Recent Progress in Gene Therapy and Other Targeted Therapeutic Approaches for Beta Thalassemia

Page: [1603 - 1623] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Beta-thalassemia is a genetic disorder characterized by the impaired synthesis of the betaglobin chain of adult hemoglobin. The disorder has a complex pathophysiology that affects multiple organ systems. The main complications of beta thalassemia are ineffective erythropoiesis, chronic hemolytic anemia and hemosiderosis-induced organ dysfunction. Regular blood transfusions are the main therapy for beta thalassemia major; however, this treatment can cause cardiac and hepatic hemosiderosis – the most common cause of death in these patients. This review focuses on unique future therapeutic interventions for thalassemia that reverse splenomegaly, reduce transfusion frequency, decrease iron toxicity in organs, and correct chronic anemia. The targeted effective protocols include hemoglobin fetal inducers, ineffective erythropoiesis correctors, antioxidants, vitamins, and natural products. Resveratrol is a new herbal therapeutic approach which serves as fetal Hb inducer in beta thalassemia. Hematopoietic stem cell transplantation (HSCT) is the only curative therapy for beta thalassemia major and is preferred over iron chelation and blood transfusion for ensuring long life in these patients. Meanwhile, several molecular therapies, such as ActRIIB/IgG1 Fc recombinant protein, have emerged to address complications of beta thalassemia or the adverse effects of current drugs. Regarding gene correction strategies, a phase III trial called HGB-207 (Northstar-2; NCT02906202) is evaluating the efficacy and safety of autologous cell transplantation with LentiGlobin. Advanced gene-editing approaches aim to cut DNA at a targeted site and convert HbF to HbA during infancy, such as the suppression of BCL11A (B cell lymphoma 11A), HPFH (hereditary persistence of fetal hemoglobin) and zinc-finger nucleases. Gene therapy is progressing rapidly, with multiple clinical trials being conducted in many countries and the promise of commercial products to be available in the near future.

Keywords: Thalassemia, gene therapy, iron-chelation therapy, HbF inducers, molecular therapy, thalassemia complication.

Graphical Abstract

[1]
Tari K, Valizadeh Ardalan P, Abbaszadehdibavar M, Atashi A, Jalili A, Gheidishahran M. Thalassemia an update: molecular basis, clinical features and treatment. IJBMPH 2018; 1(1): 48-58.
[http://dx.doi.org/10.22631/ijbmph.2018.56102]
[2]
Li C-K. New trend in the epidemiology of thalassaemia. Best Pract Res Clin Obstet Gynaecol 2017; 39: 16-26.
[http://dx.doi.org/10.1016/j.bpobgyn.2016.10.013] [PMID: 27847257]
[3]
Weatherall DJ. The evolving spectrum of the epidemiology of thalassemia. Hematol Oncol Clin North Am 2018; 32(2): 165-75.
[http://dx.doi.org/10.1016/j.hoc.2017.11.008] [PMID: 29458724]
[4]
Finotti A, Breda L, Lederer CW, et al. Recent trends in the gene therapy of β-thalassemia. J Blood Med 2015; 6: 69-85.
[PMID: 25737641]
[5]
Feola M, Zamperone A, Bao W, et al. Role of activated pleckstrin-2 and down-stream effects on ineffective erythropoiesis in β-thalassemic mice. Am Soc Hematology 2016; 128(22): 1011-110.
[6]
Mokhtar GM, Gadallah M, El Sherif NH, Ali HT. Morbidities and mortality in transfusion-dependent Beta-thalassemia patients (single-center experience). Pediatr Hematol Oncol 2013; 30(2): 93-103.
[http://dx.doi.org/10.3109/08880018.2012.752054] [PMID: 23301991]
[7]
Soni S. Novel and innovative approaches for treatment of β-thalassemia. Pediatric Hematology Oncology Journal 2017; 2(4): 121-6.
[http://dx.doi.org/10.1016/j.phoj.2017.11.153]
[8]
Leboulch PL, Pawliuk R, Westerman K. Therapeutic retroviral vectors for gene therapy Google Patents 2019.
[9]
Darvishi P, Sharifi Z, Azarkeivan A, Akbari A, Pourfathollah AA. HLA-DRB1*15:03 and HLA-DRB1*11: useful predictive alleles for alloantibody production in thalassemia patients. Transfus Med 2019; 29(3): 179-84.
[http://dx.doi.org/10.1111/tme.12531] [PMID: 29691938]
[10]
Bordbar M, Pasalar M, Safaei S, et al. Complementary and alternative medicine use in thalassemia patients in Shiraz, southern Iran: A cross-sectional study. J Tradit Complement Med 2017; 8(1): 141-6.
[http://dx.doi.org/10.1016/j.jtcme.2017.05.002] [PMID: 29322002]
[11]
Kolnagou A, Kontoghiorghes GJ. Chelation protocols for the elimination and prevention of iron overload in thalassaemia. Front Biosci 2018; 23: 1082-98.
[http://dx.doi.org/10.2741/4634] [PMID: 28930590]
[12]
Adly AA, Ismail EA. Management of children with β-thalassemia intermedia: overview, recent advances, and treatment challenges. J Pediatr Hematol Oncol 2018; 40(4): 253-68.
[http://dx.doi.org/10.1097/MPH.0000000000001148] [PMID: 29629992]
[13]
Jones E, Pasricha SR, Allen A, et al. Hepcidin is suppressed by erythropoiesis in hemoglobin E β-thalassemia and β-thalassemia trait. Blood 2015; 125(5): 873-80.
[http://dx.doi.org/10.1182/blood-2014-10-606491] [PMID: 25519750]
[14]
Vichinsky E. Non-transfusion-dependent thalassemia and thalassemia intermedia: epidemiology, complications, and management. Curr Med Res Opin 2016; 32(1): 191-204.
[http://dx.doi.org/10.1185/03007995.2015.1110128] [PMID: 26479125]
[15]
Zhao P, Wu H, Zhong Z, et al. Molecular prenatal diagnosis of alpha and beta thalassemia in pregnant Hakka women in southern China. J Clin Lab Anal 2018; 32(3)e22306
[http://dx.doi.org/10.1002/jcla.22306] [PMID: 28771834]
[16]
Chonat S, Quinn CT. Current standards of care and long term outcomes for thalassemia and sickle cell disease. Adv Exp Med Biol 2017; 1013: 59-87.
[http://dx.doi.org/10.1007/978-1-4939-7299-9_3] [PMID: 29127677]
[17]
Al-Amodi AM, Ghanem NZ, Aldakeel SA, et al. Hemoglobin A2 (HbA2) has a measure of unreliability in diagnosing β-thalassemia trait (β-TT). Curr Med Res Opin 2018; 34(5): 945-51.
[http://dx.doi.org/10.1080/03007995.2018.1435520] [PMID: 29383950]
[18]
Cappellini MD, Porter JB, Viprakasit V, Taher AT. A paradigm shift on beta-thalassaemia treatment: How will we manage this old disease with new therapies? Blood Rev 2018; 32(4): 300-11.
[http://dx.doi.org/10.1016/j.blre.2018.02.001] [PMID: 29455932]
[19]
Chirico V, Rigoli L, Lacquaniti A, et al. Endocrinopathies, metabolic disorders, and iron overload in major and intermedia thalassemia: serum ferritin as diagnostic and predictive marker associated with liver and cardiac T2* MRI assessment. Eur J Haematol 2015; 94(5): 404-12.
[http://dx.doi.org/10.1111/ejh.12444] [PMID: 25200112]
[20]
Ansari S, Azarkeivan A, Miri-Aliabad G, Yousefian S, Rostami T. Comparison of iron chelation effects of deferoxamine, deferasirox, and combination of deferoxamine and deferiprone on liver and cardiac T2* MRI in thalassemia maior. Caspian J Intern Med 2017; 8(3): 159-64.
[PMID: 28932366]
[21]
Khera R, Singh T, Khuana N, Gupta N, Dubey AP. HPLC in characterization of hemoglobin profile in thalassemia syndromes and hemoglobinopathies: a clinicohematological correlation. Indian J Hematol Blood Transfus 2015; 31(1): 110-5.
[http://dx.doi.org/10.1007/s12288-014-0409-x] [PMID: 25548455]
[22]
Hudecova I, Chiu RW. Non-invasive prenatal diagnosis of thalassemias using maternal plasma cell free DNA. Best Pract Res Clin Obstet Gynaecol 2017; 39: 63-73.
[http://dx.doi.org/10.1016/j.bpobgyn.2016.10.016] [PMID: 27887921]
[23]
Sleiman J, Tarhini A, Bou-Fakhredin R, Saliba AN, Cappellini MD, Taher AT. Non-Transfusion-Dependent Thalassemia: An Update on Complications and Management. Int J Mol Sci 2018; 19(1): 182.
[http://dx.doi.org/10.3390/ijms19010182] [PMID: 29316681]
[24]
Abdul-Hamid A, Bazarbachi HMM. 2 Rayan I. Bou Fakhredin,2 and B.F.C. Joseph E. Roumi, 1 Ali T. Taher2. How I treat and monitor non-transfusion-dependent thalassaemia. Haematologica 2017; 102(1): 20-7.
[25]
Karimi M, Cohan N, Pishdad P. Hydroxyurea as a first-line treatment of extramedullary hematopoiesis in patients with beta thalassemia: Four case reports. Hematology 2015; 20(1): 53-7.
[http://dx.doi.org/10.1179/1607845414Y.0000000168] [PMID: 24717020]
[26]
Teawtrakul N, Jetsrisuparb A, Pongudom S, et al. Epidemiologic study of major complications in adolescent and adult patients with thalassemia in Northeastern Thailand: the E-SAAN study phase I. Hematology 2018; 23(1): 55-60.
[http://dx.doi.org/10.1080/10245332.2017.1358845] [PMID: 28759343]
[27]
Mancuso L, Vitrano A, Mancuso A, Sacco M, Ledda A, Maggio A. Left Ventricular Diastolic Dysfunction in β-Thalassemia Major with Heart Failure. Hemoglobin 2018; 42(1): 68-71.
[http://dx.doi.org/10.1080/03630269.2018.1451341] [PMID: 29633668]
[28]
Ansari AM, Bhat KG, Dsa SS, Mahalingam S, Joseph N. Study of insulin resistance in patients with β thalassemia major and validity of triglyceride. J Pediatr Hematol Oncol 2018; 40(2): 128-31.
[29]
Arif M, Ansari M, Kamalakshi G, et al. study of insulin resistance in patients with β thalassemia major and validity of triglyceride glucose (TYG). J Pediatr Hematol Oncol 2018; 40(2): 128-31.
[30]
De Sanctis V, Soliman AT, Yassin MA, et al. Hypogonadism in male thalassemia major patients: pathophysiology, diagnosis and treatment. Acta Biomed 2018; 89(2-S): 6-15.
[PMID: 29451224]
[31]
Upadya SH, Rukmini MS, Sundararajan S, Baliga BS, Kamath N. Thyroid function in chronically transfused children with beta thalassemia major: a cross-sectional hospital based study. Int J Pediatr 2018; 2018: 5.
[http://dx.doi.org/10.1155/2018/9071213]
[32]
Al Moussawi H, Polavarapu AD, Asti D, Awada Z, Mulrooney S. Successful Treatment of Hepatitis C Virus by Ledipasvir/Sofosbuvir in a Cirrhotic Patient with Sickle Cell Disease and Thalassemia Minor. Case Rep Gastroenterol 2018; 12(3): 629-32.
[http://dx.doi.org/10.1159/000493421] [PMID: 30483041]
[33]
Oikonomidou PR, Rivella S. What can we learn from ineffective erythropoiesis in thalassemia? Blood Rev 2018; 32(2): 130-43.
[http://dx.doi.org/10.1016/j.blre.2017.10.001] [PMID: 29054350]
[34]
Aldudak B, Karabay Bayazit A, Noyan A, et al. Renal function in pediatric patients with β-thalassemia major. Pediatr Nephrol 2000; 15(1-2): 109-12.
[http://dx.doi.org/10.1007/s004670000434] [PMID: 11095025]
[35]
Sleiman J, Tarhini A, Taher AT. Renal complications in thalassemiaThalassemia Reports 2018; 8(1)
[http://dx.doi.org/10.4081/thal.2018.7481]
[36]
Lertsuwan K, Wongdee K, Teerapornpuntakit J, Charoenphandhu N. Intestinal calcium transport and its regulation in thalassemia: interaction between calcium and iron metabolism. J Physiol Sci 2018; 68(3): 221-32.
[http://dx.doi.org/10.1007/s12576-018-0600-1] [PMID: 29484538]
[37]
Tsartsalis AN, Lambrou GI, Tsartsalis D, et al. The role of biphosphonates in the management of thalassemia-induced osteoporosis: a systematic review and meta-analysis. Hormones (Athens) 2018; 17(2): 153-66.
[http://dx.doi.org/10.1007/s42000-018-0019-3] [PMID: 29858849]
[38]
Sreenivasan P, et al. Impact of diet counseling in thalassemic children and its response on nutritional status. Int J Health Allied Sci 2017; 6(1): 26.
[39]
Cunningham E. Is there a special diet for thalassemia? J Acad Nutr Diet 2016; 116(8): 1360.
[http://dx.doi.org/10.1016/j.jand.2016.06.001] [PMID: 27469523]
[40]
Fung EB, Xu Y, Trachtenberg F, et al. Thalassemia Clinical Research Network. Inadequate dietary intake in patients with thalassemia. J Acad Nutr Diet 2012; 112(7): 980-90.
[http://dx.doi.org/10.1016/j.jand.2012.01.017] [PMID: 22551675]
[41]
de Alarcon PA, Donovan ME, Forbes GB, Landaw SA, Stockman JA III. Iron absorption in the thalassemia syndromes and its inhibition by tea. N Engl J Med 1979; 300(1): 5-8.
[http://dx.doi.org/10.1056/NEJM197901043000102] [PMID: 758174]
[42]
Lunova M, Goehring C, Kuscuoglu D, et al. Hepcidin knockout mice fed with iron-rich diet develop chronic liver injury and liver fibrosis due to lysosomal iron overload. J Hepatol 2014; 61(3): 633-41.
[http://dx.doi.org/10.1016/j.jhep.2014.04.034] [PMID: 24816174]
[43]
Balasubramanian P, Abraham A, George B, Srivastava A. Allogeneic stem cell transplantation for thalassemia major in India. Pediatric Hematology Oncology J 2017; 2(4): 114-20.
[http://dx.doi.org/10.1016/j.phoj.2018.02.001]
[44]
John MJ, Jyani G, Jindal A, et al. Cost Effectiveness of Hematopoietic Stem Cell Transplantation Compared with Transfusion Chelation for Treatment of Thalassemia Major. Biol Blood Marrow Transplant 2018; 24(10): 2119-26.
[http://dx.doi.org/10.1016/j.bbmt.2018.04.005] [PMID: 29673692]
[45]
Strocchio L, Locatelli F. Hematopoietic Stem Cell Transplantation in Thalassemia. Hematol Oncol Clin North Am 2018; 32(2): 317-28.
[http://dx.doi.org/10.1016/j.hoc.2017.11.011] [PMID: 29458734]
[46]
Angelucci E, Abutalib SA. Advances in transplantation and gene therapy in transfusion‐dependent β‐thalassemia. Advances in Cell and Gene Therapy 2019; 2(1)e25
[http://dx.doi.org/10.1002/acg2.25]
[47]
Li Q. Unrelated donor peripheral blood stem cell transplantation for thalassaemia: a single institution experience of 53 patients. In: Am Soc Hematology. 2017.
[48]
Marktel S, Cicalese MP, Giglio F, et al. Gene therapy for Beta thalassemia: preliminary results from the PHASE I/II Tiget-Bthal trial of autologous hematopoietic stem cells genetically modified with GLOBE lentiviral vector. In: Am Soc Hematology 2017; 130-355.
[49]
Rasko J, Walters M, Kwiatkowski J, et al. Efficacy and safety of LentiGlobin gene therapy in patients with transfusion-dependent β-thalassemia and non-β0/β0 genotypes: Updated results from the completed phase 1/2 Northstar and ongoing phase 3 Northstar-2 studies. Cytotherapy 2019; 21(5): S14.
[http://dx.doi.org/10.1016/j.jcyt.2019.03.578]
[50]
Methichit Wattanapanitch1, Nattaya Damkham1, Ponthip Potirat1, Kongtana Trakarnsanga3, Montira Janan1, Yaowalak U-pratya1,4, Pakpoom Kheolamai5, Nuttha Klincumhom6 and Surapol Issaragrisil1,4 One-step genetic correction of hemoglobin E/betathalassemia patient-derived iPSCs by the CRISPR/Cas9 system stem cell therapy and research 2018.
[51]
Alateeq S, Ovchinnikov D, Tracey T, et al. Identification of on-target mutagenesis during correction of a beta-thalassemia splice mutation in iPS cells with optimised CRISPR/Cas9-double nickase reveals potential safety concerns. APL Bioeng 2018; 2(4)046103
[http://dx.doi.org/10.1063/1.5048625] [PMID: 31069325]
[52]
Marsella M, Borgna-Pignatti C. Transfusional iron overload and iron chelation therapy in thalassemia major and sickle cell disease. Hematol Oncol Clin North Am 2014; 28(4): 703-27.vi.
[http://dx.doi.org/10.1016/j.hoc.2014.04.004] [PMID: 25064709]
[53]
Vene’e N. Guidelines for the standard monitoring of patients with thalassemia: report of the thalassemia longitudinal cohort. Pediatr Hematol Oncol 2015; 37: 162-9.
[http://dx.doi.org/10.1097/MPH.0000000000000307]
[54]
Vichinsky E, Neumayr L, Trimble S, et al. CDC thalassemia investigators. transfusion complications in thalassemia patients: a report from the centers for disease control and prevention (CME). Transfusion 2014; 54(4): 972-81.
[http://dx.doi.org/10.1111/trf.12348] [PMID: 23889533]
[55]
Chonat S, Quinn CT. Current standards of care and long term outcomes for thalassemia and sickle cell disease, in gene and cell therapies for beta-globinopathies. Springer 2017; pp. 59-87.
[56]
Pepe A, Meloni A, Capra M, et al. Deferasirox, deferiprone and desferrioxamine treatment in thalassemia major patients: cardiac iron and function comparison determined by quantitative magnetic resonance imaging. Haematologica 2011; 96(1): 41-7.
[http://dx.doi.org/10.3324/haematol.2009.019042] [PMID: 20884710]
[57]
Rindarwati AY, Diantini A, Lestari K. Efficacy and side effects of deferasirox and deferiprone for thalasemia major in children. Pharmacol Clin Pharmacy Res 2018; 1(3): 76-9.
[58]
Voskaridou E, Christoulas D, Terpos E. Successful chelation therapy with the combination of deferasirox and deferiprone in a patient with thalassaemia major and persisting severe iron overload after single-agent chelation therapies. Br J Haematol 2011; 154(5): 654-6.
[http://dx.doi.org/10.1111/j.1365-2141.2011.08626.x] [PMID: 21615376]
[59]
Allegra S, Cusato J, De Francia S, et al. Effect of pharmacogenetic markers of vitamin D pathway on deferasirox pharmacokinetics in children. Pharmacogenet Genomics 2018; 28(1): 17-22.
[http://dx.doi.org/10.1097/FPC.0000000000000315] [PMID: 29099735]
[60]
Kontoghiorghe CN, Kontoghiorghes GJ. Efficacy and safety of iron-chelation therapy with deferoxamine, deferiprone, and deferasirox for the treatment of iron-loaded patients with non-transfusion-dependent thalassemia syndromes. Drug Des Devel Ther 2016; 10: 465-81.
[http://dx.doi.org/10.2147/DDDT.S79458] [PMID: 26893541]
[61]
Guo S, Liu G, Frazer DM, et al. Polymeric nanoparticles enhance the ability of deferoxamine to deplete hepatic and systemic iron. Nano Lett 2018; 18(9): 5782-90.
[http://dx.doi.org/10.1021/acs.nanolett.8b02428] [PMID: 30085676]
[62]
Totadri S, Bansal D, Trehan A, et al. Hepatic and cardiac iron-load in children on long-term chelation with deferiprone for thalassemia major. Indian Pediatr 2018; 55(7): 573-5.
[http://dx.doi.org/10.1007/s13312-018-1299-z] [PMID: 30129538]
[63]
Yii E, Doery JC, Kaplan Z, Kerr PG. Use of deferasirox (Exjade) for iron overload in peritoneal dialysis patients. Nephrology (Carlton) 2018; 23(9): 887-9.
[http://dx.doi.org/10.1111/nep.13389] [PMID: 29663590]
[64]
Kannan S, Singh A. Compliance score as a monitoring tool to promote treatment adherence in children with thalassemia major for improved physical growth. Asian J Transfus Sci 2017; 11(2): 108-14.
[http://dx.doi.org/10.4103/ajts.AJTS_61_16] [PMID: 28970676]
[65]
Belmont A, Kwiatkowski JL. Deferiprone for the treatment of transfusional iron overload in thalassemia. Expert Rev Hematol 2017; 10(6): 493-503.
[http://dx.doi.org/10.1080/17474086.2017.1318052] [PMID: 28448199]
[66]
Bollig C, Schell LK, Rücker G, et al. Deferasirox for managing iron overload in people with thalassaemia. Cochrane Database Syst Rev 2017.8CD007476.
[http://dx.doi.org/10.1002/14651858.CD007476.pub3] [PMID: 28809446]
[67]
Guo S, Liu G, Frazer DM, et al. Polymeric nanoparticles enhance the ability of deferoxamine to deplete hepatic and systemic iron. Nano Lett 2018; 18(9): 5782-90.
[http://dx.doi.org/10.1021/acs.nanolett.8b02428] [PMID: 30085676]
[68]
Spino M, Connelly J, Tsang YC, et al. Deferiprone pharmacokinetics with and without iron overload and in special patient populations. Am Soc Hematology 2015.
[69]
Borgna-Pignatti C, Marsella M. Iron chelation in thalassemia major. Clin Ther 2015; 37(12): 2866-77.
[http://dx.doi.org/10.1016/j.clinthera.2015.10.001] [PMID: 26519233]
[70]
Meiler SE, Wade M, Kutlar F, et al. Pomalidomide augments fetal hemoglobin production without the myelosuppressive effects of hydroxyurea in transgenic sickle cell mice. In: Blood. 2011.blood-2010-11-319137.
[71]
Salamin O, Kuuranne T, Saugy M, Leuenberger N. Erythropoietin as a performance-enhancing drug: Its mechanistic basis, detection, and potential adverse effects. Mol Cell Endocrinol 2018; 464: 75-87.
[http://dx.doi.org/10.1016/j.mce.2017.01.033] [PMID: 28119134]
[72]
Chen J, Zhu W, Cai N, Bu S, Li J, Huang L. Thalidomide induces haematologic responses in patients with β-thalassaemia. Eur J Haematol 2017; 99(5): 437-41.
[http://dx.doi.org/10.1111/ejh.12955] [PMID: 28850716]
[73]
Zander T, Aebi S, Pabst T, Renner C, Driessen C. Spotlight on pomalidomide: could less be more? Leukemia 2017; 31(9): 1987-9.
[http://dx.doi.org/10.1038/leu.2017.156] [PMID: 28529311]
[74]
Pecoraro A, Troia A, Calzolari R, et al. Efficacy of rapamycin as inducer of Hb F in primary erythroid cultures from sickle cell disease and β-thalassemia patients. Hemoglobin 2015; 39(4): 225-9.
[http://dx.doi.org/10.3109/03630269.2015.1036882] [PMID: 26016899]
[75]
Stallone G, Infante B, Grandaliano G, Gesualdo L. Management of side effects of sirolimus therapy. Transplantation 2009; 87(8)(Suppl.): S23-6.
[http://dx.doi.org/10.1097/TP.0b013e3181a05b7a] [PMID: 19384183]
[76]
Gamberini MR, Borgatti M, Finotti A, Zuccato C. Treatment of beta-thalassemia patients with rapamycin (Sirolimus): from preclinical research to a clinical trials-THALA RAP. 2018.
[77]
Kaminskas E, Farrell AT, Wang YC, Sridhara R, Pazdur R. FDA drug approval summary: azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist 2005; 10(3): 176-82.
[http://dx.doi.org/10.1634/theoncologist.10-3-176] [PMID: 15793220]
[78]
Kalantri SA, Ray R, Chattopadhyay A, Bhattacharjee S, Biswas A, Bhattacharyya M. Efficacy of decitabine as hemoglobin F inducer in HbE/β-thalassemia. Ann Hematol 2018; 97(9): 1689-94.
[http://dx.doi.org/10.1007/s00277-018-3357-y] [PMID: 29740685]
[79]
Ghasemi A, Keikhaei B, Ghodsi R. Side effects of hydroxyurea in patients with Thalassemia major and thalassemia intermedia and sickle cell anemia. Iran J Ped Hematol Oncol 2014; 4(3): 114-7.
[PMID: 25254090]
[80]
Vo KT, Karski EE, Nasholm NM, et al. Phase 1 study of sirolimus in combination with oral cyclophosphamide and topotecan in children and young adults with relapsed and refractory solid tumors. Oncotarget 2017; 8(14): 23851-61.
[http://dx.doi.org/10.18632/oncotarget.12904] [PMID: 27793021]
[81]
Vinchi F, Gastaldi S, Silengo L, Altruda F, Tolosano E. Hemopexin prevents endothelial damage and liver congestion in a mouse model of heme overload. Am J Pathol 2008; 173(1): 289-99.
[http://dx.doi.org/10.2353/ajpath.2008.071130] [PMID: 18556779]
[82]
Fibach E, Kollia P, Schechter AN, Noguchi CT, Rodgers GP. Hemin-induced acceleration of hemoglobin production in immature cultured erythroid cells: preferential enhancement of fetal hemoglobin. Blood 1995; 85(10): 2967-74.
[PMID: 7537986]
[83]
Vittorio Montefusco MC. diarrhea incidence in multiple myeloma patients treated with lenalidomide and pomalidomide clinicallymphoma myeloma 2017; 17(1): e46.
[84]
Casu C, Presti VL, Oikonomidou PR, et al. Short-term administration of JAK2 inhibitors reduces splenomegaly in mouse models of β-thalassemia intermedia and major haematologica 2018; 103(2): e46-9.
[85]
Dussiot M, Maciel TT, Fricot A, et al. An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia. Nat Med 2014; 20(4): 398-407.
[http://dx.doi.org/10.1038/nm.3468] [PMID: 24658077]
[86]
Porter J. A phase 2a, open-label, dose-finding study to determine the safety and tolerability of sotatercept (ACE-011) in adults with beta (β)-thalassemia: interim results. Am Soc Hematology 2013.
[87]
Piga A, Tartaglione I, Gamberini R, et al. Luspatercept decreases transfusion burden and liver iron concentration in regularly transfused adults with beta-thalassemia. Haematologica 2016; 101(Suppl. 1): S836.
[88]
Verstovsek S, Passamonti F, Rambaldi A, et al. A phase 2 study of ruxolitinib, an oral JAK1 and JAK2 Inhibitor, in patients with advanced polycythemia vera who are refractory or intolerant to hydroxyurea. Cancer 2014; 120(4): 513-20.
[http://dx.doi.org/10.1002/cncr.28441] [PMID: 24258498]
[89]
Smith WT. Long-term effects of sotatercept compared with placebo for correction of anemia in hemodialysis subjects: interim analysis of ACE-011-REN-001 [poster FP661 In: Annual Congress of the European Renal Association-European Dialysis and Transplant Association. 2015.
[90]
Reichel C, Farmer L, Gmeiner G, Walpurgis K, Thevis M. Detection of Sotatercept (ACE-011) in human serum by SAR-PAGE and western single blotting. Drug Test Anal 2018; 10(6): 927-37.
[http://dx.doi.org/10.1002/dta.2346] [PMID: 29193906]
[91]
Ruchala P, Nemeth E. The pathophysiology and pharmacology of hepcidin. Trends Pharmacol Sci 2014; 35(3): 155-61.
[http://dx.doi.org/10.1016/j.tips.2014.01.004] [PMID: 24552640]
[92]
Bansal D. Hepcidin and Thalassemia. Indian J Pediatr 2017; 84(10): 731-2.
[http://dx.doi.org/10.1007/s12098-017-2439-5] [PMID: 28840480]
[93]
Jaratsittisin J, Sornjai W, Svasti S, Fucharoen S, Roytrakul S, Smith DR. Modulation of hepcidin expression by normal control and beta0-thalassemia/Hb E erythroblasts. Hematology 2018; 23(7): 423-8.
[http://dx.doi.org/10.1080/10245332.2017.1405571] [PMID: 29157161]
[94]
Prentice AM. Clinical implications of new insights into hepcidin-mediated regulation of iron absorption and metabolism. clinical implications of new insights into hepcidin-mediated regulation of iron absorption and metabolism. Ann Nutr Metab 2017; 71(Suppl. 3): 40-8.
[http://dx.doi.org/10.1159/000480743] [PMID: 29268258]
[95]
Ramos E, Ruchala P, Goodnough JB, et al. Minihepcidins prevent iron overload in a hepcidin-deficient mouse model of severe hemochromatosis. Blood 2012; 120(18): 3829-36.
[http://dx.doi.org/10.1182/blood-2012-07-440743]
[96]
Vyoral D. Jiri Petrak. Therapeutic potential of hepcidin - the master regulator of iron metabolism. Pharmacol Res 2017; 115: 242-54.
[http://dx.doi.org/10.1016/j.phrs.2016.11.010] [PMID: 27867027]
[97]
Sebastiani G, Wilkinson N, Pantopoulos K. Pharmacological Targeting of the Hepcidin/Ferroportin Axis. Front Pharmacol 2016; 7: 160.
[http://dx.doi.org/10.3389/fphar.2016.00160] [PMID: 27445804]
[98]
Chen H, Choesang T, Huihui Li, et al. Increased hepcidin expression in β-thalassemic mice treated with apo-transferrin is associated with increased smad1/5/8 and decreased erk1/2 pathway activation. Am Soc Hematology 2014; 101(3): 297-308.
[99]
Kawabata H. Transferrin and transferrin receptors update. Free Radic Biol Med 2019; 133: 46-54.
[PMID: 29969719]
[100]
Ginzburg YZ. Use of transferrin in treatment of beta-thalassemias EP2509621A1 2010.
[101]
Casu C, Nemeth E, Rivella S. Hepcidin agonists as therapeutic tools Blood . 2018. p. blood-2017-11-737411.
[http://dx.doi.org/10.1182/blood-2017-11-737411]
[102]
Hare DJ. Hepcidin: A real-time biomarker of iron need royal society of chemistry 2017; 9: 606-18.
[103]
Gelderman MP, Baek JH, Yalamanoglu A, et al. Reversal of hemochromatosis by apo-transferrin in non-transfused and transfused Hbbth3/+(heterozygous B1/B2 globin gene deletion) mice. In: Haematologica,haematol. Haematologica 2015; 100(5): 611-22.
[104]
Ginzburg YZ. Use of transferrin in treatment of beta-thalassemias Google Patents 2013.
[105]
Fibach E, Rachmilewitz EA. The role of antioxidants and iron chelators in the treatment of oxidative stress in thalassemia. Ann N Y Acad Sci 2010; 1202(1): 10-6.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05577.x] [PMID: 20712766]
[106]
Elsedfy H, De Sanctis V, Ahmed AY, Mohamed NR, Arafa M, Elalfy MS. A pilot study on sperm DNA damage in β-thalassemia major: is there a role for antioxidants? Acta Biomed 2018; 89(1): 47-54.
[PMID: 29633742]
[107]
Theodorou A, Phylactides M, Forti L, et al. The investigation of resveratrol and analogs as potential inducers of fetal hemoglobin. Blood Cells Mol Dis 2016; 58: 6-12.
[http://dx.doi.org/10.1016/j.bcmd.2015.11.007] [PMID: 27067481]
[108]
Haghpanah S, Zarei T, Eshghi P, et al. Efficacy and safety of resveratrol, an oral hemoglobin F-augmenting agent, in patients with beta-thalassemia intermedia. Ann Hematol 2018; 97(10): 1919-24.
[http://dx.doi.org/10.1007/s00277-018-3392-8] [PMID: 29926158]
[109]
Mohammadi E, Tamaddoni A, Qujeq D, et al. An investigation of the effects of curcumin on iron overload, hepcidin level, and liver function in β-thalassemia major patients: A double-blind randomized controlled clinical trial. Phytother Res 2018; 32(9): 1828-35.
[http://dx.doi.org/10.1002/ptr.6118] [PMID: 29806132]
[110]
Elalfy MS, Saber MM, Adly AA, et al. Role of vitamin C as an adjuvant therapy to different iron chelators in young β-thalassemia major patients: efficacy and safety in relation to tissue iron overload. Eur J Haematol 2016; 96(3): 318-26.
[http://dx.doi.org/10.1111/ejh.12594] [PMID: 26018112]
[111]
Toptas B, Baykal A, Yesilipek A, et al. L-carnitine deficiency and red blood cell mechanical impairment in β-thalassemia major. Clin Hemorheol Microcirc 2006; 35(3): 349-57.
[PMID: 16899956]
[112]
El-Beshlawy A, El Accaoui R, Abd El-Sattar M, et al. Effect of L-carnitine on the physical fitness of thalassemic patients. Ann Hematol 2007; 86(1): 31-4.
[http://dx.doi.org/10.1007/s00277-006-0181-6] [PMID: 17031691]
[113]
Tsagris V, Liapi-Adamidou G. Serum carnitine levels in patients with homozygous beta thalassemia: a possible new role for carnitine? Eur J Pediatr 2005; 164(3): 131-4.
[http://dx.doi.org/10.1007/s00431-004-1590-y] [PMID: 15717177]
[114]
El-Beshlawy A, Ragab L, Fattah AA, et al. Improvement of cardiac function in thalassemia major treated with L-carnitine. Acta Haematol 2004; 111(3): 143-8.
[http://dx.doi.org/10.1159/000076522] [PMID: 15034235]
[115]
Fung EB. The importance of nutrition for health in patients with transfusion-dependent thalassemia. Ann N Y Acad Sci 2016; 1368(1): 40-8.
[http://dx.doi.org/10.1111/nyas.13003] [PMID: 26824448]
[116]
Karimi M, Mohammadi F, Behmanesh F, et al. Effect of combination therapy of hydroxyurea with l-carnitine and magnesium chloride on hematologic parameters and cardiac function of patients with β-thalassemia intermedia. Eur J Haematol 2010; 84(1): 52-8.
[http://dx.doi.org/10.1111/j.1600-0609.2009.01356.x] [PMID: 19799627]
[117]
Aydinok Y, Kattamis A, Cappellini MD, et al. HYPERION Investigators. Effects of deferasirox-deferoxamine on myocardial and liver iron in patients with severe transfusional iron overload. Blood 2015; 125(25): 3868-77.
[http://dx.doi.org/10.1182/blood-2014-07-586677] [PMID: 25934475]
[118]
Lal A, Porter J, Sweeters N, et al. Combined chelation therapy with deferasirox and deferoxamine in thalassemia. Blood Cells Mol Dis 2013; 50(2): 99-104.
[http://dx.doi.org/10.1016/j.bcmd.2012.10.006] [PMID: 23151373]
[119]
Arandi N, Haghpanah S, Safaei S, et al. Combination therapy - deferasirox and deferoxamine - in thalassemia major patients in emerging countries with limited resources. Transfus Med 2015; 25(1): 8-12.
[http://dx.doi.org/10.1111/tme.12188] [PMID: 25801075]
[120]
Totadri S, Bansal D, Bhatia P, Attri SV, Trehan A, Marwaha RK. The deferiprone and deferasirox combination is efficacious in iron overloaded patients with β-thalassemia major: A prospective, single center, open-label study. Pediatr Blood Cancer 2015; 62(9): 1592-6.
[http://dx.doi.org/10.1002/pbc.25533] [PMID: 25820920]
[121]
Casu C, Aghajan M, Oikonomidou PR, Guo S, Monia BP, Rivella S. Combination of Tmprss6- ASO and the iron chelator deferiprone improves erythropoiesis and reduces iron overload in a mouse model of beta-thalassemia intermedia. Haematologica 2016; 101(1): e8-e11.
[http://dx.doi.org/10.3324/haematol.2015.133348] [PMID: 26405152]