Electrochemical Deposition of Polypyrrole Nanostructures for Energy Applications: A Review

Page: [462 - 477] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

By collecting and analyzing relevant literature results, we demonstrate that the nanostructuring of polypyrrole (PPy) electrodes is a crucial strategy to achieve high performance and stability in energy devices such as fuel cells, lithium batteries and supercapacitors. In this critic and comprehensive review, we focus the attention on the electrochemical methods for deposition of PPy, nanostructures and potential applications, by analyzing the effect of different physico-chemical parameters, electro-oxidative conditions including template-based or template-free depositions and cathodic polymerization. Diverse interfaces and morphologies of polymer nanodeposits are also discussed.

Keywords: Polypyrrole, conducting polymers, nanostructures, supercapacitors, fuel cell, electropolymerization.

Graphical Abstract

[1]
Shirakawa, H. The discovery of polyacetylene film: The dawning of an era of conducting polymers (Nobel Lecture). Angew. Chem. Int. Ed. Engl., 2001, 40(14), 2574-2580.
[http://dx.doi.org/10.1002/1521-3773(20010716)40:14<2574::AIDANIE2574>3.0.CO;2-N]
[2]
Heeger, A.J. Semiconducting and metallic polymers: The fourth generation of polymeric materials (Nobel Lecture). Angew. Chem. Int. Ed. Engl., 2001, 40(14), 2591-2611.
[http://dx.doi.org/10.1002/1521-3773(20010716)40:14<2591::AIDANIE2591>3.0.CO;2-0]
[3]
Skorobogatov, V.M.; Krivoshei, I.V. The structure and properties of highly conducting polyacetylene complexes. Russ. Chem. Rev., 1988, 57(5), 461-474.
[http://dx.doi.org/10.1070/RC1988v057n05ABEH003363]
[4]
MacDiarmid, A.G. “Synthetic metals”: A novel role for organic polymers (Nobel Lecture). Angew. Chem. Int. Ed. Engl., 2001, 40(14), 2581-2590.
[http://dx.doi.org/10.1002/1521-3773(20010716)40:14<2581::AIDANIE2581>3.0.CO;2-2]
[5]
Nigrey, P.J.; MacDiarmid, A.G.; Heeger, A.J. Electrochemistry of polyacetylene, (CH) X: Electrochemical doping of (CH)x films to the metallic state. J. Chem. Soc. Chem. Commun., 1979, 0, 594-595.
[http://dx.doi.org/10.1039/c39790000594]
[6]
Lee, K.; Cho, S.; Heum Park, S.; Heeger, A.J.; Lee, C-W.; Lee, S-H. Metallic transport in polyaniline. Nature, 2006, 441(7089), 65-68.
[http://dx.doi.org/10.1038/nature04705]
[7]
Zhang, L.; Peng, H.; Kilmartin, P.A.; Soeller, C.; Travas-Sejdic, J. Poly(3,4-Ethylenedioxythiophene) and polyaniline bilayer nanostructures with high conductivity and electrocatalytic activity. Macromolecules, 2008, 41(20), 7671-7678.
[http://dx.doi.org/10.1021/ma8013228]
[8]
Bocchetta, P.; Alemán, B.; Amati, M.; Fanetti, M.; Goldoni, A.; Gregoratti, L.; Kiskinova, M.; Mele, C.; Sezen, H.; Bozzini, B. ORR stability of Mn–Co/polypyrrole nanocomposite electrocatalysts studied by quasi in-situ identical-location photoelectron microspectroscopy. Electrochem. Commun., 2016, 69, 50-54.
[http://dx.doi.org/10.1016/j.elecom.2016.05.018]
[9]
Bocchetta, P.; Amati, M.; Bozzini, B.; Catalano, M.; Gianoncelli, A.; Gregoratti, L.; Taurino, A.; Kiskinova, M. Quasi-in-situ singlegrain photoelectron microspectroscopy of Co/PPy nanocomposites under oxygen reduction reaction. ACS Appl. Mater. Interfaces, 2014, 6(22), 19621-19629.
[http://dx.doi.org/10.1021/am504111s]
[10]
Bocchetta, P.; Gianoncelli, A.; Abyaneh, M.K.; Kiskinova, M.; Amati, M.; Gregoratti, L.; Jezeršek, D.; Mele, C.; Bozzini, B. Electrosynthesis of Co/PPy nanocomposites for ORR electrocatalysis: A study based on quasi-in situ X-ray absorption, fluorescence and in situ raman spectroscopy. Electrochim. Acta, 2014, 137, 535-545.
[http://dx.doi.org/10.1016/j.electacta.2014.05.098]
[11]
Bocchetta, P.; Amati, M.; Gregoratti, L.; Kiskinova, M.; Sezen, H.; Taurino, A.; Bozzini, B. Morphochemical evolution during ageing of pyrolysed Mn/polypyrrole nanocomposite oxygen reduction electrocatalysts: A study based on quasi-in situ photoelectron spectromicroscopy. J. Electroanal. Chem. (Lausanne Switz.), 2015, 758, 191-200.
[http://dx.doi.org/10.1016/j.jelechem.2015.07.015]
[12]
Bocchetta, P.; Sánchez, C.R.; Taurino, A.; Bozzini, B. Accurate assessment of the oxygen reduction electrocatalytic activity of Mn/polypyrrole nanocomposites based on rotating disk electrode measurements, complemented with multitechnique structural characterizations. J. Anal. Methods Chem., 2016, 2016, 2030675
[http://dx.doi.org/10.1155/2016/2030675]
[13]
Yuan, X.; Ding, X-L.; Wang, C-Y.; Ma, Z-F. Use of polypyrrole in catalysts for low temperature fuel cells. Energy Environ. Sci., 2013, 6(4), 1105-1124.
[http://dx.doi.org/10.1039/c3ee23520c]
[14]
Duay, J.; Gillette, E.; Hu, J.; Lee, S.B. Controlled electrochemical deposition and transformation of hetero-nanoarchitectured electrodes for energy storage. Phys. Chem. Chem. Phys., 2013, 15(21), 7976-7993.
[http://dx.doi.org/10.1039/c3cp50724f]
[15]
Nam, D-H.; Lim, S-J.; Kim, M-J.; Kwon, H-S. Facile synthesis of SnO2-polypyrrole hybrid nanowires by cathodic electrodeposition and their application to Li-ion battery anodes. RSC Adv., 2013, 3(36), 16102-16108.
[http://dx.doi.org/10.1039/c3ra43028f]
[16]
Ivory, D.M.; Miller, G.G.; Sowa, J.M.; Shacklette, L.W.; Chance, R.R.; Baughman, R.H. Highly conducting charge transfer complexes of poly(p phenylene). J. Chem. Phys., 1979, 71(3), 1506-1507.
[http://dx.doi.org/10.1063/1.438420]
[17]
Hernandez, R.; Diaz, A.F.; Waltman, R.; Bargon, J. Surface characteristics of thin films prepared by plasma and electrochemical polymerizations. J. Phys. Chem., 1984, 88(15), 3333-3337.
[http://dx.doi.org/10.1021/j150659a039]
[18]
Ispas, A.; Peipmann, R.; Adolphi, B.; Efimov, I.; Bund, A. Electrodeposition of pristine and composite poly(3,4-ethylenedioxythioph -ene) layers studied by electro-acoustic impedance measurements. Electrochim. Acta, 2011, 56(10), 3500-3506.
[http://dx.doi.org/10.1016/j.electacta.2010.09.042]
[19]
Chiang, J-C.; MacDiarmid, A.G. ‘Polyaniline’: Protonic acid doping of the emeraldine form to the metallic regime. Synth. Met., 1986, 13(1-3), 193-205.
[http://dx.doi.org/10.1016/0379-6779(86)90070-6]
[20]
Dias, H.V.R.; Fianchini, M.; Rajapakse, R.M.G. Greener method for high-quality polypyrrole. Polymer (Guildf.), 2006, 47(21), 7349-7354.
[http://dx.doi.org/10.1016/j.polymer.2006.08.033]
[21]
Nguyen Cong, H.; El Abbassi, K.; Gautier, J.L.; Chartier, P. Oxygen reduction on oxide/polypyrrole composite electrodes: Effect of doping anions. Electrochim. Acta, 2005, 50(6), 1369-1376.
[http://dx.doi.org/10.1016/j.electacta.2004.08.025]
[22]
Simon, E.; Sablé, E.; Handel, H.; L’Her, M. Electrodes modified by conducting polymers bearing redox sites: Ni- and Co-cyclam complexes on polypyrrole. Electrochim. Acta, 1999, 45(6), 855-863.
[http://dx.doi.org/10.1016/S0013-4686(99)00292-3]
[23]
Deronzier, A.; Moutet, J-C. Polypyrrole films containing metal complexes: Syntheses and applications. Coord. Chem. Rev., 1996, 147, 339-371.
[http://dx.doi.org/10.1016/0010-8545(95)01130-7]
[24]
Otero, T.F.; Costa, S.O.; Ariza, M.J.; Marquez, M. Electrodeposition of Cu on deeply reduced polypyrrole electrodes at very high cathodic potentials. J. Mater. Chem., 2005, 15(16), 1662-1667.
[http://dx.doi.org/10.1039/b418075e]
[25]
An, K.H.; Jeon, K.K.; Heo, J.K.; Lim, S.C.; Bae, D.J.; Lee, Y.H. High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole. J. Electrochem. Soc., 2002, 149(8), A1058-A1062.
[http://dx.doi.org/10.1149/1.1491235]
[26]
Pan, L.; Qiu, H.; Dou, C.; Li, Y.; Pu, L.; Xu, J.; Shi, Y. Conducting polymer nanostructures: template synthesis and applications in energy storage. Int. J. Mol. Sci., 2010, 11(7), 2636-2657.
[http://dx.doi.org/10.3390/ijms11072636]
[27]
Huang, J.; Kaner, R.B. Nanofiber formation in the chemical polym-erization of aniline: A mechanistic study. Angew. Chem. Int. Ed. Engl., 2004, 43(43), 5817-5821.
[http://dx.doi.org/10.1002/anie.200460616]
[28]
Li, D.; Kaner, R.B. Shape and aggregation control of nanoparticles: Not shaken, not stirred. J. Am. Chem. Soc., 2006, 128(3), 968-975.
[http://dx.doi.org/10.1021/ja056609n]
[29]
Chiou, N-R.; Epstein, A.J. Polyaniline nanofibers prepared by dilute polymerization. Adv. Mater., 2005, 17(13), 1679-1683.
[http://dx.doi.org/10.1002/adma.200401000]
[30]
Laslau, C.; Zujovic, Z.D.; Travas-Sejdic, J. Polyaniline “nanotube” self-assembly: the stage of granular agglomeration on nanorod templates. Macromol. Rapid Commun., 2009, 30(19), 1663-1668.
[http://dx.doi.org/10.1002/marc.200900244]
[31]
Yang, M.; Ma, J.; Zhang, C.; Yang, Z.; Lu, Y. General synthetic route toward functional hollow spheres with double-shelled structures. Angew. Chem. Int. Ed. Engl., 2005, 44(41), 6727-6730.
[http://dx.doi.org/10.1002/anie.200501556]
[32]
Pan, L.J.; Pu, L.; Shi, Y.; Song, S.Y.; Xu, Z.; Zhang, R.; Zheng, Y.D. Synthesis of polyaniline nanotubes with a reactive template of manganese oxide. Adv. Mater., 2007, 19(3), 461-464.
[http://dx.doi.org/10.1002/adma.200602073]
[33]
Wan, M. A template-free method towards conducting polymer nanostructures. Adv. Mater., 2008, 20(15), 2926-2932.
[http://dx.doi.org/10.1002/adma.200800466]
[34]
Otero, T.F.; Rodríguez, J. Role of protons on the electrochemical polymerization of pyrrole from acetonitrile solutions. J. Electroanal. Chem. (Lausanne Switz.), 1994, 37(1-2), 513-516.
[http://dx.doi.org/10.1016/0022-0728(94)87178-7]
[35]
Lee, S.; Sung, H.; Han, S.; Paik, W. Polypyrrole film formation by solution-surface electropolymerization: influence of solvents and doped anions. J. Phys. Chem., 1994, 98(4), 1250-1252.
[http://dx.doi.org/10.1021/j100055a034]
[36]
Kupila, E-L.; Kankare, J. Electropolymerization of pyrrole in aqueous solvent mixtures studied by in situ conductimetry. Synth. Met., 1996, 82(2), 89-95.
[http://dx.doi.org/10.1016/S0379-6779(97)80040-9]
[37]
Carquigny, S.; Segut, O.; Lakard, B.; Lallemand, F.; Fievet, P. Effect of electrolyte solvent on the morphology of polypyrrole films: Application to the use of polypyrrole in pH sensors. Synth. Met., 2008, 158(11), 453-461.
[http://dx.doi.org/10.1016/j.synthmet.2008.03.010]
[38]
Liang, W.; Lei, J.; Martin, C.R. Effect of synthesis temperature on the structure, doping level and charge-transport properties of polypyrrole. Synth. Met., 1992, 52(2), 227-239.
[http://dx.doi.org/10.1016/0379-6779(92)90310-F]
[39]
Martins, J.I.; Bazzaoui, M.; Reis, T.C.; Costa, S.C.; Nunes, M.C.; Martins, L.; Bazzaoui, E.A. The effect of pH on the pyrrole electropolymerization on iron in malate aqueous solutions. Prog. Org. Coat., 2009, 65(1), 62-70.
[http://dx.doi.org/10.1016/j.porgcoat.2008.09.011]
[40]
Unsworth, J.; Innis, P.C.; Lunn, B.A.; Jin, Z.; Norton, G.P. The influence of electrolyte pH on the surface morphology of polypyrrole. Synth. Met., 1992, 53(1), 59-69.
[http://dx.doi.org/10.1016/0379-6779(92)90008-7]
[41]
Osagawara, M.; Funahashi, K.; Demura, T.; Hagiwara, T.; Iwata, K. Enhancement of electrical conductivity of polypyrrole by stretching. Synth. Met., 1986, 14(1-2), 61-69.
[http://dx.doi.org/10.1016/0379-6779(86)90127-X]
[42]
Chmielewski, M.; Grzeszczuk, M.; Kalenik, J.; Kępas-Suwara, A. Evaluation of the potential dependence of 2D-3D growth rates and structures of polypyrrole films in aqueous solutions of hexafluorates. J. Electroanal. Chem. (Lausanne Switz.), 2010, 647(2), 169-180.
[http://dx.doi.org/10.1016/j.jelechem.2010.06.006]
[43]
Maddison, D.S.; Unsworth, J. Optimization of synthesis conditions of polypyrrole from aqueous solutions. Synth. Met., 1989, 30(1), 47-55.
[http://dx.doi.org/10.1016/0379-6779(89)90640-1]
[44]
Funt, B.L. Electrochemical Polymerization. In: Organic Electrochemistry: an Introduction and a Guide; Lund, H.; Baizer, M.M., Eds.; Marcel Dekker: New York, 1991; pp. 1337-1362.
[45]
Genies, E.M.; Bidan, G.; Diaz, A.F. Spectroelectrochemical study of polypyrrole films. J. Electroanal. Chem. Interfacial Electrochem., 1983, 149(1-2), 101-113.
[http://dx.doi.org/10.1016/S0022-0728(83)80561-0]
[46]
Waltman, R.J.; Bargon, J. Electrically conducting polymers: A review of the electropolymerization reaction, of the effects of chemical structure on polymer film properties, and of applications towards technology. Can. J. Chem., 1986, 64(1), 76-95.
[http://dx.doi.org/10.1139/v86-015]
[47]
Bredas, J.L.; Street, G.B. Polarons, bipolarons, and solitons in conducting polymers. Acc. Chem. Res., 1985, 18(10), 309-315.
[http://dx.doi.org/10.1021/ar00118a005]
[48]
Sabouraud, G.; Sadki, S.; Brodie, N. The mechanisms of pyrrole electropolymerization. Chem. Soc. Rev., 2000, 29(5), 283-293.
[http://dx.doi.org/10.1039/a807124a]
[49]
Pfluger, P.; Street, G.B. Chemical, electronic, and structural properties of conducting heterocyclic polymers: A view by XPS. J. Chem. Phys., 1984, 80(1), 544-553.
[http://dx.doi.org/10.1063/1.446428]
[50]
Childs, W.V.; Christensen, L.; Klink, F.W.; Kolpin, C.F. Anodic Fluorination. In: Organic Electrochemistry: an Introduction and a Guide; Lund, H.; Baizer, M., Eds.; Marcel Dekker: New York, 1991; pp. 1103-1131.
[51]
Beck, F.; Oberst, M. Electrodeposition and cycling of polypyrrole. Makromol. Chemie. Macromol. Symp., 1987, 8(1), 97-125.
[http://dx.doi.org/10.1002/masy.19870080110]
[52]
Ko, J.M.; Rhee, H.W.; Park, S.M.; Kim, C.Y. Morphology and electrochemical properties of polypyrrole films prepared in aqueous and nonaqueous solvents. J. Electrochem. Soc., 1990, 137(3), 905-909.
[http://dx.doi.org/10.1149/1.2086576]
[53]
Otero, T.F.; Boyano, I. Comparative study of conducting polymers by the ESCR model. J. Phys. Chem. B, 2003, 107(28), 6730-6738.
[http://dx.doi.org/10.1021/jp027748j]
[54]
Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed; John Wiley & Sons, Inc.: New York, 2000.
[55]
Di Quarto, F.; Figà, V.; Bocchetta, P.; Santamaria, M. Photoelectrochemical synthesis of polypyrrole on anodic Ta2O5 films. Electrochem. Solid-State Lett., 2007, 10(10), H305-H308.
[http://dx.doi.org/10.1149/1.2767457]
[56]
Lyons, M.E.G. Transport and Kinetics in Electroactive Polymers. In: Polymeric Systems. Volume 94; Prigogine, I.; Rice, S.A., Eds.; John Wiley & Sons, Inc.: New York, 1996; p. 297.
[57]
Nautiyal, A.; Qiao, M.; Cook, J.E.; Zhang, X.; Huang, T.S. High performance polypyrrole coating for corrosion protection and biocidal applications. Appl. Surf. Sci., 2018, 427, 922-930.
[http://dx.doi.org/10.1016/j.apsusc.2017.08.093]
[58]
Idris, N.H.; Wang, J.; Chou, S.; Zhong, C.; Rahman, M.M.; Liu, H. Effects of polypyrrole on the performance of nickel oxide anode materials for rechargeable lithium-ion batteries. J. Mater. Res., 2011, 26(07), 860-866.
[http://dx.doi.org/10.1557/jmr.2011.12]
[59]
Lee, J.Y.; Ong, L.H.; Chuah, G.K. Rechargeable thin film batteries of polypyrrole and polyaniline. J. Appl. Electrochem., 1992, 22(8), 738-742.
[http://dx.doi.org/10.1007/BF01027503]
[60]
Chen, N.; Zhou, J.; Zhu, G.; Kang, Q.; Ji, H.; Zhang, Y.; Wang, X.; Peng, L.; Guo, X.; Lu, C.; Chen, J.; Feng, X.; Hou, W. A high-performance asymmetric supercapacitor based on vanadyl phosphate/carbon nanocomposites and polypyrrole-derived carbon nanowires. Nanoscale, 2018, 10(8), 3709-3719.
[http://dx.doi.org/10.1039/C7NR08909K]
[61]
Aleshin, A.N. Polymer nanofibers and nanotubes: Charge transport and device applications. Adv. Mater., 2006, 18(1), 17-27.
[http://dx.doi.org/10.1002/adma.200500928]
[62]
Peng, H.; Zhang, L.; Soeller, C.; Travas-Sejdic, J. Conducting polymers for electrochemical DNA sensing. Biomaterials, 2009, 30(11), 2132-2148.
[http://dx.doi.org/10.1016/j.biomaterials.2008.12.065]
[63]
Singh, M.; Kathuroju, P.K.; Jampana, N. Polypyrrole based amperometric glucose biosensors. Sens. Actuators B Chem., 2009, 143(1), 430-443.
[http://dx.doi.org/10.1016/j.snb.2009.09.005]
[64]
Otero, T.F.; Grande, H-J.; Rodríguez, J. Reinterpretation of polypyrrole electrochemistry after consideration of conformational relaxation processes. J. Phys. Chem. B, 1997, 101(19), 3688-3697.
[http://dx.doi.org/10.1021/jp9630277]
[65]
Simonet, J.; Rault-Berthelot, J. Electrochemistry: A technique to form, to modify and to characterize organic conducting polymers. Prog. Solid State Chem., 1991, 21(1), 1-48.
[http://dx.doi.org/10.1016/0079-6786(91)90005-K]
[66]
Scrosati, B. Applications of Electroactive Polymers; Springer Netherlands: Dordrecht, 1993.
[http://dx.doi.org/10.1007/978-94-011-1568-1]
[67]
Wu, Y.; Alici, G.; Spinks, G.M.; Wallace, G.G. Fast trilayer polypyrrole bending actuators for high speed applications. Synth. Met., 2006, 156(16-17), 1017-1022.
[http://dx.doi.org/10.1016/j.synthmet.2006.06.022]
[68]
Friend, R.H.; Gymer, R.W.; Holmes, A.B.; Burroughes, J.H.; Marks, R.N.; Taliani, C.; Bradley, D.D.C.; Dos Santos, D.A.; Brédas, J.L.; Lögdlund, M.; Salaneck, W.R. Electroluminescence in conjugated polymers. Nature, 1999, 397(6715), 121-128.
[http://dx.doi.org/10.1038/16393]
[69]
Brotherston, I.D.; Mudigonda, D.S.; Osborn, J.M.; Belk, J.; Chen, J.; Loveday, D.C.; Boehme, J.L.; Ferraris, J.P.; Meeker, D.L. Tailoring the electrochromic properties of devices via polymer blends, copolymers, laminates and patterns. Electrochim. Acta, 1999, 44(18), 2993-3004.
[http://dx.doi.org/10.1016/S0013-4686(99)00014-6]
[70]
Groenendaal, L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J.R. Poly(3,4-Ethylenedioxythiophene) and its derivatives: Past, present, and future. Adv. Mater., 2000, 12(7), 481-494.
[http://dx.doi.org/10.1002/(SICI)1521-4095(200004)12:7<481:: AID-ADMA481>3.0.CO;2-C]
[71]
Bashyam, R.; Zelenay, P. A class of non-precious metal composite catalysts for fuel cells. Nature, 2006, 443, 63-66.
[http://dx.doi.org/10.1038/nature05118]
[72]
Peng, H.; Mo, Z.; Liao, S.; Liang, H.; Yang, L.; Luo, F.; Song, H.; Zhong, Y.; Zhang, B. High performance Fe- and N-doped carbon catalyst with graphene structure for oxygen reduction. Sci. Rep., 2013, 3(1), 1765.
[http://dx.doi.org/10.1038/srep01765]
[73]
Wu, G.; More, K.L.; Johnston, C.M.; Zelenay, P. High performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science, 2011, 332(6028), 443-447.
[http://dx.doi.org/10.1126/science.1200832]
[74]
Chlistunoff, J. RRDE and voltammetric study of ORR on pyrolyzed Fe/polyaniline catalyst. On the origins of variable tafel slopes. J. Phys. Chem. C, 2011, 115(14), 6496-6507.
[http://dx.doi.org/10.1021/jp108350t]
[75]
Masa, J.; Schilling, T.; Bron, M.; Schuhmann, W. Electrochemical synthesis of metal-polypyrrole composites and their activation for electrocatalytic reduction of oxygen by thermal treatment. Electrochim. Acta, 2012, 60, 410-418.
[http://dx.doi.org/10.1016/j.electacta.2011.11.076]
[76]
Bozzini, B.; Bocchetta, P.; Gianoncelli, A.; Mele, C.; Kiskinova, M. Electrodeposition and ageing of Mn-based binary composite oxygen reduction reaction electrocatalysts. ChemElectroChem, 2015, 2(10), 1541-1550.
[http://dx.doi.org/10.1002/celc.201500138]
[77]
Hu, F.P.; Zhang, X.G.; Xiao, F.; Zhang, J.L. Oxygen reduction on Ag-MnO2/SWNT and Ag-MnO2/AB electrodes. Carbon, 2005, 43(14), 2931-2936.
[http://dx.doi.org/10.1016/j.carbon.2005.06.010]
[78]
Gao, X.; Luo, W.; Zhong, C.; Wexler, D.; Chou, S-L.; Liu, H-K.; Shi, Z.; Chen, G.; Ozawa, K.; Wang, J-Z. Novel germanium/polypyrrole composite for high power lithium-ion batteries. Sci. Rep., 2014, 4, 6095.
[http://dx.doi.org/10.1038/srep06095]
[79]
Yuan, L.; Wang, J.; Chew, S.Y.; Chen, J.; Guo, Z.P.; Zhao, L.; Konstantinov, K.; Liu, H.K. Synthesis and characterization of SnO2-polypyrrole composite for lithium-ion battery. J. Power Sources, 2007, 174(2), 1183-1187.
[http://dx.doi.org/10.1016/j.jpowsour.2007.06.179]
[80]
Chou, S-L.; Gao, X-W.; Wang, J-Z.; Wexler, D.; Wang, Z-X.; Chen, L-Q.; Liu, H-K. Tin/polypyrrole composite anode using sodium carboxymethyl cellulose binder for lithium-ion batteries. Dalton Trans., 2011, 40(48), 12801-12807.
[http://dx.doi.org/10.1039/c1dt10396b]
[81]
Chew, S.Y.; Guo, Z.P.; Wang, J.Z.; Chen, J.; Munroe, P.; Ng, S.H.; Zhao, L.; Liu, H.K. Novel nano-silicon/polypyrrole composites for lithium storage. Electrochem. Commun., 2007, 9(5), 941-946.
[http://dx.doi.org/10.1016/j.elecom.2006.11.028]
[82]
Du, Z.; Zhang, S.; Liu, Y.; Zhao, J.; Lin, R.; Jiang, T. Facile fabrication of reticular polypyrrole-silicon core-shell nanofibers for high performance lithium storage. J. Mater. Chem., 2012, 22(23), 11636-11641.
[http://dx.doi.org/10.1039/c2jm31419c]
[83]
Guo, Z.P.; Wang, J.Z.; Liu, H.K.; Dou, S.X. Study of silicon/polypyrrole composite as anode materials for Li-ion batteries. J. Power Sources, 2005, 146(1-2), 448-451.
[http://dx.doi.org/10.1016/j.jpowsour.2005.03.112]
[84]
Dziewoński, P.M.; Grzeszczuk, M. Towards TiO2-conducting polymer hybrid materials for lithium ion batteries. Electrochim. Acta, 2010, 55(9), 3336-3347.
[http://dx.doi.org/10.1016/j.electacta.2010.01.043]
[85]
Liang, X.; Zhang, M.; Kaiser, M.R.; Gao, X.; Konstantinov, K.; Tandiono, R.; Wang, Z.; Liu, H.K.; Dou, S.X.; Wang, J. Split-half-tubular polypyrrole@sulfur@polypyrrole composite with a novel three-layer-3D structure as cathode for lithium/sulfur batteries. Nano Energy, 2015, 11, 587-599.
[http://dx.doi.org/10.1016/j.nanoen.2014.10.009]
[86]
Ma, G.; Wen, Z.; Wang, Q.; Shen, C.; Peng, P.; Jin, J.; Wu, X. Enhanced performance of lithium sulfur battery with self-assembly polypyrrole nanotube film as the functional interlayer. J. Power Sources, 2015, 273, 511-516.
[http://dx.doi.org/10.1016/j.jpowsour.2014.09.141]
[87]
Sun, M.; Zhang, S.; Jiang, T.; Zhang, L.; Yu, J. Nano-wire networks of sulfur-polypyrrole composite cathode materials for rechargeable lithium batteries. Electrochem. Commun., 2008, 10(12), 1819-1822.
[http://dx.doi.org/10.1016/j.elecom.2008.09.012]
[88]
Wang, J.; Chen, J.; Konstantinov, K.; Zhao, L.; Ng, S.H.; Wang, G.X.; Guo, Z.P.; Liu, H.K. Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries. Electrochim. Acta, 2006, 51(22), 4634-4638.
[http://dx.doi.org/10.1016/j.electacta.2005.12.046]
[89]
Aricò, A.S.; Bruce, P.; Scrosati, B.; Tarascon, J-M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater., 2005, 4(5), 366-377.
[http://dx.doi.org/10.1038/nmat1368]
[90]
Fan, L-Z.; Maier, J. High-performance polypyrrole electrode materials for redox supercapacitors. Electrochem. Commun., 2006, 8(6), 937-940.
[http://dx.doi.org/10.1016/j.elecom.2006.03.035]
[91]
Li, J.; Xie, H. Synthesis of graphene oxide/polypyrrole nanowire composites for supercapacitors. Mater. Lett., 2012, 78, 106-109.
[http://dx.doi.org/10.1016/j.matlet.2012.03.013]
[92]
Chabi, S.; Peng, C.; Yang, Z.; Xia, Y.; Zhu, Y. Three dimensional (3D) flexible graphene foam/polypyrrole composite: Towards highly efficient supercapacitors. RSC Adv., 2015, 5(6), 3999-4008.
[http://dx.doi.org/10.1039/C4RA13743D]
[93]
Kashani, H.; Chen, L.; Ito, Y.; Han, J.; Hirata, A.; Chen, M. Bicontinuous nanotubular graphene-polypyrrole hybrid for high performance flexible supercapacitors. Nano Energy, 2016, 19, 391-400.
[http://dx.doi.org/10.1016/j.nanoen.2015.11.029]
[94]
Gan, J.K.; Lim, Y.S.; Huang, N.M.; Lim, H.N. Hybrid silver nanoparticle/nanocluster-decorated polypyrrole for high-performance supercapacitors. RSC Adv., 2015, 5(92), 75442-75450.
[http://dx.doi.org/10.1039/C5RA14941J]
[95]
Arul, N.S.; Han, J.I.; Chen, P.C. Solid state supercapacitor based on manganese oxide@reduced graphene oxide and polypyrrole electrodes. ChemElectroChem, 2018, 5(19), 2747-2757.
[http://dx.doi.org/10.1002/celc.201800700]
[96]
Liu, J.; Li, J.; Dai, M.; Hu, Y.; Cui, J.; Wang, Y.; Tan, H.H.; Wu, Y. Photo-assisted synthesis of coaxial-structured polypyrrole/electrochemically hydrogenated TiO2 nanotube arrays as a high performance supercapacitor electrode. RSC Adv., 2018, 8(24), 13393-13400.
[http://dx.doi.org/10.1039/C7RA13166F]
[97]
Chen, T.; Wang, G.; Ning, Q. Rationally designed three-dimensional NiMoO4/polypyrrole core-shell nanostructures for high-performance supercapacitors. Nano, 2017, 12(05) 1750061
[http://dx.doi.org/10.1142/S1793292017500618]
[98]
Li, Y.; Yang, J. Effect of electrolyte concentration on the properties of the electropolymerized polypyrrole films. J. Appl. Polym. Sci., 1997, 65(13), 2739-2744.
[http://dx.doi.org/10.1002/(SICI)1097-4628(19970926)65:13< 2739:AID-APP16>3.0.CO;2-S]
[99]
Kopecký, D.; Varga, M.; Prokeš, J.; Vrňata, M.; Trchová, M.; Kopecká, J.; Václavík, M. Optimization routes for high electrical conductivity of polypyrrole nanotubes prepared in presence of methyl orange. Synth. Met., 2017, 230, 89-96.
[http://dx.doi.org/10.1016/j.synthmet.2017.06.004]
[100]
Zhang, X.; Zhang, J.; Song, W.; Liu, Z. Controllable synthesis of conducting polypyrrole nanostructures. J. Phys. Chem. B, 2006, 110(3), 1158-1165.
[http://dx.doi.org/10.1021/jp054335k]
[101]
Dubal, D.P.; Caban-Huertas, Z.; Holze, R.; Gomez-Romero, P. Growth of polypyrrole nanostructures through reactive templates for energy storage applications. Electrochim. Acta, 2016, 191, 346-354.
[http://dx.doi.org/10.1016/j.electacta.2016.01.078]
[102]
Sapurina, I.; Li, Y.; Alekseeva, E.; Bober, P.; Trchová, M.; Morávková, Z.; Stejskal, J. Polypyrrole nanotubes: The tuning of morphology and conductivity. Polymer (Guildf.), 2017, 113, 247-258.
[http://dx.doi.org/10.1016/j.polymer.2017.02.064]
[103]
Yuan, X.; Li, L.; Ma, Z.; Yu, X.; Wen, X.; Ma, Z-F.; Zhang, L.; Wilkinson, D.P.; Zhang, J. Novel nanowire-structured polypyrrole-cobalt composite as efficient catalyst for oxygen reduction reaction. Sci. Rep., 2016, 6(1), 20005.
[http://dx.doi.org/10.1038/srep20005]
[104]
Kang, H-S.; Lee, H-C.; Kwak, J-H. Electrodeposition of polypyrrole nanowires within vertically oriented mesoporous silica template. J. Korean Electrochem. Soc., 2011, 14(1), 22-26.
[http://dx.doi.org/10.5229/JKES.2011.14.1.022]
[105]
Yin, Z.; Zheng, Q. Controlled synthesis and energy applications of one-dimensional conducting polymer nanostructures: An overview. Adv. Energy Mater., 2012, 2(2), 179-218.
[http://dx.doi.org/10.1002/aenm.201100560]
[106]
Wang, Z-L.; Guo, R.; Ding, L-X.; Tong, Y-X.; Li, G-R. Controllable template-assisted electrodeposition of single- and multi-walled nanotube arrays for electrochemical energy storage. Sci. Rep., 2013, 3(1), 1204.
[http://dx.doi.org/10.1038/srep01204]
[107]
Velazquez, J.M.; Gaikwad, A.V.; Rout, T.K.; Rzayev, J.; Banerjee, S. A substrate-integrated and scalable templated approach based on rusted steel for the fabrication of polypyrrole nanotube arrays. ACS Appl. Mater. Interfaces, 2011, 3(4), 1238-1244.
[http://dx.doi.org/10.1021/am2000533]
[108]
Nakayama, M.; Yano, J.; Nakaoka, K.; Ogura, K. Electrodeposition of composite films consisting of polypyrrole and mesoporous silica. Synth. Met., 2002, 128(1), 57-62.
[http://dx.doi.org/10.1016/S0379-6779(01)00663-4]
[109]
Intelmann, C.M.; Syritski, V.; Tsankov, D.; Hinrichs, K.; Rappich, J. Ultrathin polypyrrole films on silicon substrates. Electrochim. Acta, 2008, 53(11), 4046-4050.
[http://dx.doi.org/10.1016/j.electacta.2007.11.036]
[110]
Gangopadhyay, R.; De, A. Conducting polymer nanocomposites: A brief overview. Chem. Mater., 2000, 12(3), 608-622.
[http://dx.doi.org/10.1021/cm990537f]
[111]
Zou, H.; Wu, S. Shen, J. Polymer/silica nanocomposites: Preparation, characterization, properties, and applications. Chem. Rev., 2008, 108(9), 3893-3957.
[http://dx.doi.org/10.1021/cr068035q]
[112]
Ribeiro, T.; Baleizão, C.; Farinha, J. Functional films from silica/polymer nanoparticles. Materials (Basel), 2014, 7(5), 3881-3900.
[http://dx.doi.org/10.3390/ma7053881]
[113]
Cho, Y.; Shi, R.; Ivanisevic, A.; Ben Borgens, R. A mesoporous silica nanosphere-based drug delivery system using an electrically conducting polymer. Nanotechnology, 2009, 20(27) 275102
[http://dx.doi.org/10.1088/0957-4484/20/27/275102]
[114]
Demoustier-Champagne, S.; Stavaux, P-Y. Effect of electrolyte concentration and nature on the morphology and the electrical properties of electropolymerized polypyrrole nanotubules. Chem. Mater., 1999, 11(3), 829-834.
[http://dx.doi.org/10.1021/cm9807541]
[115]
Harraz, F.A.; Salem, M.S.; Sakka, T.; Ogata, Y.H. Hybrid nanostructure of polypyrrole and porous silicon prepared by galvanostatic technique. Electrochim. Acta, 2008, 53(10), 3734-3740.
[http://dx.doi.org/10.1016/j.electacta.2007.09.019]
[116]
Raveh, M.; Liu, L.; Mandler, D. Electrochemical co-deposition of conductive polymer-silica hybrid thin films. Phys. Chem. Chem. Phys., 2013, 15(26), 10876-10884.
[http://dx.doi.org/10.1039/c3cp50457c]
[117]
Tebizi-Tighilt, F-Z.; Zane, F.; Belhaneche-Bensemra, N.; Belhousse, S.; Sam, S.; Gabouze, N-E. Electrochemical gas sensors based on polypyrrole-porous silicon. Appl. Surf. Sci., 2013, 269, 180-183.
[http://dx.doi.org/10.1016/j.apsusc.2012.10.080]
[118]
Farghaly, A.A.; Collinson, M.M. Mesoporous hybrid polypyrrole-silica nanocomposite films with a strata-like structure. Langmuir, 2016, 32(23), 5925-5936.
[http://dx.doi.org/10.1021/acs.langmuir.6b00872]
[119]
Kowalski, D.; Tighineanu, A.; Schmuki, P. Polymer nanowires or nanopores? Site selective filling of titania nanotubes with polypyrrole. J. Mater. Chem., 2011, 21(44), 17909-17915.
[http://dx.doi.org/10.1039/c1jm12379c]
[120]
Janáky, C.; de Tacconi, N.R.; Chanmanee, W.; Rajeshwar, K. Bringing conjugated polymers and oxide nanoarchitectures into intimate contact: Light-induced electrodeposition of polypyrrole and polyaniline on nanoporous WO3 or TiO2 nanotube array. J. Phys. Chem. C, 2012, 116(36), 19145-19155.
[http://dx.doi.org/10.1021/jp305181h]
[121]
Strandwitz, N.C.; Nonoguchi, Y.; Boettcher, S.W.; Stucky, G.D. In situ photopolymerization of pyrrole in mesoporous TiO2. Langmuir, 2010, 26(8), 5319-5322.
[http://dx.doi.org/10.1021/la100913e]
[122]
Zhao, Y.; Zhu, W.; Chen, G.Z.; Cairns, E.J. Polypyrrole/TiO2 nanotube arrays with coaxial heterogeneous structure as sulfur hosts for lithium sulfur batteries. J. Power Sources, 2016, 327, 447-456.
[http://dx.doi.org/10.1016/j.jpowsour.2016.07.082]
[123]
Kowalski, D.; Schmuki, P. Polypyrrole self-organized nanopore arrays formed by controlled electropolymerization in TiO2 nanotube template. Chem. Commun. (Camb.), 2010, 46(45), 8585-8587.
[http://dx.doi.org/10.1039/c0cc03184d]
[124]
Ngaboyamahina, E.; Debiemme-Chouvy, C.; Pailleret, A.; Sutter, E.M.M. Electrodeposition of polypyrrole in TiO2 nanotube arrays by pulsed-light and pulsed-potential methods. J. Phys. Chem. C, 2014, 118(45), 26341-26350.
[http://dx.doi.org/10.1021/jp507491x]
[125]
Janáky, C.; Chanmanee, W.; Rajeshwar, K. Mechanistic aspects of photoelectrochemical polymerization of polypyrrole on a TiO2 nanotube array. Electrochim. Acta, 2014, 122, 303-309.
[http://dx.doi.org/10.1016/j.electacta.2013.12.008]
[126]
Ha, S.T.; Park, O.O.; Im, S.H. Size control of highly monodisperse polystyrene particles by modified dispersion polymerization. Macromol. Res., 2010, 18(10), 935-943.
[http://dx.doi.org/10.1007/s13233-010-1008-9]
[127]
Kim, M.S.; Moon, J.H.; Yoo, P.J.; Park, J.H. Hollow polypyrrole films: applications for energy storage devices. J. Electrochem. Soc., 2012, 159(7), A1052-A1056.
[http://dx.doi.org/10.1149/2.062207jes]
[128]
Zang, J.; Li, C.M.; Bao, S-J.; Cui, X.; Bao, Q.; Sun, C.Q. Template-free electrochemical synthesis of superhydrophilic polypyrrole nanofiber network. Macromolecules, 2008, 41(19), 7053-7057.
[http://dx.doi.org/10.1021/ma801345k]
[129]
Zang, J.; Bao, S-J.; Li, C.M.; Bian, H.; Cui, X.; Bao, Q.; Sun, C.Q.; Guo, J.; Lian, K. Well-aligned cone-shaped nanostructure of polypyrrole/RuO2 and its electrochemical supercapacitor. J. Phys. Chem. C, 2008, 112(38), 14843-14847.
[http://dx.doi.org/10.1021/jp8049558]
[130]
Dubal, D.P.; Lee, S.H.; Kim, J.G.; Kim, W.B.; Lokhande, C.D. Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. J. Mater. Chem., 2012, 22(7), 3044-3052.
[http://dx.doi.org/10.1039/c2jm14470k]
[131]
Liao, J.; Wu, S.; Yin, Z.; Huang, S.; Ning, C.; Tan, G.; Chu, P.K. Surface-dependent self-assembly of conducting polypyrrole nanotube arrays in template-free electrochemical polymerization. ACS Appl. Mater. Interfaces, 2014, 6(14), 10946-10951.
[http://dx.doi.org/10.1021/am5017478]
[132]
Liao, J.; Zhang, Y.; Tan, G.; Ning, C. Nanostructured PPy coating on titanium fabricated via template-free electrochemical polymerization in PBS. Surf. Coat. Tech., 2013, 228(Suppl. 1), S41-S43.
[http://dx.doi.org/10.1016/j.surfcoat.2012.09.023]
[133]
Fakhry, A.; Pillier, F.; Debiemme-Chouvy, C. Templateless electrogeneration of polypyrrole nanostructures: Impact of the anionic composition and pH of the monomer solution. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(25), 9859-9865.
[http://dx.doi.org/10.1039/c4ta01360c]
[134]
Fakhry, A.; Cachet, H.; Debiemme-Chouvy, C. Mechanism of formation of templateless electrogenerated polypyrrole nanostructures. Electrochim. Acta, 2015, 179, 297-303.
[http://dx.doi.org/10.1016/j.electacta.2015.03.025]
[135]
Debiemme-Chouvy, C.; Fakhry, A.; Pillier, F. Electrosynthesis of polypyrrole nano/micro structures using an electrogenerated oriented polypyrrole nanowire array as framework. Electrochim. Acta, 2018, 268, 66-72.
[http://dx.doi.org/10.1016/j.electacta.2018.02.092]
[136]
Mazur, M. Preparation of three-dimensional polymeric structures using gas bubbles as templates. J. Phys. Chem. C, 2008, 112(35), 13528-13534.
[http://dx.doi.org/10.1021/jp8008089]
[137]
Qu, L.; Shi, G.; Chen, F.; Zhang, J. Electrochemical growth of polypyrrole microcontainers. Macromolecules, 2003, 36(4), 1063-1067.
[http://dx.doi.org/10.1021/ma021177b]
[138]
Qu, L.; Shi, G. Hollow microstructures of polypyrrole doped by poly(styrene sulfonic acid). J. Polym. Sci. A Polym. Chem., 2004, 42(13), 3170-3177.
[http://dx.doi.org/10.1002/pola.20157]
[139]
Gupta, S. Hydrogen bubble-assisted syntheses of polypyrrole micro/nanostructures using electrochemistry: Structural and physical property characterization. J. Raman Spectrosc., 2008, 39(10), 1343-1355.
[http://dx.doi.org/10.1002/jrs.2002]
[140]
Wang, J.; Xu, Y.; Yan, F.; Zhu, J.; Wang, J. Template-free prepared micro/nanostructured polypyrrole with ultrafast charging/discharging rate and long cycle life. J. Power Sources, 2011, 196(4), 2373-2379.
[http://dx.doi.org/10.1016/j.jpowsour.2010.10.066]
[141]
Li, M.; Wei, Z.; Jiang, L. Polypyrrole nanofiber arrays synthesized by a biphasic electrochemical strategy. J. Mater. Chem., 2008, 18(19), 2276-2280.
[http://dx.doi.org/10.1039/b800289d]
[142]
Nuraje, N.; Su, K.; Yang, N.; Matsui, H. Liquid/liquid interfacial polymerization to grow single crystalline nanoneedles of various conducting polymers. ACS Nano, 2008, 2(3), 502-506.
[http://dx.doi.org/10.1021/nn7001536]
[143]
Wójcik, K.; Grzeszczuk, M. Surface morphology of thin polypyrrole films electrodeposited along aqueous electrolyte-organic liquid interface. Influence of temperature and solvent. J. Solid State Electrochem., 2015, 19(5), 1293-1300.
[http://dx.doi.org/10.1007/s10008-015-2750-x]
[144]
Biswas, S.; Drzal, L.T. Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chem. Mater., 2010, 22(20), 5667-5671.
[http://dx.doi.org/10.1021/cm101132g]
[145]
Bora, C.; Dolui, S.K. Fabrication of polypyrrole/graphene oxide nanocomposites by liquid/liquid interfacial polymerization and evaluation of their optical, electrical and electrochemical properties. Polymer (Guildf.), 2012, 53(4), 923-932.
[http://dx.doi.org/10.1016/j.polymer.2011.12.054]
[146]
Liu, Y.; Xu, K.; Zhang, X.; Qi, C.; Lv, Q.; Feng, H. Electrochemical codeposition of graphene/polypyrrole composites on carbon paper for electrochemical capacitors. Curr. Appl. Phys., 2016, 16(5), 520-526.
[http://dx.doi.org/10.1016/j.cap.2016.02.002]
[147]
Turco, A.; Mazzotta, E.; Di Franco, C.; Santacroce, M.V.; Scamarcio, G.; Monteduro, A.G.; Primiceri, E.; Malitesta, C. Templateless Synthesis of polypyrrole nanowires by non-static solution-surface electropolymerization. J. Solid State Electrochem., 2016, 20(8), 2143-2151.
[http://dx.doi.org/10.1007/s10008-016-3206-7]
[148]
Nam, D-H.; Kim, M-J.; Lim, S-J.; Song, I-S.; Kwon, H-S. Single step synthesis of polypyrrole nanowires by cathodic electropolymerization. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(27), 8061-8068.
[http://dx.doi.org/10.1039/c3ta11227f]