.J.; Heath, E.I.; Vogelzang, N.J.; Cruz-Correa, M.; Blayney, D.W.; Ensminger, W.D.; St Croix, B.; Dang, N.H.; Dang, L.H. Hypoxia-inducible factor-1 target genes as indicators of tumor vessel response to vascular endothelial growth factor inhibition. Cancer Res., 2008, 68(6), 1872-1880.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1589] [PMID: 18339868]
[140]
Ishiwata, K. 4-Borono-2-18F-fluoro-L-phenylalanine PET for boron neutron capture therapy-oriented diagnosis: Overview of a quarter century of research. Ann. Nucl. Med., 2019, 33(4), 223-236.
[http://dx.doi.org/10.1007/s12149-019-01347-8] [PMID: 30820862]
[141]
Miyatake, S.; Kawabata, S.; Hiramatsu, R.; Furuse, M.; Kuroiwa, T.; Suzuki, M. Boron neutron capture therapy with bevacizumab may prolong the survival of recurrent malignant glioma patients: four cases. Radiat. Oncol., 2014, 9, 6.
[http://dx.doi.org/10.1186/1748-717X-9-6] [PMID: 24387301]
[142]
Watabe, T.; Ikeda, H.; Nagamori, S.; Wiriyasermkul, P.; Tanaka, Y.; Naka, S.; Kanai, Y.; Hagiwara, K.; Aoki, M.; Shimosegawa, E.; Kanai, Y.; Hatazawa, J. 18F-FBPA as a tumor-specific probe of L-type amino acid transporter 1 (LAT1): A comparison study with 18F-FDG and 11C-Methionine PET. Eur. J. Nucl. Med. Mol. Imaging, 2017, 44(2), 321-331.
[http://dx.doi.org/10.1007/s00259-016-3487-1] [PMID: 27550420]
[143]
Miyashita, M.; Miyatake, S.; Imahori, Y.; Yokoyama, K.; Kawabata, S.; Kajimoto, Y.; Shibata, M.A.; Otsuki, Y.; Kirihata, M.; Ono, K.; Kuroiwa, T. Evaluation of fluoride-labeled boronophenylalanine-PET imaging for the study of radiation effects in patients with glioblastomas. J. Neurooncol., 2008, 89(2), 239-246.
[http://dx.doi.org/10.1007/s11060-008-9621-6] [PMID: 18566749]
[144]
Miyatake, S.; Kawabata, S.; Nonoguchi, N.; Yokoyama, K.; Kuroiwa, T.; Matsui, H.; Ono, K. Pseudoprogression in boron neutron capture therapy for malignant gliomas and meningiomas. Neuro-oncol., 2009, 11(4), 430-436.
[http://dx.doi.org/10.1215/15228517-2008-107] [PMID: 19289492]
[145]
Morita, T.; Kurihara, H.; Hiroi, K.; Honda, N.; Igaki, H.; Hatazawa, J.; Arai, Y.; Itami, J. Dynamic changes in 18F-borono-L-phenylalanine uptake in unresectable, advanced, or recurrent squamous cell carcinoma of the head and neck and malignant melanoma during boron neutron capture therapy patient selection. Radiat. Oncol., 2018, 13(1), 4.
[http://dx.doi.org/10.1186/s13014-017-0949-y] [PMID: 29325590]
[146]
Cormerais, Y.; Giuliano, S.; LeFloch, R.; Front, B.; Durivault, J.; Tambutté, E.; Massard, P.A.; de la Ballina, L.R.; Endou, H.; Wempe, M.F.; Palacin, M.; Parks, S.K.; Pouyssegur, J. Genetic disruption of the multifunctional CD98/LAT1 complex demonstrates the key role of essential amino acid transport in the control of mTORC1 and tumor growth. Cancer Res., 2016, 76(15), 4481-4492.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3376] [PMID: 27302165]
[147]
Scalise, M.; Galluccio, M.; Console, L.; Pochini, L.; Indiveri, C. The human SLC7A5 (LAT1): The intriguing histidine/large neutral amino acid transporter and its relevance to human health. Front Chem., 2018, 6, 243.
[http://dx.doi.org/10.3389/fchem.2018.00243] [PMID: 29988369]
[148]
Ylikangas, H.; Malmioja, K.; Peura, L.; Gynther, M.; Nwachukwu, E.O.; Leppänen, J.; Laine, K.; Rautio, J.; Lahtela-Kakkonen, M.; Huttunen, K.M.; Poso, A. Quantitative insight into the design of compounds recognized by the L-type amino acid transporter 1 (LAT1). ChemMedChem, 2014, 9(12), 2699-2707.
[http://dx.doi.org/10.1002/cmdc.201402281] [PMID: 25205473]
[149]
Huttunen, K.M.; Gynther, M.; Huttunen, J.; Puris, E.; Spicer, J.A.; Denny, W.A. A selective and slowly reversible inhibitor of l-type amino acid transporter 1 (LAT1) potentiates antiproliferative drug efficacy in cancer cells. J. Med. Chem., 2016, 59(12), 5740-5751.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00190] [PMID: 27253989]
[150]
Ylikangas, H.; Peura, L.; Malmioja, K.; Leppänen, J.; Laine, K.; Poso, A.; Lahtela-Kakkonen, M.; Rautio, J. Structure-activity relationship study of compounds binding to large amino acid transporter 1 (LAT1) based on pharmacophore modeling and in situ rat brain perfusion. Eur. J. Pharm. Sci., 2013, 48(3), 523-531.
[http://dx.doi.org/10.1016/j.ejps.2012.11.014] [PMID: 23228412]
[151]
Napolitano, L.; Scalise, M.; Koyioni, M.; Koutentis, P.; Catto, M.; Eberini, I.; Parravicini, C.; Palazzolo, L.; Pisani, L.; Galluccio, M.; Console, L.; Carotti, A.; Indiveri, C. Potent inhibitors of human LAT1 (SLC7A5) transporter based on dithiazole and dithiazine compounds for development of anticancer drugs. Biochem. Pharmacol., 2017, 143, 39-52.
[http://dx.doi.org/10.1016/j.bcp.2017.07.006] [PMID: 28709952]