Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Author(s): Nighat Sultana*, Muhammad Saleem Qazi and Mustafa Kamal

DOI: 10.2174/1871523018666190724122406

New Anti-inflammatory Triterpene Esters and Glycosides from Alstonia scholaris

Page: [370 - 386] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Background: Phytochemical studies on the ethanolic extract of aerial parts of Alstonia scholaris lead to the isolation of two new triterpenoid of the lanostanetype, lanosta 5ene,24-ethyl-3-O-β-D-glucopyranoside (1), lanosta,5ene,24-ethyl-3-O-β-D-glucopyranosideester (2) and new ursane type triterpenoidmethylester, 12-ursene-2,3,18,19-tetrol,28 acetate (nighascholarene) (3), together with seven known triterpenes, betuline, triterpene of the lupane type, alstoprenyol (4), 3β-hydroxy-28-β-acetoxy-5-olea triterpene (5),α-amyrin acetate (6), α-amyrin (7), lupeol acetate (8), 3β-hydroxy-24-nor-urs-4,12,28-triene triterpene (9) and ursolic acid (l0).

Methodology: The triterpenoid structures of these colorless compounds were deduced from the 1H and 13C-NMR data, and in particular from the application of two-dimensional 1H, 13C correlation experiments as well as by comparison with reported literature data.

Results and Conclusion: This study deals with isolation and structural elucidation of natural new triterpenoidesters and glycosides with anti-inflammatory activity.

Keywords: Alstonia scholaris, apocynaceae, spectroscopicstudies, triterpene, triterpenoidester, glycosides.

Graphical Abstract

[1]
Manjeshwar, S.B. Alstonia scholaris Linn R Br in the treatment and prevention of cancer: past, present, and future. Integr. Cancer Ther., 2010, 9(3), 261-269.
[http://dx.doi.org/10.1177/1534735410376068] [PMID: 20702494]
[2]
Nighat, S.; Muhammad, S. In vitro evaluation of the antioxidant and urease inhibition activities of three triterpenes from the flowers of Alstonia scholaris. CPQ Nutrition, 2019, 3, 4.
[3]
Nauman, B. Raw Materials; , 2004, Vol. I, pp. 50-51.
[4]
Baumert, A.; Schumann, B.; Porzel, A.; Schmidt, J.; Strack, D. Triterpenoids from Pisolithus tinctorius isolate and ectomycorrhizas. Phytochemistry, 1997, 45, 499.
[http://dx.doi.org/10.1016/S0031-9422(97)00007-1]
[5]
el-Mekkawy, S.; Meselhy, M.R.; Nakamura, N.; Tezuka, Y.; Hattori, M.; Kakiuchi, N.; Shimotohno, K.; Kawahata, T.; Otake, T. Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma lucidum. Phytochemistry, 1998, 49(6), 1651-1657.
[http://dx.doi.org/10.1016/S0031-9422(98)00254-4] [PMID: 9862140]
[6]
Fujimoto, H.; Nakayama, M.; Nakayama, Y.; Yamazaki, M. Isolation and characterization of immunosuppressive components of three mushrooms, Pisolithus tinctorius, Microporus flabelliformis and Lenzites betulina. Chem. Pharm. Bull. (Tokyo), 1994, 42(3), 694-697.
[http://dx.doi.org/10.1248/cpb.42.694] [PMID: 8004718]
[7]
Ituka, A.; Itokama, H. Triterpenoids of Akebia quinata callus tissue. Phytochemistry, 1986, 25, 1625.
[http://dx.doi.org/10.1016/S0031-9422(00)81222-4]
[8]
Patil, R.S.; Juvekar, A.R.; Joglekar, S.N.; Shamkuwar, P.B.; Nimbkar, S.R. Study of antidiarrhocal activity of Alstonia scholaris bark. Indian Drugs, 1999, 36(7), 463-465.
[9]
Ríos, J.L.; Andújar, I.; Recio, M.C.; Giner, R.M. Lan-ostanoids from fungi: a group of potential anticancer compounds. J. Nat. Prod., 2012, 75(11), 2016-2044.
[http://dx.doi.org/10.1021/np300412h] [PMID: 23092389]
[10]
Xue, Q.; Qi, W.; Shuai, J.; Yun, H.; Ke-di, L.; Zheng-xiang, Z.; Tao, B.; Yew-min, T.; De-an, G.; Min, Y. Metabolites identification and multi-component phar-macokinetics of ergostane and lanostane triterpenoids in the anticancer mushroom Antrodia cinnamomea. J. Pharm. and Biomed. Analy., 2015, 111, 266-276.
[11]
Zhang, M.M.; Sun, L.L.; Li, C.; Gao, W.; Yang, J.B.; Wang, A.G.; Su, Y.L.; Ji, T.F. A new lanostane-type triterpenoid from Cymbopogon citratus. Zhongguo Zhongyao Zazhi, 2014, 39(10), 1834-1837.
[PMID: 25282891]
[12]
Thabo, C.; Steve, V.; Miriam, G. Bioactivity of the lanostane-type of triterpenoid from Protorhus longifoliastem bark. Glob. J. Med. Plant. Res., 2016, 2(5), 177-183.
[13]
Chen, S.; Li, X.; Yong, T.; Wang, Z.; Su, J.; Jiao, C.; Xie, Y.; Yang, B.B. Cytotoxic lanostane-type triterpenoids from the fruiting bodies of Ganoderma lucidum and their structure-activity relationships. Oncotarget, 2017, 8(6), 10071-10084.
[http://dx.doi.org/10.18632/oncotarget.14336] [PMID: 28052025]
[14]
Lin, S.C.; Lin, C.C.; Lin, Y.H.; Supriyatna, S.; Pan, S.L. The protective effect of Alstonia scholaris R. Br. on hepatotoxin-induced acute liver damage. Am. J. Chin. Med., 1996, 24(2), 153-164.
[http://dx.doi.org/10.1142/S0192415X96000207] [PMID: 8874672]
[15]
Gandhi, M.; Vinayak, V.K. Preliminary evaluation of extracts of Alstonia scholaris bark for in vivo antimalarial activity in mice. J. Ethnopharmacol., 1990, 29(1), 51-57.
[http://dx.doi.org/10.1016/0378-8741(90)90097-D] [PMID: 2345460]
[16]
Sultana, N.; Akhter, M. Isolation and structure determination of nematicidal iridoid sweroside from Alstonia scholaris. J. Entomol. Nematol., 2013, 5(2), 19-23.
[17]
Keawpradub, N.; Kirby, G.C.; Steele, J.C.P.; Houghton, P.J. Antiplasmodial activity of extracts and alkaloids of three Alstonia species from Thailand. Planta Med., 1999, 65(8), 690-694.
[http://dx.doi.org/10.1055/s-1999-14043] [PMID: 10630106]
[18]
Khan, M.R.; Omoloso, A.D. Antibacterial activity of Alstonia scholaris and Leea tetramera. Fitoterapia, 2003, 74(7-8), 736-740.
[http://dx.doi.org/10.1016/S0367-326X(03)00192-8]
[19]
Sultana, N.; Muhammad, S.Q. Phytochemical studies on Alstonia scholaris. Zeitschrift fur Naturforsch, 2010, 65(B), 203-210.
[20]
Sultana, N. Microbial biotransformation of bioactive and clinically useful steroids and some salient features of steroids and biotransformation. Steroids, 2018, 136, 76-92.
[http://dx.doi.org/10.1016/j.steroids.2018.01.007] [PMID: 29360535]
[21]
Muhammad, S.Q.; Sultana, N.; Mustafa, K. Biotransformation of pentacyclic terpene isolated from Alstonia scholaris (R.BR.). Biocatal. Biotransform., 2013, 31, 966-971.
[22]
Sultana, N.; Saify, Z.S.; Saleem, M.; Mustafa, K. Triterpenes from Alstonia scholaris (L.)R. Br. flowers. Nat. Prod. Res.: Formerly. Nat. Prod. Lett., 2013, 27(14), 1277-1286.
[http://dx.doi.org/10.1080/14786419.2012.730046]
[23]
Sultana, N. Clinically useful anticancer, antitumor, and anti-wrinkle agent, ursolic acid and related derivatives as medicinally important natural product. J. Enzyme Inhib. Med. Chem., 2011, 26(5), 616-642.
[http://dx.doi.org/10.3109/14756366.2010.546793] [PMID: 21417964]
[24]
Sultana, N.; Ata, A. Oleanolic acid and related derivatives as medicinally important compounds. J. Enzyme Inhib. Med. Chem., 2008, 23(6), 739-756.
[http://dx.doi.org/10.1080/14756360701633187] [PMID: 18618318]
[25]
Dhar, D.N.; Suri, S.C.; Dwivedi, P. Chemical examination of the flowers of Alstonia scholaris. Planta Med., 1977, 31(1), 33-34.
[http://dx.doi.org/10.1055/s-0028-1097486] [PMID: 840926]
[26]
Sultana, N.; Choudhary, M.I. Triterpene and coumarins from Skimmia laureola. Nat. Prod. Lett., 2002, 16(5), 305-313.
[http://dx.doi.org/10.1080/10575630290020613] [PMID: 12434985]
[27]
Okoye, N.N.; Ajaghaku, D.L.; Okeke, H.N.; Ilodigwe, E.E.; Nworu, C.S.; Okoye, F.B. Beta-Amyrin and alpha-amyrin acetate isolated from the stem bark of Alstonia boonei display profound anti-inflamma-tory activity. Pharm. Biol., 2014, 52(11), 1478-1486.
[http://dx.doi.org/10.3109/13880209.2014.898078] [PMID: 25026352]
[28]
Sultana, N. Triterpenes and triterpenoids clinically useful with multiple targets in cancer, malaria and more treatment: focus on potential therapeutic value. Int. J. Biochem. Res. Rev., 2017, 16(2), 1-35.
[http://dx.doi.org/10.9734/IJBCRR/2017/31165]
[29]
Atta-ur-Rahman. One-and Two-Dimentional NMR Spectroscopy; , 1989, pp. 406-410.
[30]
Lavoie, S. Synthesis of betulin derivatives with solid supported reagents. Synth. Commun., 2004, 31, 1565-1571.
[31]
Fuchino, H. Chemical evaluation of Betula species in Japan. I. Constituents of Betula ermanii. Chem. Pharm. Bull. (Tokyo), 1995, 43(1), 1937-1942.
[http://dx.doi.org/10.1248/cpb.43.1937]
[32]
Gupta, R.S.; Bhatnager, A.K.; Joshi, Y.C.; Sharma, M.C.; Khushalani, V.; Kachhawa, J.B. Induction of antifertility with lupeol acetate in male albino rats. Pharmacology, 2005, 75(2), 57-62.
[http://dx.doi.org/10.1159/000086947] [PMID: 16015025]
[33]
Sultana, N.; Qazi, M.S.; Khan, A. (Nematicidal activity of Camellia sinensis green tea) ethyl alcohol crude extract, CPQ. Microbiology, 2018, 1(3), 1-11.
[34]
Inada, A.; Morimoto, C.; Yoshikawa, T.; Inatomi, Y.; Murata, H. 24-Ethyl,24-methyl-29-nor-lanostanes from leaves of Freycinetia formosana. Chem. Pharm. Bull. (Tokyo), 2009, 57(11), 1303-1304.
[http://dx.doi.org/10.1248/cpb.57.1303] [PMID: 19881288]
[35]
Sultana, N.; Khalid, A. Lipoxygenase inhibition by novel fatty acid ester from Annona squamosa seeds. J. Enzyme Inhib. Med. Chem., 2008, 23(6), 877-881.
[http://dx.doi.org/10.1080/14756360701747334] [PMID: 18615286]
[36]
Fatima, K.; Sultana, N. studies on bioassay directed Antifungal activity of medicinal plants Calotropis procera, Skimmia laureola, Peltophorum pterocarpum and two pure natural compounds ulopterol and 4-methoxy-1-methyl-3-(2‘S-hydroxy-3’-ene butyl)- 2-quinolone. J. Chem. Soc. Pak., 2003, 25, 328.
[37]
Sultana, N.; Choudhary, M.I.; Khan, A. Protein glycation inhibitory activities of Lawsonia inermis and its active principles. J. Enzyme Inhib. Med. Chem., 2009, 24(1), 257-261.
[http://dx.doi.org/10.1080/14756360802057500] [PMID: 18825553]
[38]
Lucília, M.; Zamuner, M.; Diógenes Cortez, A.G. BeneditoDias F.P.; Inês, M.; Lima, S.; Rodrigues-Filho, E. Lanostane triterpenes from the fungus Pisolithus tinctorius. J. Braz. Chem. Soc., 2005, 16(4), 1-5.
[39]
Kim, K.H.; Moon, E.; Choi, S.U.; Kim, S.Y.; Lee, K.R. Lanostane triterpenoids from the mushroom Naematoloma fasciculare. J. Nat. Prod., 2013, 76(5), 845-851.
[40]
Atta-ur-Rahman. Khalid, A.; Sultana, N.; Ghayur, M.N.; Mesaik, M.A.; Khan, M.R.; Gilani, A.H.; Choudhary, M.I. New natural cholinesterase inhibiting and calcium channel blocking quinoline alkaloids. J. Enzyme Inhib. Med. Chem., 2006, 21(6), 703-710.
[http://dx.doi.org/10.1080/14756360600889708] [PMID: 17252943]
[41]
Sultana, N. Phytochemical studies on Alstonia scholaris. Zeitschrift für Naturforschung B, 2005, 60b, 1186-1189.
[42]
Sultana, N.; Jahan, S.; Choudhary, M.I. Studies on the constituents of Commiphora mukul. Zeitschrift für Naturforschung B, 2005, 60(11b), 1202-1206.
[43]
Sultana, N.; Jahan, S.; Choudhary, M.I. Phytochemical studies on Skimmia laureola. Nat. Prod. Lett., 1998, 12(3), 223-229.
[44]
Sultana, N. Phytochemical and structural studies on the chemical constituents of Adhatoda vasica, Sarcococca saligna and Skimmia laureola. Ph.D. Thesis, University of Karachi, Pakistan, 2000.
[45]
Chen, C.R.; Cheng, C.W.; Pan, M.H.; Liao, Y.W.; Tzeng, C.Y.; Chang, C.I. Lanostane-type triterpenoids from Diospyros discolor. Chem. Pharm. Bull. (Tokyo), 2007, 55(6), 908-911.
[http://dx.doi.org/10.1248/cpb.55.908] [PMID: 17541192]
[46]
Masahiko, I.; Somporn, P.; Sujinda, S.; Sukitaya, V.; Kitlada, S.; Palangpon, K.; Samran, P. Lanostane triterpenoids from the edible mushroom Astraeus asiaticus. Tetrahedron, 2017, 73(12), 1561-1567.
[47]
Sultana, N.; Choudhary, M.I.; Shah, P.M.; Khan, M.R. Isolation and structural studies on the chemical constituents of Skimmia laureola. J. Nat. Prod., 1998, 61(6), 713-717.
[http://dx.doi.org/10.1021/np970409a] [PMID: 9644052]
[48]
Sultana, N.; Khan, M.A.; Ali, Y.; Afza, N. Phytochemical studies on Adhatoda vasica. Pak. J. Sci. Ind. Res., 2005, 48(3), 180-183.
[49]
Sultana, N. Atta-ur-Rahman, Khalid A., A new fatty ester and a new triterpene from Skimmia laureola. Nat. Prod. Res., 2008, 22(1), 37-47.
[http://dx.doi.org/10.1080/14786410601130356] [PMID: 17999337]
[50]
Lucília, M.; Zamuner, A.G.; Diógenes Cortez, P.; Benedito Dias, M. Filho, Inês S. Lima, Rodrigues-Filho, E. Lanostanetriterpenes from the fungus Pisolithus tinctorius. J. Braz. Chem. Soc., 2005, 16, 691-694.
[51]
de Abreu, P.J.M. Ph.D.Thesis, Universidade Nova de Lisboa, Portugal,. 1987.
[52]
Lobo, A.M.; de Abreu, P.M.; Prabhakar, S.; Godinho, L.S.; Rzepa, H.S.; Sheppard, R.N. Tetrahedron Lett., 1985, 26, 2589-2594.
[http://dx.doi.org/10.1016/S0040-4039(00)98844-0]
[53]
Gill, M.; Kiefel, M.J.; Skelton, B.W.; White, H. The structure and absolute stereochemistry of pisosterol, the principal triterpenoid from fruitbodies of the fungus Pisolithus tinctorius. Aust. J. Chem., 1989, 42, 995.
[http://dx.doi.org/10.1071/CH9890995]
[54]
Abreu, P.J.M.; Lobo, A.M.; Prabhakar, S. Lanostane tritrpenes from the fungus Pisolithus tinctorius. Phytochemistry, 1991, 30, 3818.
[55]
Sharma, S.K.; Ali, M. Singh, R. New 9β-lanostanetype triterpenic and 13,14-seco-steroidal esters from the roots of Artemisia scoparia. J. Nat. Prod., 1996, 59(2), 181-184.
[http://dx.doi.org/10.1021/np960048j]
[56]
Bendal, M.A.; Pegg, D.T. Theoretical description of depth pulse sequences, on and off resonance, including improvements and extensions thereof. J. Magn. Reson., 1983, 53, 272-275.
[http://dx.doi.org/10.1002/mrm.1910020202]
[57]
Atta-ur-Rahman. Nuclear Magnetic Resonance Spectroscopy; Basic Principles, 1986, pp. 227-230.
[58]
Sultana, N.; Saify, Z.S. Enzymatic biotransformation of terpenes as bioactive agents. J. Enzyme Inhib. Med. Chem., 2013, 28(6), 1113-1128.
[http://dx.doi.org/10.3109/14756366.2012.727411] [PMID: 23046385]
[59]
Cole, B.J.W. Triterpenoids extractives in the outer Bark of Betula lenta (Black Brich). Holzforschung, 1991, 45(4), 265-268.
[http://dx.doi.org/10.1515/hfsg.1991.45.4.265]
[60]
Siddiqui, S. oleanderol, A new pentacyclic triterpene from the leaves of Neriumo leander. J. Nat. Prod., 1988, 51, 229-233.
[http://dx.doi.org/10.1021/np50056a006]
[61]
Hase, T.A. Dehydration of triterpinoids alcohols in alkali melt. The short synthesis of the so-called jasminaol. Synth. Commun., 1981, 11, 489.
[http://dx.doi.org/10.1080/00397918108061881]
[62]
Gallegos, R.S.; Roque, N.E. Análise de misturas de triterpenospor 13 C NMR. Quim. Nova, 1990, 13, 278-281.
[63]
Hayek, E.W.H. A bicentennial of botulin edema in the rat and mouse. Inflamm. Protocols, 2003, 225, 115-121.