Nitrogen, Sulfur Co-Doped Reduced Graphene Oxide: Synthesis and Characterization

Page: [129 - 134] Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Objective and Method: In this present research, a simple hydrothermal implantation technique for synthesizing N,S co-doped reduced graphene oxide (NS-r-GO) has been presented in which thiourea was used as a single-source precursor of N and S atoms.

Results: Maximum N and S atoms, with an atomic percentage of 3.50 and 7.50 (at.%), were achieved in the GO matrix at the reaction temperature of 250°C. Introduction of N and S atoms into the GO lattice was confirmed by X-ray photoelectron spectroscopy (XPS). Different chemical bonds such as –C– S–C, C=O, N–O, and C–N–C have been suggested from the corresponding C1s, N1s, O1s, and S2p high-resolution XPS spectral analyses.

Conclusion: FT-IR measurement also confirmed the presence of different functional groups as well as the formation of different bonds such as –OH, –N–H, –C=O, –C–OH, and C-S. XRD and Raman spectroscopy analyses confirmed the defects structures that arose from the penetration of N and S atoms into the GO lattice.

Keywords: N, S-codoping, hydrothermal treatment, thiourea, XPS, raman spectroscopy, XRD.

Graphical Abstract

[1]
Kaskhedikar, N.A.; Maier, J. Lithium storage in carbon nanostructures. J. Adv. Mater., 2009, 21(25-26), 2664-2680.
[http://dx.doi.org/10.1002/adma.200901079]
[2]
Sun, Y.; Wu, Q.; Shi, G. Graphene based new energy materials. Energy Environ. Sci., 2011, 4(4), 1113-1132.
[http://dx.doi.org/10.1039/c0ee00683a]
[3]
Dinda, D.; Shaw, B.K.; Saha, S.K. Thymine functionalized graphene oxide for fluorescence “Turn-off-on” sensing of Hg2+ and I- in aqueous medium. ACS Appl. Mater. Interfaces, 2015, 7(27), 14743-14749.
[http://dx.doi.org/10.1021/acsami.5b02603] [PMID: 26094997]
[4]
Mondal, S.; Sadhu, S.; Bhattacharya, S.; Saha, S.K. Strain-induced tunable band gap and morphology-dependent photocurrent in RGO–CdS nanostructures. J. Phys. Chem. C, 2015, 119(49), 27749-27758.
[http://dx.doi.org/10.1021/acs.jpcc.5b08116]
[5]
Lightcap, I.V.; Kamat, P.V. Graphitic design: Prospects of graphene- based nanocomposites for solar energy conversion, storage, and sensing. Acc. Chem. Res., 2013, 46(10), 2235-2243.
[http://dx.doi.org/10.1021/ar300248f] [PMID: 23194290]
[6]
Huang, X.; Qi, X.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev., 2012, 41(2), 666-686.
[http://dx.doi.org/10.1039/C1CS15078B] [PMID: 21796314]
[7]
Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater., 2010, 22(35), 3906-3924.
[http://dx.doi.org/10.1002/adma.201001068] [PMID: 20706983]
[8]
Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev., 2010, 39(1), 228-240.
[http://dx.doi.org/10.1039/B917103G] [PMID: 20023850]
[9]
Reddy, A.L.M.; Srivastava, A.; Gowda, S.R.; Gullapalli, H.; Dubey, M.; Ajayan, P.M. Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano, 2010, 4(11), 6337-6342.
[http://dx.doi.org/10.1021/nn101926g] [PMID: 20931996]
[10]
Wu, Z.S.; Ren, W.; Xu, L.; Li, F.; Cheng, H.M. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano, 2011, 5(7), 5463-5471.
[http://dx.doi.org/10.1021/nn2006249] [PMID: 21696205]
[11]
Ai, W.; Xie, L.; Du, Z.; Zeng, Z.; Liu, J.; Zhang, H.; Huang, Y.; Huang, W.; Yu, T. A novel graphene-polysulfide anode material for high-performance lithium-ion batteries. Sci. Rep., 2013, 3, 2341.
[http://dx.doi.org/10.1038/srep02341] [PMID: 23903017]
[12]
Zhang, C.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv. Mater., 2013, 25(35), 4932-4937.
[http://dx.doi.org/10.1002/adma.201301870] [PMID: 23864555]
[13]
Ai, W.; Luo, Z.; Jiang, J.; Zhu, J.; Du, Z.; Fan, Z.; Xie, L.; Zhang, H.; Huang, W.; Yu, T. Nitrogen and sulfur codoped graphene: Multifunctional electrode materials for high-performance Li-ion batteries and oxygen reduction reaction. Adv. Mater., 2014, 26(35), 6186-6192.
[14]
Xu, J.; Dong, G.; Jin, C.; Huang, M.; Guan, L. Sulfur and Nitrogen co-doped, few-layered graphene oxide as a highly efficient electrocatalyst for the oxygen-reduction reaction. ChemSusChem, 2013, 6(3), 493-499.
[http://dx.doi.org/10.1002/cssc.201200564] [PMID: 23404829]
[15]
Mondal, T.K.; Dinda, D.; Saha, S.K. Nitrogen, sulphur co-doped graphene quantum dot: An excellent sensor for nitroexplosives. Sens. Actuators B Chem., 2018, 257, 586-593.
[http://dx.doi.org/10.1016/j.snb.2017.11.012]
[16]
Zhang, R.; Zhang, C.; Zheng, F.; Li, X.; Sun, C.L.; Chen, W. Nitrogen and sulfur co-doped graphene nanoribbons: A novel metal free catalyst for high performance electrochemical detection of 2, 4, 6-trinitrotoluene (TNT). Carbon, 2018, 126, 328-337.
[http://dx.doi.org/10.1016/j.carbon.2017.10.042]
[17]
Li, X.; Wang, H.; Robinson, J.T.; Sanchez, H.; Diankov, G.; Dai, H. Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc., 2009, 131(43), 15939-15944.
[http://dx.doi.org/10.1021/ja907098f] [PMID: 19817436]
[18]
Jin, Z.; Yao, J.; Kittrell, C.; Tour, J.M. Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets. ACS Nano, 2011, 5(5), 4112-4117.
[http://dx.doi.org/10.1021/nn200766e] [PMID: 21476571]
[19]
Guo, B.; Sun, X.G.; Veith, G.M.; Bi, Z.; Mahurin, S.M.; Liao, C.; Bridges, C.; Paranthaman, M.P.; Dai, S. Nitrogen‐enriched carbons from alkali salts with high coulombic efficiency for energy storage applications. Adv. Energy Mater., 2013, 3, 708-712.
[http://dx.doi.org/10.1002/aenm.201200925]
[20]
Allahbakhsh, A.; Sharif, F.; Mazinani, S.; Kalaee, M.R. Synthesis and characterization of graphene oxide in suspension and powder forms by chemical exfoliation method. Int. J. Nano Dimen., 2014, 5, 11.
[21]
Qu, D.; Zheng, M.; Du, P.; Zhou, Y.; Zhang, L.; Li, D.; Tan, H.; Zhao, Z.; Xie, Z.; Sun, Z. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale, 2013, 5(24), 12272-12277.
[http://dx.doi.org/10.1039/c3nr04402e] [PMID: 24150696]
[22]
Rao, C.N.R.; Venkataraghavan, R. The C= S stretching frequency and the “-NC= S bands” in the infrared. Spectrochimica Acta, 1962, 18, 541-547.
[23]
Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol., 2008, 3(5), 270-274.
[http://dx.doi.org/10.1038/nnano.2008.83] [PMID: 18654522]
[24]
Chen, W.; Yan, L.; Bangal, P.R. Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon, 2010, 48, 1146.
[http://dx.doi.org/10.1016/j.carbon.2009.11.037]
[25]
Van Khai, T.; Na, H.G.; Kwak, D.S.; Kwon, Y.J.; Ham, H.; Shim, K.B.; Kim, H.W. Comparison study of structural and optical properties of boron-doped and undoped graphene oxide films. Chem. Eng. J., 2012, 211, 369-377.
[26]
Mondal, T.K.; Dinda, D.; Sen Saha, S.K. Nitrogen, sulphur co-doped graphene quantum dot: An excellent sensor for nitroexplosives. Actu. B, 2018, 257, 586-593.
[http://dx.doi.org/10.1016/j.snb.2017.11.012]
[27]
Madhumita, S.; Sreena, K.P.; Vinayan, B.P.; Ramaprabhu, S. Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery. Mater. Res. Bull., 2015, 61, 383-390.
[http://dx.doi.org/10.1016/j.materresbull.2014.10.049]
[28]
Duan, X.; Ao, Z.; Sun, H.; Indrawirawan, S.; Wang, Y.; Kang, J.; Liang, F.; Zhu, Z.H.; Wang, S. Nitrogen-doped graphene for generation and evolution of reactive radicals by metal-free catalysis. ACS Appl. Mater. Interfaces, 2015, 7(7), 4169-4178.
[http://dx.doi.org/10.1021/am508416n] [PMID: 25632991]
[29]
Kim, S.Y.; Park, J.; Choi, H.C.; Ahn, J.P.; Hou, J.Q.; Kang, H.S. X-ray photoelectron spectroscopy and first principles calculation of BCN nanotubes. J. Am. Chem. Soc., 2007, 129(6), 1705-1716.
[http://dx.doi.org/10.1021/ja067592r] [PMID: 17243688]
[30]
Jin, J.; Pan, F.; Jiang, L.; Fu, X.; Liang, A.; Wei, Z.; Zhang, J.; Sun, G. Catalyst-free synthesis of crumpled boron and nitrogen co-doped graphite layers with tunable bond structure for oxygen reduction reaction. ACS Nano, 2014, 8(4), 3313-3321.
[http://dx.doi.org/10.1021/nn404927n] [PMID: 24601550]
[31]
Lee, W.H.; Yang, H.N.; Park, K.W.; Choi, B.S.; Yi, S.C.; Kim, W. Synergistic effect of boron/nitrogen co-doping into graphene and intercalation of carbon black for Pt-BCN-Gr/CB hybrid catalyst on cell performance of polymer electrolyte membrane fuel cell. J. Energy, 2016, 96, 314.
[http://dx.doi.org/10.1016/j.energy.2015.12.088]
[32]
Beamson, G.; Briggs, D. High resolution XPS of organic polymers: The Scienta ESCA 300 database; Beamson, G.; Briggs, D., Eds.; John Wiley & Sons: Chichester, UK, 1992, p. 295.
[33]
Zhang, M.; Bai, L.; Shang, W.; Xie, W.; Ma, H.; Fu, Y.; Fang, D.; Sun, H.; Fan, L.; Han, M.; Liu, C.; Yang, S. Facile synthesis of water- soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J. Mater. Chem., 2012, 22, 7461.
[http://dx.doi.org/10.1039/c2jm16835a]