In vitro Permeability and Bioavailability Enhancement of Curcumin by Nanoemulsion via Pulmonary Administration

Page: [751 - 758] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Curcumin has shown considerable pharmacological activity, including antiinflammatory activity. Nevertheless, the pharmacological effect of curcumin may be limited because of poor water solubility, metabolizing rapidly and systemic elimination.

Objective: In the current research, a novel curcumin nanoemulsion (Cur-NE) was developed for improving in vitro permeability and bioavailability via pulmonary administration.

Methods: The Cur-NE was prepared by a modified emulsification-evaporation method and its surfac morphology, particles size and distribution, and encapsulation efficiencies of drug in NE were characterized. In vitro transmembrane transport experiment was performed to investigate the transport profile of curcumin across Xenopus alveolar membrane. The pharmacokinetics of Cur-NE in rabbits was evaluated.

Results: The average particles size, zeta potential, polydispersity index of Cur-NE were 234.8±1.08 nm, -19.5±0.2 mV and 0.10, respectively. Xenopus alveolar membrane was used in the transmembrane transport study, the cumulative amount of curcumin was 6.6% for curcumin suspensions, but nearly 50% for Cur-NE at the time of 8 h (P<0.05). The pharmacokinetic study in rabbits, the absolute bioavailability of curcumin for Cur-NE was 24.11%.

Conclusion: Thus, a novel Cur-NE for pulmonary drug delivery was developed for improving in vitro permeability and bioavailability, which can be an alternate to the oral administration.

Keywords: Curcumin, nanoemulsions, permeability, pulmonary delivery, bioavailability, oral administration.

Graphical Abstract

[1]
Bernard, G.R.; Artigas, A.; Brigham, K.L.; Carlet, J.; Falke, K.; Hudson, L.; Lamy, M.; Legall, J.R.; Morris, A.; Spragg, R. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am. J. Respir. Crit. Care Med., 1994, 149(3 Pt 1), 818-824.
[http://dx.doi.org/10.1164/ajrccm.149.3.7509706] [PMID: 7509706]
[2]
Zupančič, Š.; Kocbek, P.; Zariwala, M.G.; Renshaw, D.; Gul, M.O.; Elsaid, Z.; Taylor, K.M.; Somavarapu, S. Design and development of novel mitochondrial targeted nanocarriers, DQAsomes for curcumin inhalation. Mol. Pharm., 2014, 11(7), 2334-2345.
[http://dx.doi.org/10.1021/mp500003q] [PMID: 24852198]
[3]
Johnson, E.R.; Matthay, M.A. Acute lung injury: Epidemiology, pathogenesis, and treatment. J. Aerosol Med. Pulm. Drug Deliv., 2010, 23(4), 243-252.
[http://dx.doi.org/10.1089/jamp.2009.0775] [PMID: 20073554]
[4]
a) Melo, A.C.; Valença, S.S.; Gitirana, L.B.; Santos, J.C.; Ribeiro, M.L.; Machado, M.N.; Magalhães, C.B.; Zin, W.A.; Porto, L.C. Redox markers and inflammation are differentially affected by atorvastatin, pravastatin or simvastatin administered before endotoxin-induced acute lung injury. Int. Immunopharmacol., 2013, 17(1), 57-64.
[http://dx.doi.org/10.1016/j.intimp.2013.05.016] [PMID: 23747588]
b) Maron-Gutierrez, T.; Silva, J.D.; Asensi, K.D.; Bakker-Abreu, I.; Shan, Y.; Diaz, B.L.; Goldenberg, R.C.; Mei, S.H.; Stewart, D.J.; Morales, M.M.; Rocco, P.R.; Dos Santos, C.C. Effects of mesenchymal stem cell therapy on the time course of pulmonary remodeling depend on the etiology of lung injury in mice. Crit. Care Med., 2013, 41(11), e319-e333.
[http://dx.doi.org/10.1097/CCM.0b013e31828a663e] [PMID: 23760104]
[5]
(a) Schaffer, M.; Schaffer, P.M.; Zidan, J.; Bar, S.G. Curcuma as a functional food in the control of cancer and inflammation. Curr. Opin. Clin. Nutr. Metab. Care, 2011, 14(6), 588-597.
[http://dx.doi.org/10.1097/MCO.0b013e32834bfe94] [PMID: 21986478]
bOlszanecki, R.; Gebska, A.; Korbut, R. The role of haem oxygenase-1 in the decrease of endothelial intercellular adhesion molecule-1 expression by curcumin. Basic Clin. Pharmacol. Toxicol., 2007, 101(6), 411-415.
[http://dx.doi.org/10.1111/j.1742-7843.2007.00151.x] [PMID: 17973899]
[6]
Singh, S.; Aggarwal, B.B. Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane). [corrected] J. Biol. Chem., 1995, 270(42), 24995-25000. [corrected]
[http://dx.doi.org/10.1074/jbc.270.42.24995] [PMID: 7559628]
[7]
Nagpal, M.; Sood, S. Role of curcumin in systemic and oral health: An overview. J. Nat. Sci. Biol. Med., 2013, 4(1), 3-7.
[http://dx.doi.org/10.4103/0976-9668.107253] [PMID: 23633828]
[8]
Beck-Broichsitter, M.; Merkel, O.M.; Kissel, T. Controlled pulmonary drug and gene delivery using polymeric nano-carriers. J. Control. Release: Off. J. Control. Release Society, 2012, 161(2), 214-224.
[http://dx.doi.org/10.1016/j.jconrel.2011.12.004]
[9]
Hu, L.; Kong, D.; Hu, Q.; Gao, N.; Pang, S. Evaluation of high-performance curcumin nanocrystals for pulmonary drug delivery both in vitro and in vivo. Nanoscale Res. Lett., 2015, 10(1), 381.
[http://dx.doi.org/10.1186/s11671-015-1085-y] [PMID: 26428016]
[10]
Manca, M.L.; Peris, J.E.; Melis, V.; Valenti, D.; Cardia, M.C.; Lattuada, D.; Escribano-Ferrer, E.; Fadda, A.M.; Manconi, M. Nanoincorporation of curcumin in polymer-glycerosomes and evaluation of their in vitroin vivo suitability as pulmonary delivery systems. RSC Adv, 2015, 5(127), 105149-105159.
[http://dx.doi.org/10.1039/C5RA24032H]
[11]
Hu, Y.; Li, M.; Zhang, M.; Jin, Y. Inhalation treatment of idiopathic pulmonary fibrosis with curcumin large porous microparticles. Int. J. Pharm., 2018, 551(1-2), 212-222.
[http://dx.doi.org/10.1016/j.ijpharm.2018.09.031] [PMID: 30227240]
[12]
Mahajan, H.S.; Mahajan, P.R. Development of grafted xyloglucan micelles for pulmonary delivery of curcumin: In vitro and in vivo studies. Int. J. Biol. Macromol., 2016, 82, 621-627.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.09.053] [PMID: 26432365]
[13]
Manconi, M.; Manca, M.L.; Valenti, D.; Escribano, E.; Hillaireau, H.; Fadda, A.M.; Fattal, E. Chitosan and hyaluronan coated liposomes for pulmonary administration of curcumin. Int. J. Pharm., 2017, 525(1), 203-210.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.044] [PMID: 28438698]
[14]
Kimura, S.; Kiriyama, A.; Araki, K.; Yoshizumi, M.; Enomura, M.; Inoue, D.; Furubayashi, T.; Yutani, R.; Teraoka, R.; Tanaka, A.; Kusamori, K.; Katsumi, H.; Yamamoto, A.; Iga, K.; Sakane, T. Novel strategy for improving the bioavailability of curcumin based on a new membrane transport mechanism that directly involves solid particles. Eur. J. Pharm. Biopharm. : Off. J. Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V., 2018, 122, 1-5.
[http://dx.doi.org/10.1016/j.ejpb.2017.09.017]
[15]
Taki, M.; Tagami, T.; Fukushige, K.; Ozeki, T. Fabrication of nanocomposite particles using a two-solution mixing-type spray nozzle for use in an inhaled curcumin formulation. Int. J. Pharm., 2016, 511(1), 104-110.
[http://dx.doi.org/10.1016/j.ijpharm.2016.06.134] [PMID: 27374204]
[16]
Elzhry Elyafi, A.K.; Standen, G.; Meikle, S.T.; Lewis, A.L.; Salvage, J.P. Development of MPC-DPA polymeric nanoparticle systems for inhalation drug delivery applications. Eur. J. Pharm. Sci., 2017, 106, 362-380.
[http://dx.doi.org/10.1016/j.ejps.2017.06.023] [PMID: 28629803]
[17]
Zheng, N.; Gao, Y.; Ji, H.; Wu, L.; Qi, X.; Liu, X.; Tang, J. Vitamin E derivative-based multifunctional nanoemulsions for overcoming multidrug resistance in cancer. J. Drug Target., 2016, 24(7), 663-669.
[http://dx.doi.org/10.3109/1061186X.2015.1135335] [PMID: 26710274]
[18]
Yamamoto, A.; Tanaka, H.; Okumura, S.; Shinsako, K.; Ito, M.; Yamashita, M.; Okada, N.; Fujita, T.; Muranishi, S. Evaluation of insulin permeability and effects of absorption enhancers on its permeability by an in vitro pulmonary epithelial system using Xenopus pulmonary membrane. Biol. Pharm. Bull., 2001, 24(4), 385-389.
[http://dx.doi.org/10.1248/bpb.24.385] [PMID: 11305600]
[19]
Gugliandolo, A.; Bramanti, P.; Mazzon, E. Role of vitamin E in the treatment of Alzheimer’s disease: Evidence from animal models. Int. J. Mol. Sci., 2017, 18(12)E2504
[http://dx.doi.org/10.3390/ijms18122504] [PMID: 29168797]
[20]
(a) Nahar, K.; Absar, S.; Gupta, N.; Kotamraju, V.R.; McMurtry, I.F.; Oka, M.; Komatsu, M.; Nozik-Grayck, E.; Ahsan, F. Peptide-coated liposomal fasudil enhances site specific vasodilation in pulmonary arterial hypertension. Mol. Pharm., 2014, 11(12), 4374-4384.
[http://dx.doi.org/10.1021/mp500456k] [PMID: 25333706]
b) Chono, S.; Tanino, T.; Seki, T.; Morimoto, K. Uptake characteristics of liposomes by rat alveolar macrophages: Influence of particle size and surface mannose modification. J. Pharm. Pharmacol., 2007, 59(1), 75-80.
[http://dx.doi.org/10.1211/jpp.59.1.0010] [PMID: 17227623]
[21]
Tønnesen, H.H.; Másson, M.; Loftsson, T. Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: Solubility, chemical and photochemical stability. Int. J. Pharm., 2002, 244(1-2), 127-135.
[http://dx.doi.org/10.1016/S0378-5173(02)00323-X] [PMID: 12204572]
[22]
Onodera, T.; Kuriyama, I.; Andoh, T.; Ichikawa, H.; Sakamoto, Y.; Lee-Hiraiwa, E.; Mizushina, Y. Influence of particle size on the in vitro and in vivo anti-inflammatory and anti-allergic activities of a curcumin lipid nanoemulsion. Int. J. Mol. Med., 2015, 35(6), 1720-1728.
[http://dx.doi.org/10.3892/ijmm.2015.2186] [PMID: 25891482]
[23]
Thakkar, H.P.; Khunt, A.; Dhande, R.D.; Patel, A.A. Formulation and evaluation of Itraconazole nanoemulsion for enhanced oral bioavailability. J. Microencapsul., 2015, 32(6), 559-569.
[http://dx.doi.org/10.3109/02652048.2015.1065917] [PMID: 26333939]
[24]
Yang, K.Y.; Lin, L.C.; Tseng, T.Y.; Wang, S.C.; Tsai, T.H. Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 853(1-2), 183-189.
[http://dx.doi.org/10.1016/j.jchromb.2007.03.010] [PMID: 17400527]
[25]
Anand, P. Kunnumakkara, Abnewman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm., 2007, 853(1-2), 183-189.