Facile Synthesis of 6-Phenyl-6h-chromeno [4, 3-b] Quinoline Derivatives using NaHSO4@SiO2 Re-usable Catalyst and Their Antibacterial Activity Study Correlated by Molecular Docking Studies

Page: [929 - 938] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Heterocyclic compounds containing heteroatoms (O, N and S) as part of five or six-membered cyclic moieties exhibited various potential applications, such as pharmaceutical drugs, agrochemical products and organic materials. Among many known heterocyclic moieties, quinoline and its derivatives are one of the privileged scaffolds found in many natural products. In general, quinoline derivatives could be prepared by utilizing ortho-substituted anilines and carbonyl compounds containing a reactive α-methylene group of well-known reaction routes like Friedlander synthesis, Niemantowski synthesis and Pfitzinger synthesis. Moreover, polysubstituted quinolones and their derivatives also had shown considerable interest in the fields of organic and pharmaceutical chemistry in recent years.

Objectives: The main objective of our research work is towards the design and synthesis of divergent biological-oriented, proactive analogues with potential pharmacological value inspired by the anti-tubercular activity of 2-phenylquinoline analogues. In this study, we have been interested in the design and synthesis of bioactive, 2, 4-diphenyl, 8-arylated quinoline analogues.

Methods: 6-phenyl-6h-chromeno [4, 3-b] quinoline derivatives were synthesized from 4-chloro-2- phenyl-2H-chromene-3-carbaldehyde and various substituted aromatic anilines as starting materials using sodium bisulfate embedded SiO2 re-usable catalyst. All these fifteen new compound structures confirmed by spectral data 1H & 13C NMR, Mass, CHN analysis etc. Furthermore, all these new compounds antibacterial activity strains recorded using the paper disc method. The compound molecular structures were designed using molecular docking study by utilizing the crystallographic parameters of S. Areus Murb protein.

Results: A series of fifteen new quinoline derivatives synthesized in moderate to good yields using sodium bisulfate embedded SiO2 re-usable catalyst. The molecular structures of these newly synthesized compounds elucidated by the combination of spectral data along with the elemental analysis. These compounds antibacterial activity study have shown moderate to good activity against, Escherichia coli (Gram-negative) and Staphylococcus aureus (gram-positive) organisms. These antibacterial activity results were also a very good correlation with molecular docking studies.

Conclusion: In this study, fifteen new quinoline derivatives synthesized and structures confirmed by spectral data. In fact, all the compounds have shown moderate to good antibacterial activity. In general, the compounds containing the electron donor group at R1 position (R1 = OMe) and the acceptor group at R2 positions (R2 = F or Cl) had shown good antibacterial activity. These antibacterial activity results were also a very good correlation with molecular docking studies showing strong binding energies with the highest value being, -12.45 Kcal mol-1 with S. aureus MurB receptor.

Keywords: Sodium bi sulfate silica, aromatic anilines, quinoline derivatives, re-usable catalyst, antibacterial, docking studies.

Graphical Abstract

[1]
Cagir, A.; Eisenhauer, B.M.; Gao, R.; Thomas, S.J.; Hecht, S.M. Synthesis and topoisomerase I inhibitory properties of luotonin A analogues. Bioorg. Med. Chem., 2004, 12(23), 6287-6299.
[http://dx.doi.org/10.1016/j.bmc.2004.08.052] [PMID: 15519171]
[2]
Akguna, H.; Yilmaza, D.U.; Atalay, R.C.; Gozen, D. A Series of 2,4(1H,3H)-Quinazolinedione derivatives: synthesis and biological evaluation as potential anticancer agents. Lett. Drug Des. Discov., 2016, 13, 64-76.
[3]
Narender, P.; Srinivas, U.; Ravinder, M.; Rao, B.A.; Ramesh, Ch.; Harakishore, K.; Gangadasu, B.; Murthy, U.S.N.; Rao, V.J. Synthesis of multisubstituted quinolines from Baylis-Hillman adducts obtained from substituted 2-chloronicotinaldehydes and their antimicrobial activity. Bioorg. Med. Chem., 2006, 14(13), 4600-4609.
[http://dx.doi.org/10.1016/j.bmc.2006.02.020] [PMID: 16510289]
[4]
Reddy, T.N.; Rao, V.J. Importance of Baylis-Hillman adducts in modern drug discovery. Tet. Lett., 2018, 59, 2859-2875.
[http://dx.doi.org/10.1016/j.tetlet.2018.06.023]
[5]
Mareddy, J.; Praveena, K.S.S.; Suresh, N.; Jayashree, A.; Roy, S.; Rambabu, D.; Murthy, N.Y.S.; Pal, S. A remarkably faster approach towards 1, 2, 3-triazolyl quinolines via CuAAC in water: their crystal structure analysis and antibacterial activities. Lett. Drug Des. Discov., 2013, 10, 343-352.
[http://dx.doi.org/10.2174/1570180811310040008]
[6]
McKay, M.J.; Carroll, A.R.; Quinn, R.J. Perspicamides A and B, quinolinecarboxylic acid derivatives from the Australian ascidian Botrylloides perspicuum. J. Nat. Prod., 2005, 68(12), 1776-1778.
[http://dx.doi.org/10.1021/np0502239] [PMID: 16378373]
[7]
Larsen, R.D.; Corley, E.G.; King, A.O.; Carrol, J.D.; Davis, P.; Verhoeven, T.R.; Reider, P.J.; Labelle, M.; Gauthier, J.Y.; Xiang, Y.B.; Zamboni, R.J. Practical route to a new class of LTD4 receptor antagonists. J. Org. Chem., 1996, 61, 3398-3405.
[http://dx.doi.org/10.1021/jo952103j]
[8]
Chen, Y.L.; Fang, K.C.; Sheu, J.Y.; Hsu, S.L.; Tzeng, C.C. Synthesis and antibacterial evaluation of certain quinolone derivatives. J. Med. Chem., 2001, 44(14), 2374-2377.
[http://dx.doi.org/10.1021/jm0100335] [PMID: 11428933]
[9]
Roma, G.; Di Braccio, M.; Grossi, G.; Mattioli, F.; Ghia, M. 1,8-Naphthyridines IV. 9-substituted N,N-dialkyl-5-(alkylamino or cycloalkylamino) [1,2,4]triazolo[4,3-a][1, 8]naphthyridine-6-carboxamides, new compounds with anti-aggressive and potent anti-inflammatory activities. Eur. J. Med. Chem., 2000, 35(11), 1021-1035.
[http://dx.doi.org/10.1016/S0223-5234(00)01175-2] [PMID: 11137230]
[10]
Reddymasu, S.; Pombala, S.; Singh, J.S.; Jawed, A.M.; Kumar, C.G.; Raju, R.R. Synthesis, antitumor evaluation, and molecular docking studies of indole–indazolyl hydrazide–hydrazone derivatives. Monatsh. Chem., 2017, 148, 305-314.
[http://dx.doi.org/10.1007/s00706-016-1750-6]
[11]
Dubé, D.; Blouin, M.; Brideau, C.; Chan, C.C.; Desmarais, S.; Ethier, D.; Falgueyret, J.P.; Friesen, R.W.; Girard, M.; Girard, Y.; Guay, J.; Riendeau, D.; Tagari, P.; Young, R.N. Quinolines as potent 5-lipoxygenase inhibitors: synthesis and biological profile of L-746,530. Bioorg. Med. Chem. Lett., 1998, 8(10), 1255-1260.
[http://dx.doi.org/10.1016/S0960-894X(98)00201-7] [PMID: 9871745]
[12]
Maguire, M.P.; Sheets, K.R.; McVety, K.; Spada, A.P.; Zilberstein, A. A new series of PDGF receptor tyrosine kinase inhibitors: 3-substituted quinoline derivatives. J. Med. Chem., 1994, 37(14), 2129-2137.
[http://dx.doi.org/10.1021/jm00040a003] [PMID: 8035419]
[13]
Billker, O.; Lindo, V.; Panico, M.; Etienne, A.E.; Paxton, T.; Dell, A.; Rogers, M.; Sinden, R.E.; Morris, H.R. Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito. Nature, 1998, 392(6673), 289-292.
[http://dx.doi.org/10.1038/32667] [PMID: 9521324]
[14]
Huma, H.Z.S.; Halder, R.; Kalra, S.S.; Das, J.; Iqbal, J. Cu(I)-catalyzed three component coupling protocol for the synthesis of quinoline derivatives. Tet Lett., 2002, 43, 6485-6488.
[http://dx.doi.org/10.1016/S0040-4039(02)01240-6]
[15]
Legros, J.Y.; Primault, G.; Fiaud, J.C. Syntheses of acetylquinolines and acetylisoquinolines via palladium-catalyzed coupling reactions. Tetrahedron, 2001, 57, 2507-2514.
[http://dx.doi.org/10.1016/S0040-4020(01)00076-X]
[16]
Agrawal, A.K.; Jenekhe, S.A. Electrochemical properties and electronic structures of conjugated polyquinolines and polyanthrazolines. Chem. Mater., 1996, 8, 579-589.
[http://dx.doi.org/10.1021/cm9504753]
[17]
Jenekhe, S.A.; Lu, L.; Alam, M.M. New conjugated polymers with donor−acceptor architectures: synthesis and photophysics of carbazole−quinoline and phenothiazine−quinoline copolymers and oligomers exhibiting large intramolecular charge transfer. Macromolecules, 2001, 34, 7315-7324.
[http://dx.doi.org/10.1021/ma0100448]
[18]
Jegou, G.; Jenekhe, S.A. Highly fluorescent poly(arylene ethynylene)s containing quinoline and 3-alkylthiophene. Macromolecules, 2001, 34, 7926-7928.
[http://dx.doi.org/10.1021/ma0111562]
[19]
Niementowski, S. Synthesen der chinolin derivative. Ber., 1894, 27, 1394-1403.
[http://dx.doi.org/10.1002/cber.18940270242]
[20]
Sakamoto, R.; Rao, K.P.; Nishihara, H. Arylethynylanthraquinone and Bis (arylethynyl) anthraquinone: Strong donor–acceptor interaction and proton-induced cyclization to form pyrylium and dipyrylium salts. Chem. Lett., 2011, 40, 1316-1326.
[http://dx.doi.org/10.1246/cl.2011.1316]
[21]
Rao, K.P.; Kondo, M.; Kume, S.; Sakamoto, R.; Nishihara, H. Protonation-induced cyclization of 1, 8-bis (arylethynyl) anthraquinones: monopyrylium salt formation and intensification of donor–acceptor interaction. Chem. Lett., 2011, 40, 1456-1458.
[http://dx.doi.org/10.1246/cl.2011.1456]
[22]
Rao, K.P.; Kusamoto, T.; Sakamoto, R.; Yamamoto, Y.; Kume, S.; Nihei, M.; Oshio, H.; Nishihara, H. Platinadithiolene-conjugated pyrylium salt with strong intramolecular donor-acceptor interaction. Chem. Commun. (Camb.), 2011, 47(8), 2330-2332.
[http://dx.doi.org/10.1039/C0CC04762G] [PMID: 21161079]
[23]
Rao, K.P.; Kusamoto, T.; Toshimitsu, F.; Inayoshi, K.; Kume, S.; Sakamoto, R.; Nishihara, H.; Nishihara, H. Double protonation of 1,5-bis(triarylaminoethynyl)anthraquinone to form a paramagnetic pentacyclic dipyrylium salt. J. Am. Chem. Soc., 2010, 132(35), 12472-12479.
[http://dx.doi.org/10.1021/ja105250f] [PMID: 20718415]
[24]
Rao, K.P.; Kondo, M.; Sakamoto, R.; Kusamoto, T.; Kume, S. Nihei, M.; Oshio, H.; Nishihara, H. Double protonation of 1, 5-bis (triarylaminoethynyl) anthraquinone to form a paramagnetic pentacyclic dipyrylium salt. Chemistry, 2011, 17, 14010-14019.
[http://dx.doi.org/10.1002/chem.201101708] [PMID: 22084026]
[25]
Luckner, M.; Ritter, C. On the biosynthesis of the 2-n-alkyl-4-hydroxyquinolines of pseudomonas aeruginosa (Schroet.). Tetrahedron Lett., 1965, 12, 741-744.
[http://dx.doi.org/10.1016/S0040-4039(01)83977-0] [PMID: 14291872]
[26]
Ramann, G.A.; Cowen, B.J. Recent advances in metal-free quinoline synthesis. Molecules, 2016, 21(8), 986.
[http://dx.doi.org/10.3390/molecules21080986] [PMID: 27483222]
[27]
Ranu, B.C.; Hajra, A.; Jana, U. Microwave-assisted simple synthesis of quinolines from anilines and alkyl vinyl ketones on the surface of silica gel in the presence of indium (III) chloride. Tet Lett., 2000, 41, 531-533.
[http://dx.doi.org/10.1016/S0040-4039(99)02111-5]
[28]
Bose, D.S.; Kumar, R.K. High-yielding microwave assisted synthesis of quinoline and dihydroquinoline derivatives under solvent-free conditions. Heterocycles, 2006, 68, 549-559.
[http://dx.doi.org/10.3987/COM-06-10668]
[29]
Demaude, T.; Knerr, L.; Pasau, P. New synthetic pathway to diverse 2-substituted quinolines based on a multicomponent reaction: solution-phase and solid-phase applications. J. Comb. Chem., 2004, 6(5), 768-775.
[http://dx.doi.org/10.1021/cc049937c] [PMID: 15360212]
[30]
Mahata, P.K.; Venkatesh, C.; Syam Kumar, U.K.; Ila, H.; Junjappa, H. Reaction of α-oxoketene-N,S-arylaminoacetals with Vilsmeier reagents: an efficient route to highly functionalized quinolines and their benzo/hetero-fused analogues. J. Org. Chem., 2003, 68(10), 3966-3975.
[http://dx.doi.org/10.1021/jo034053l] [PMID: 12737579]
[31]
Sangu, K.; Fuchibe, K.; Akiyama, T. A novel approach to 2-arylated quinolines: electrocyclization of alkynyl imines via vinylidene complexes. Org. Lett., 2004, 6(3), 353-355.
[http://dx.doi.org/10.1021/ol036190a] [PMID: 14748591]
[32]
Srinivas, B.; Suryachandram, J.; Devi, Y.K.; Rao, K.P. Synthesis and antibacterial activity studies of 8,9‐dihydro [7H] benzo 1,2,4‐oxadiazoles and its coumarin derivatives. J Hetro Cyclic Chem., 2017, 54, 3730-3734.
[http://dx.doi.org/10.1002/jhet.2960]
[33]
Boddupally, S.; Jyothi, P.; Rao, M.V.B.; Rao, K.P. Design and synthesis of antimicrobial active (E)‐(3‐(substituted‐styryl)‐7H‐furo[2,3‐f]chromen‐2‐yl)(phenyl)methanone derivatives and their in silico molecular docking studies. J Hetro Cyclic Chem., 2019, 56, 73-80.
[http://dx.doi.org/10.1002/jhet.3373]
[34]
Suman, K.; Rao, K.P.; Anuradha, V.; Rao, M.V.B.; Pal, M. Ultrasound assisted synthesis of 3,4-diyne substituted isocoumarin derivatives: identification of potential cytotoxic agents. Mini Rev. Med. Chem., 2018, 18(12), 1064-1070.
[http://dx.doi.org/10.2174/1389557518666180117093706] [PMID: 29468966]
[35]
Subramanyam, M.; Sreenivasulu, R.; Varala, R.; Rao, M.V.B.; Rao, K.P. A facile, efficient and convenient synthesis of 1,8-dioxodecahydroacridines with PMA-SiO2 reusable catalyst. Lett. Org. Chem., 2018, 15, 915-921.
[http://dx.doi.org/10.2174/1570178615666180212153735]
[36]
Subramanyam, M.; Sreenivasulu, R.; Gundla, R.; Rao, M.V.B.; Rao, K.P. Synthesis, Biological Evaluation and Docking Studies of 1,3,4-Oxadiazole Fused Benzothiazole Derivatives for Anticancer Drugs. Lett. Drug Des. Discov., 2018, 15, 1299-1307.
[http://dx.doi.org/10.2174/1570180815666180219165119]
[37]
Azarifar, D.; Forghaniha, A.J. A novel chemoselective reaction of aldehydes with 2‐mercaptoethanol catalyzed by SiO2‐NaHSO4 under solvent‐free condition. Chin. Chem. Soc., 2006, 53, 1189-1192.
[http://dx.doi.org/10.1002/jccs.200600157]
[38]
Benson, T.E.; Harris, M.S.; Choi, G.H.; Cialdella, J.I.; Herberg, J.T.; Martin, J.P., Jr; Baldwin, E.T. A structural variation for MurB: X-ray crystal structure of Staphylococcus aureus UDP-N-acetylenolpyruvylglucosamine reductase (MurB). Biochemistry, 2001, 40(8), 2340-2350.
[http://dx.doi.org/10.1021/bi002162d] [PMID: 11327854]
[39]
Eleni, P.; Evangelia, T.; Athina, G.; Jovana, P.; Jasmina, G.; Marina, S.; Emmanuele, C.; Giovanni, M.; Shome, S.B.; Anil, K.S. 4-Thiazolidinone derivatives as potent antimicrobial agents: microwave-assisted synthesis, biological evaluation and docking studies. MedChemComm, 2015, 6, 319-326.
[http://dx.doi.org/10.1039/C4MD00399C]
[40]
Horne, W.S.; Stout, C.D.; Ghadiri, M.R. A heterocyclic peptide nanotube. J. Am. Chem. Soc., 2003, 125(31), 9372-9376.
[http://dx.doi.org/10.1021/ja034358h] [PMID: 12889966]
[41]
Chandrashekhar, S.; Basu, D.; Rambabu, Ch. Three-component coupling of alkynes, Baylis–Hillman adducts and sodium azide: a new synthesis of substituted triazoles. Tet Lett., 2006, 47, 3059-3063.
[http://dx.doi.org/10.1016/j.tetlet.2006.03.037]
[42]
Frisch, M.J.; Trucks, G.W. 2009.
[43]
Diego, S. Discovery Studio Modeling Environment USA Accelrys Software Inc. Release 4.1.0; Accelrys Software Inc, 2013.
[44]
Ferreira de Freitas, R.; Schapira, M. A systematic analysis of atomic protein-ligand interactions in the PDB. MedChemComm, 2017, 8(10), 1970-1981.
[http://dx.doi.org/10.1039/C7MD00381A] [PMID: 29308120]
[45]
Davis, A.M.; Teague, S.J. Hydrogen bonding, hydrophobic interactions, and failure of the rigid receptor hypothesis. Angew. Chem. Int. Ed. Engl., 1999, 38(6), 736-749.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990315)38:6<736:AID-ANIE736>3.0.CO;2-R] [PMID: 29711793]
[46]
Schlegel, H.B.; Millam, J.; Iyengar, S.S.; Voth, G.A.; Daniels, A.D.; Scuseria, G.E.; Frisch, M.J. Ab initio molecular dynamics: propagating the density matrix with Gaussian orbitals. J. Chem. Phys., 2001, 114, 9758-9763.
[http://dx.doi.org/10.1063/1.1372182]
[47]
Lu, T.; Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem., 2012, 33(5), 580-592.
[http://dx.doi.org/10.1002/jcc.22885] [PMID: 22162017]