Changes in the Expression Profile of VEGF-A, VEGF-B, VEGFR-1, VEGFR-2 in Different Grades of Endometrial Cancer

Page: [955 - 963] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: VEGF-A, VEGF-B, VEGFR-1 and VEGFR-2 are important proteins involved in the induction and development of a new blood vessel network through which the tumor is properly nourished and oxygenated.

Objectives: The aim of the study was to evaluate changes in VEGF-A, VEGF-B, VEGFR-1 and VEGFR-2 expression in endometrial cancer depending on its grade and to determine the VEGFR-1 to VEGFR-2 concentration ratio.

Methods: The study group consisted of 45 patients diagnosed with endometrial cancer (G1, 17; G2, 15; G3, 13). The control group included 15 patients. VEGF-A, VEGF-B, VEGF-R1, VEGFR-2 expression was assessed using the immunohistochemical method. Statistical analysis was carried out using the Statistica 12 PL program (StatSoft, Cracow, Poland). It included the one-way ANOVA and Tukey's post-hoc test (p<0.05).

Results: Statistically significant differences in the level of VEGF-A, VEGF-B, VEGF-R1, VEGFR-2 were observed between the majority of analyzed groups (except for VEGF-B; G3 vs. G1, p=0.997700). The expression pattern of VEGF-A, VEGF-R1, VEGFR-2 was as follows: G3>G2>G1>C; VEGF-B: G2> G3> G1>C. A lower concentration of VEGFR-1 than VEGFR-2 was found regardless of the cancer grade.

Conclusion: VEGF-A, VEGF-B, VEGF-R1, VEGFR-2 are key proteins involved in tumor angiogenesis. The analysis of the entire panel of proteins participating in a given process is an important element of modern diagnostics. The concentration ratio of VEGFR-1 to VEGFR-2 appears to be a determining factor in the patients' survival prognosis.

Keywords: VEGF-A/B, VEGFR-1/2, angiogenesis, endometrial cancer, tumor angiogenesis, adenomyosis.

Graphical Abstract

[1]
Vaupel, P. Abnormal microvasculature and defective microcirculatory function in solid tumors.Vascular-targeted Therapies in Oncology; Siemann, D.W., Ed.; John Wiley & Sons Ltd.: Chichester, 2006, pp. 9-29.
[http://dx.doi.org/10.1002/0470035439.ch2]
[2]
Bergers, G.; Benjamin, L.E. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer, 2003, 3(6), 401-410.
[http://dx.doi.org/10.1038/nrc1093] [PMID: 12778130]
[3]
Hillen, F.; Griffioen, A.W. Tumour vascularization: Sprouting angiogenesis and beyond. Cancer Metastasis Rev., 2007, 26(3-4), 489-502.
[http://dx.doi.org/10.1007/s10555-007-9094-7] [PMID: 17717633]
[4]
Zielonka, T.M. Angiogeneza - Część I. Mechanizm powstawania nowych naczyń krwionośnych. Alergia Astma Immunol., 2003, 8, 169-174.
[5]
Box, C.; Rogers, S.J.; Mendiola, M.; Eccles, S.A. Tumour-microenvironmental interactions: Paths to progression and targets for treatment. Semin. Cancer Biol., 2010, 20(3), 128-138.
[http://dx.doi.org/10.1016/j.semcancer.2010.06.004] [PMID: 20599506]
[6]
Le Bitoux, M.A.; Stamenkovic, I. Tumor-host interactions: the role of inflammation. Histochem. Cell Biol., 2008, 130(6), 1079-1090.
[http://dx.doi.org/10.1007/s00418-008-0527-3] [PMID: 18953558]
[7]
Zumsteg, A.; Christofori, G. Corrupt policemen: Inflammatory cells promote tumor angiogenesis. Curr. Opin. Oncol., 2009, 21(1), 60-70.
[http://dx.doi.org/10.1097/CCO.0b013e32831bed7e] [PMID: 19125020]
[8]
Sivridis, E.; Giatromanolaki, A.; Koukourakis, M.I. The vascular network of tumours--what is it not for? J. Pathol., 2003, 201(2), 173-180.
[http://dx.doi.org/10.1002/path.1355] [PMID: 14517833]
[9]
Koch, S.; Claesson-Welsh, L. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb. Perspect. Med., 2012, 2(7)a006502
[http://dx.doi.org/10.1101/cshperspect.a006502] [PMID: 22762016]
[10]
Kowanetz, M.; Ferrara, N. Vascular endothelial growth factor signaling pathways: therapeutic perspective. Clin. Cancer Res., 2006, 12(17), 5018-5022.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1520] [PMID: 16951216]
[11]
Waldner, M.J.; Wirtz, S.; Jefremow, A.; Warntjen, M.; Neufert, C.; Atreya, R.; Becker, C.; Weigmann, B.; Vieth, M.; Rose-John, S.; Neurath, M.F. VEGF receptor signaling links inflammation and tumorigenesis in colitis-associated cancer. J. Exp. Med., 2010, 207(13), 2855-2868.
[http://dx.doi.org/10.1084/jem.20100438] [PMID: 21098094]
[12]
Hamerlik, P.; Lathia, J.D.; Rasmussen, R.; Wu, Q.; Bartkova, J.; Lee, M.; Moudry, P.; Bartek, J., Jr; Fischer, W.; Lukas, J.; Rich, J.N.; Bartek, J. Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J. Exp. Med., 2012, 209(3), 507-520.
[http://dx.doi.org/10.1084/jem.20111424] [PMID: 22393126]
[13]
Goel, H.L.; Chang, C.; Pursell, B.; Leav, I.; Lyle, S.; Xi, H.S.; Hsieh, C.C.; Adisetiyo, H.; Roy-Burman, P.; Coleman, I.M.; Nelson, P.S.; Vessella, R.L.; Davis, R.J.; Plymate, S.R.; Mercurio, A.M. VEGF/neuropilin-2 regulation of Bmi-1 and consequent repression of IGF-IR define a novel mechanism of aggressive prostate cancer. Cancer Discov., 2012, 2(10), 906-921.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0085] [PMID: 22777769]
[14]
Shibuya, M. Claesson-Welsh, L. Signal transduction by VEGF receptors in regulation of angiogenesis andlymphangiogenesis. Exp. Cell Res., 2006, 312, 549-560.
[http://dx.doi.org/10.1016/j.yexcr.2005.11.012] [PMID: 16336962]
[15]
Karamysheva, A.F. Mechanisms of angiogenesis. Biochemistry (Mosc.), 2008, 73(7), 751-762.
[http://dx.doi.org/10.1134/S0006297908070031] [PMID: 18707583]
[16]
Kerbel, R.S. Tumor angiogenesis. N. Engl. J. Med., 2008, 358(19), 2039-2049.
[http://dx.doi.org/10.1056/NEJMra0706596] [PMID: 18463380]
[17]
Lal, N.; Puri, K.; Rodrigues, B. Vascular endothelial growth factor B and its signaling. Front. Cardiovasc. Med., 2018, 5, 39.
[http://dx.doi.org/10.3389/fcvm.2018.00039] [PMID: 29732375]
[18]
Ramjiawan, R.R.; Griffioen, A.W.; Duda, D.G. Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy? Angiogenesis, 2017, 20(2), 185-204.
[http://dx.doi.org/10.1007/s10456-017-9552-y] [PMID: 28361267]
[19]
Asadzadeh Aghdaei, H.; Pezeshkian, Z.; Abdollahpour-Alitappeh, M.; Nazemalhosseini Mojarad, E.; Zali, M.R. The role of angiogenesis in colorectal polyps and cancer, a review. Mljgoums, 2018, 12, 1-6.
[http://dx.doi.org/10.29252/mlj.12.4.1]
[20]
Zhang, F.; Tang, Z.; Hou, X.; Lennartsson, J.; Li, Y.; Koch, A.W.; Scotney, P.; Lee, C.; Arjunan, P.; Dong, L.; Kumar, A.; Rissanen, T.T.; Wang, B.; Nagai, N.; Fons, P.; Fariss, R.; Zhang, Y.; Wawrousek, E.; Tansey, G.; Raber, J.; Fong, G.H.; Ding, H.; Greenberg, D.A.; Becker, K.G.; Herbert, J.M.; Nash, A.; Yla-Herttuala, S.; Cao, Y.; Watts, R.J.; Li, X. VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits pathological angiogenesis. Proc. Natl. Acad. Sci. USA, 2009, 106(15), 6152-6157.
[http://dx.doi.org/10.1073/pnas.0813061106] [PMID: 19369214]
[21]
Pang, R.W.; Poon, R.T. Clinical implications of angiogenesis in cancers. Vasc. Health Risk Manag., 2006, 2(2), 97-108.
[http://dx.doi.org/10.2147/vhrm.2006.2.2.97] [PMID: 17319453]
[22]
Opławski, M.; Michalski, M.; Witek, A.; Michalski, B.; Zmarzły, N.; Jęda-Golonka, A.; Styblińska, M.; Gola, J.; Kasprzyk-Żyszczyńska, M.; Mazurek, U.; Plewka, A. Identification of a gene expression profile associated with the regulation of angiogenesis in endometrial cancer. Mol. Med. Rep., 2017, 16(3), 2547-2555.
[http://dx.doi.org/10.3892/mmr.2017.6868] [PMID: 28656251]
[23]
Grabarek, B.; Wcislo-Dziadecka, D.; Gola, J.; Kruszniewska-Rajs, C.; Brzezinska-Wcislo, L.; Zmarzly, N.; Mazurek, U. Changes in the Expression Profile of JAK/STAT Signaling pathway genes and mirnas regulating their expression under the adalimumab therapy. Curr. Pharm. Biotechnol., 2018, 19(7), 556-565.
[http://dx.doi.org/10.2174/1389201019666180730094046] [PMID: 30058482]
[24]
Makker, V.; Green, A.K.; Wenham, R.M.; Mutch, D.; Davidson, B.; Miller, D.S. New therapies for advanced, recurrent, and metastatic endometrial cancers. Gynecol. Oncol. Res. Pract., 2017, 4, 19.
[http://dx.doi.org/10.1186/s40661-017-0056-7] [PMID: 29214032]
[25]
Roskoski, R. Jr VEGF receptor protein-tyrosine kinases: Structure and regulation. Biochem. Biophys. Res. Commun., 2008, 375(3), 287-291.
[http://dx.doi.org/10.1016/j.bbrc.2008.07.121] [PMID: 18680722]
[26]
Fischer, C.; Mazzone, M.; Jonckx, B.; Carmeliet, P. FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? Nat. Rev. Cancer, 2008, 8(12), 942-956.
[http://dx.doi.org/10.1038/nrc2524] [PMID: 19029957]
[27]
Eubank, T.D.; Roberts, R.D.; Khan, M.; Curry, J.M.; Nuovo, G.J.; Kuppusamy, P.; Marsh, C.B. Granulocyte macrophage colony-stimulating factor inhibits breast cancer growth and metastasis by invoking an anti-angiogenic program in tumor-educated macrophages. Cancer Res., 2009, 69(5), 2133-2140.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1405] [PMID: 19223554]
[28]
Murdoch, C.; Muthana, M.; Coffelt, S.B.; Lewis, C.E. The role of myeloid cells in the promotion of tumour angiogenesis. Nat. Rev. Cancer, 2008, 8(8), 618-631.
[http://dx.doi.org/10.1038/nrc2444] [PMID: 18633355]
[29]
Gonzalez, F.J.; Vicioso, L.; Alvarez, M.; Sevilla, I.; Marques, E.; Gallego, E.; Alonso, L.; Matilla, A.; Alba, E. Association between VEGF expression in tumour-associated macrophages and elevated serum VEGF levels in primary colorectal cancer patients. Cancer Biomark., 2007, 3(6), 325-333.
[http://dx.doi.org/10.3233/CBM-2007-3606] [PMID: 18048970]
[30]
Yoshimura, H.; Dhar, D.K.; Kohno, H.; Fujii, T.; Ueda, S.; Kinugasa, S.; Tachibana, M.; Nagasue, N. Prognostic impact of hypoxia-inducible factors 1a and 2a in colorectal patients: Correlation with tumor angiogenesis and cyclooxigenase-2 expression. Clin. Cancer Res., 2004, 10, 8554-8560.
[http://dx.doi.org/10.1158/1078-0432.CCR-0946-03] [PMID: 15623639]
[31]
Holland, C.M.; Day, K.; Evans, A.; Smith, S.K. Expression of the VEGF and angiopoietin genes in endometrial atypical hyperplasia and endometrial cancer. Br. J. Cancer, 2003, 89(5), 891-898.
[http://dx.doi.org/10.1038/sj.bjc.6601194] [PMID: 12942123]
[32]
Kamat, A.A.; Merritt, W.M.; Coffey, D.; Lin, Y.G.; Patel, P.R.; Broaddus, R.; Nugent, E.; Han, L.Y.; Landen, C.N., Jr; Spannuth, W.A.; Lu, C.; Coleman, R.L.; Gershenson, D.M.; Sood, A.K. Clinical and biological significance of vascular endothelial growth factor in endometrial cancer. Clin. Cancer Res., 2007, 13(24), 7487-7495.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1017] [PMID: 18094433]
[33]
Kotowicz, B.; Fuksiewicz, M.; Jonska-Gmyrek, J.; Berezowska, A.; Radziszewski, J.; Bidzinski, M.; Kowalska, M. Clinical significance of pretreatment serum levels of VEGF and its receptors, IL- 8, and their prognostic value in type I and II endometrial cancer patients. PLoS One, 2017, 12(10)e0184576
[http://dx.doi.org/10.1371/journal.pone.0184576] [PMID: 28991928]
[34]
Mathur, S.P.; Mathur, R.S.; Gray, E.A.; Lane, D.; Underwood, P.G.; Kohler, M.; Creasman, W.T. Serum vascular endothelial growth factor C (VEGF-C) as a specific biomarker for advanced cervical cancer: Relationship to insulin-like growth factor II (IGF-II), IGF binding protein 3 (IGF-BP3) and VEGF-A. [corrected] Gynecol. Oncol., 2005, 98(3), 467-483.
[http://dx.doi.org/10.1016/j.ygyno.2005.05.003] [PMID: 15982726]
[35]
Guidi, A.J.; Abu-Jawdeh, G.; Tognazzi, K.; Dvorak, H.F.; Brown, L.F. Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in endometrial carcinoma. Cancer, 1996, 78(3), 454-460.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19960801)78:3<454: AID-CNCR12>3.0.CO;2-Y] [PMID: 8697391]
[36]
Hanrahan, V.; Currie, M.J.; Gunningham, S.P.; Morrin, H.R.; Scott, P.A.; Robinson, B.A.; Fox, S.B. The angiogenic switch for vascular endothelial growth factor (VEGF)-A, VEGF-B, VEGF-C, and VEGF-D in the adenoma-carcinoma sequence during colorectal cancer progression. J. Pathol., 2003, 200(2), 183-194.
[http://dx.doi.org/10.1002/path.1339] [PMID: 12754739]
[37]
Larkins, E.; Scepura, B.; Blumenthal, G.M.; Bloomquist, E.; Tang, S.; Biable, M.; Kluetz, P.; Keegan, P.; Pazdur, R.U.S. food and drug administration approval summary: Ramucirumab for the treatment of metastatic non-small cell lung cancer following disease progression on or after platinum-based chemotherapy. Oncologist, 2015, 20(11), 1320-1325.
[http://dx.doi.org/10.1634/theoncologist.2015-0221] [PMID: 26446239]
[38]
Zhang, S.D.; McCrudden, C.M.; Kwok, H.F. Prognostic significance of combining VEGFA, FLT1 and KDR mRNA expression in lung cancer. Oncol. Lett., 2015, 10(3), 1893-1901.
[http://dx.doi.org/10.3892/ol.2015.3415] [PMID: 26622771]
[39]
Linardou, H.; Kalogeras, K.T.; Kronenwett, R.; Kouvatseas, G.; Wirtz, R.M.; Zagouri, F.; Gogas, H.; Christodoulou, C.; Koutras, A.K.; Samantas, E.; Pectasides, D.; Bafaloukos, D.; Fountzilas, G. The prognostic and predictive value of mRNA expression of vascular endothelial growth factor family members in breast cancer: a study in primary tumors of high-risk early breast cancer patients participating in a randomized Hellenic Cooperative Oncology Group trial. Breast Cancer Res., 2012, 14(6), R145.
[http://dx.doi.org/10.1186/bcr3354] [PMID: 23146280]
[40]
Carrillo de Santa Pau, E.; Arias, F.C.; Caso Peláez, E.; Muñoz Molina, G.M.; Sánchez Hernández, I.; Muguruza Trueba, I.; Moreno Balsalobre, R.; Sacristán López, S.; Gómez Pinillos, A.; del Val Toledo Lobo, M. Prognostic significance of the expression of vascular endothelial growth factors A, B, C, and D and their receptors R1, R2, and R3 in patients with nonsmall cell lung cancer. Cancer, 2009, 115(8), 1701-1712.
[http://dx.doi.org/10.1002/cncr.24193] [PMID: 19197998]
[41]
Hoffmann, A.C.; Goekkurt, E.; Danenberg, P.V.; Lehmann, S.; Ehninger, G.; Aust, D.E.; Stoehlmacher-Williams, J. EGFR, FLT1 and heparanase as markers identifying patients at risk of short survival in cholangiocarcinoma. PLoS One, 2013, 8(5)e64186
[http://dx.doi.org/10.1371/journal.pone.0064186] [PMID: 23704979]
[42]
Gratzinger, D.; Advani, R.; Zhao, S.; Talreja, N.; Tibshirani, R.J.; Shyam, R.; Horning, S.; Sehn, L.H.; Farinha, P.; Briones, J.; Lossos, I.S.; Gascoyne, R.D.; Natkunam, Y. Lymphoma cell VEGFR2 expression detected by immunohistochemistry predicts poor overall survival in diffuse large B cell lymphoma treated with immunochemotherapy (R-CHOP). Br. J. Haematol., 2010, 148(2), 235-244.
[http://dx.doi.org/10.1111/j.1365-2141.2009.07942.x] [PMID: 19821819]
[43]
Fan, F.; Wey, J.S.; McCarty, M.F.; Belcheva, A.; Liu, W.; Bauer, T.W.; Somcio, R.J.; Wu, Y.; Hooper, A.; Hicklin, D.J.; Ellis, L.M. Expression and function of vascular endothelial growth factor receptor-1 on human colorectal cancer cells. Oncogene, 2005, 24(16), 2647-2653.
[http://dx.doi.org/10.1038/sj.onc.1208246] [PMID: 15735759]
[44]
Lesslie, D.P.; Summy, J.M.; Parikh, N.U.; Fan, F.; Trevino, J.G.; Sawyer, T.K.; Metcalf, C.A.; Shakespeare, W.C.; Hicklin, D.J.; Ellis, L.M.; Gallick, G.E. Vascular endothelial growth factor receptor-1 mediates migration of human colorectal carcinoma cells by activation of Src family kinases. Br. J. Cancer, 2006, 94(11), 1710-1717.
[http://dx.doi.org/10.1038/sj.bjc.6603143] [PMID: 16685275]
[45]
D’Haene, N.; Koopmansch, C.; Van Eycke, Y.R.; Hulet, F.; Allard, J.; Bouri, S.; Rorive, S.; Remmelink, M.; Decaestecker, C.; Maris, C.; Salmon, I. The prognostic value of the combination of low VEGFR-1 and High VEGFR-2 expression in endothelial cells of colorectal cancer. Int. J. Mol. Sci., 2018, 19(11)E3536
[http://dx.doi.org/10.3390/ijms19113536] [PMID: 30423986]
[46]
Kopparapu, P.K.; Boorjian, S.A.; Robinson, B.D.; Downes, M.; Gudas, L.J.; Mongan, N.P.; Persson, J.L. Expression of VEGF and its receptors VEGFR1/VEGFR2 is associated with invasiveness of bladder cancer. Anticancer Res., 2013, 33(6), 2381-2390.
[PMID: 23749886]
[47]
Fujiwaki, R.; Iida, K.; Kanasaki, H.; Ozaki, T.; Hata, K.; Miyazaki, K. Cyclooxygenase-2 expression in endometrial cancer: Correlation with microvessel count and expression of vascular endothelial growth factor and thymidine phosphorylase. Hum. Pathol., 2002, 33(2), 213-219.
[http://dx.doi.org/10.1053/hupa.2002.31292]] [PMID: 11957147]