Background: Periodontal disease is the most common oral condition that affects the tissue surrounding the teeth. The oral cavity is colonized by an impressive array of micro-organisms, many of which can colonize the implants such as Guided Tissue Regeneration (GTR) often utilized in recovering procedures that result in inflammation interfering with the bone regeneration.
Methods: In the current study, a nano-hybrid GTR membrane is developed as a heliacal structure scaffold with localized drug delivery function (Ibuprofen) as an anti-inflammatory agent. Polycaprolactone (PCL) and a blend of Polyvinyl alcohol (PVA)/collagen (Col) (50/50) were electrospun by electrospinning. Ibuprofen (Ibu) was loaded once in the PCL context and once in the hydrophilic portion (PVA/Col).
Results: The in vitro release behavior was investigated in each case. Chemical and physical properties were studied for each item. Morphology investigation indicated a heliacal structure with the total average diameter of 1266 nm consististing of porous pores with the average diameter of 256nm.
Conclusion: The membranes indicated proper mechanical properties and appropriate biodegradation rate as a potential GTR membrane. The controlled and sustained release of Ibu was obtained from both PCL and PVA/COL loaded membranes. Kinetic model study indicated the following zero-order and Higuchi models for the optimum case of PCL loaded and PVA/Col Ibu loaded scaffolds respectively.
Keywords: Dental materials, guided tissue regeneration, nanofiber, ibuprofen, electrospinning, controlled release, scaffold, anti-inflammatory.