Analysis of Abdominal Computed Tomography Images for Automatic Liver Cancer Diagnosis Using Image Processing Algorithm

Page: [972 - 982] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: The application of image processing algorithms for medical image analysis has been found effectual in the past years. Imaging techniques provide assistance to the radiologists and physicians for the diagnosis of abnormalities in different organs.

Objectives: The proposed algorithm is designed for automatic computer-aided diagnosis of liver cancer from low contrast CT images. The idea expressed in this article is to classify the malignancy of the liver tumor ahead of liver segmentation and to locate HCC burden on the liver.

Methods: A novel Fuzzy Linguistic Constant (FLC) is designed for image enhancement. To classify the enhanced liver image as cancerous or non-cancerous, fuzzy membership function is applied. The extracted features are assessed for malignancy and benignancy using the structural similarity index. The malignant CT image is further processed for automatic tumor segmentation and grading by applying morphological image processing techniques.

Results: The validity of the concept is verified on a dataset of 179 clinical cases which consist of 98 benign and 81 malignant liver tumors. Classification accuracy of 98.3% is achieved by Support Vector Machine (SVM). The proposed method has the ability to automatically segment the tumor with an improved detection rate of 78% and a precision value of 0.6.

Conclusion: The algorithm design offers an efficient tool to the radiologist in classifying the malignant cases from benign cases. The CAD system allows automatic segmentation of tumor and locates tumor burden on the liver. The methodology adopted can aid medical practitioners in tumor diagnosis and surgery planning.

Keywords: Liver, image processing, classification, segmentation, CT, tumor burden, benign, malignant.

Graphical Abstract

[1]
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61(2): 69-90.
[http://dx.doi.org/10.3322/caac.20107] [PMID: 21296855]
[2]
Singh GK, Siahpush M, Altekruse SF. Time trends in liver cancer mortality, incidence, and risk factors by unemployment level and race/ethnicity, United States, 1969-2011. J Community Health 2013; 38(5): 926-40.
[http://dx.doi.org/10.1007/s10900-013-9703-z] [PMID: 23689953]
[3]
Okumura E, Sanada S, Suzuki M, Matsui O. A computer-aided temporal and dynamic subtraction technique of the liver for detection of small hepatocellular carcinomas on abdominal CT images. Phys Med Biol 2006; 51(19): 4759-71.
[http://dx.doi.org/10.1088/0031-9155/51/19/003] [PMID: 16985269]
[4]
Arakeri MP, Reddy RMG. Recent advances and potential of computer aided diagnosis of liver cancer on computed tomography images. In: Venugopal KR, Patnaik LM, Eds. Computer Networks and Intelligent Computing Communications in Computer and Information Science. Springer Berlin, Heidelberg: 2011; pp. 246-51.
[http://dx.doi.org/10.1007/978-3-642-22786-8_31]
[5]
Mendrik AM, Vonken EJ, Rutten A, Viergever MA, van Ginneken B. Noise reduction in computed tomography scans using 3-D anisotropic hybrid diffusion with continuous switch. IEEE Trans Med Imaging 2009; 28(10): 1585-94.
[http://dx.doi.org/10.1109/TMI.2009.2022368] [PMID: 19783496]
[6]
Andreucci M, Solomon R, Tasanarong A. Side effects of radiographic contrast media: pathogenesis, risk factors, and prevention. BioMed Res Int 2014; 2014741018
[http://dx.doi.org/10.1155/2014/741018] [PMID: 24895606]
[7]
Kalra MK, Maher MM, Toth TL, et al. Strategies for CT radiation dose optimization. Radiology 2004; 230(3): 619-28.
[http://dx.doi.org/10.1148/radiol.2303021726] [PMID: 14739312]
[8]
Chouhan R, Jha RK, Biswas PK. Enhancement of dark and low-contrast images using dynamic stochastic resonance. IET Image Process 2013; 7(2): 174-84.
[http://dx.doi.org/10.1049/iet-ipr.2012.0114]
[9]
Sim KS, Tso CP, Tan YY. Recursive sub-image histogram equalization applied to gray scale images. Pattern Recognit Lett 2007; 28(10): 1209-21.
[http://dx.doi.org/10.1016/j.patrec.2007.02.003]
[10]
Pizer SM, Amburn EP, Austin JD, et al. Adaptive histogram equalization and its variations. Comput Vis Graph Image Process 1987; 39(3): 355-68.
[http://dx.doi.org/10.1016/S0734-189X(87)80186-X]
[11]
Al-Ameen Z, Sulong G, Rehman A, Al-Dhelaan A, Saba T, Al-Rodhaan M. An innovative technique for contrast enhancement of computed tomography images using normalized gamma-corrected contrast-limited adaptive histogram equalization. EURASIP J Adv Signal Process 2015; 2015(1): 32.
[http://dx.doi.org/10.1186/s13634-015-0214-1]
[12]
Sheet D, Garud H, Suveer A, Mahadevappa M, Chatterjee J. Brightness preserving dynamic fuzzy histogram equalization. IEEE Trans Consum Electron 2010; 56(4): 2475-80.
[http://dx.doi.org/10.1109/TCE.2010.5681130]
[13]
Chaira T. An improved medical image enhancement scheme using Type II fuzzy set. Appl Soft Comput J 2014; 25: 293-308.
[http://dx.doi.org/10.1016/j.asoc.2014.09.004]
[14]
Anand S, Gayathri S. Mammogram image enhancement by two-stage adaptive histogram equalization. Optik (Stuttg) 2015; 126(21): 3150-2.
[http://dx.doi.org/10.1016/j.ijleo.2015.07.069]
[15]
Sreeja P, Hariharan S. An improved feature based image fusion technique for enhancement of liver lesions. Biocybern Biomed Eng 2018; 38(3): 611-23.
[http://dx.doi.org/10.1016/j.bbe.2018.03.004]
[16]
Panetta K, Zhou Y, Agaian S, Jia H. Nonlinear unsharp masking for mammogram enhancement. IEEE Trans Inf Technol Biomed 2011; 15(6): 918-28.
[http://dx.doi.org/10.1109/TITB.2011.2164259] [PMID: 21843996]
[17]
Das A, Panda SS, Sabut S. Delineation and classification of liver cancer using level set method in CT images. Biomed Engineer 2017; 29(6)1750047
[18]
Chang CC, Chen HH, Chang YC, et al. Computer-aided diagnosis of liver tumors on computed tomography images. Comput Methods Programs Biomed 2017; 145: 45-51.
[http://dx.doi.org/10.1016/j.cmpb.2017.04.008] [PMID: 28552125]
[19]
Chen EL, Chung PC, Chen CL, Tsai HM, Chang CI. An automatic diagnostic system for CT liver image classification. IEEE Trans Biomed Eng 1998; 45(6): 783-94.
[http://dx.doi.org/10.1109/10.678613] [PMID: 9609943]
[20]
Diamant I, Hoogi A, Beaulieu CF, et al. Improved patch-based automated liver lesion classification by separate analysis of the interior and boundary regions. IEEE J Biomed Health Inform 2016; 20(6): 1585-94.
[http://dx.doi.org/10.1109/JBHI.2015.2478255] [PMID: 26372661]
[21]
Roy S, Chi Y, Liu J, Venkatesh SK, Brown MS. Three-dimensional spatiotemporal features for fast content-based retrieval of focal liver lesions. IEEE Trans Biomed Eng 2014; 61(11): 2768-78.
[http://dx.doi.org/10.1109/TBME.2014.2329057] [PMID: 24919041]
[22]
Alahmer H, Ahmed A. Computer-aided classification of liver lesions from CT images based on multiple ROI. Procedia Comput Sci 2016; 90: 80-6.
[http://dx.doi.org/10.1016/j.procs.2016.07.027]
[23]
Qiu JJ, Wu Y, Hui B, Chen J, Ji L, Wang M. A novel texture analysis method based on reverse biorthogonal wavelet and co-occurrence matrix applied for classification of hepatocellular carcinoma and hepatic hemangioma. J Med Imaging Health Inform 2018; 8(9): 1835-43.
[http://dx.doi.org/10.1166/jmihi.2018.2516]
[24]
Roth HR, Lu L, Liu J, et al. Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans Med Imaging 2016; 35(5): 1170-81.
[http://dx.doi.org/10.1109/TMI.2015.2482920] [PMID: 26441412]
[25]
Mala K, Sadasivam V, Alagappan S. Neural network based texture analysis of CT images for fatty and cirrhosis liver classification. Appl Soft Comput 2015; 32: 80-6.
[http://dx.doi.org/10.1016/j.asoc.2015.02.034]
[26]
Kumar SS, Moni RS, Rajeesh J. Automatic liver and lesion segmentation: a primary step in diagnosis of liver diseases. Signal Image Video Process 2013; 7(1): 163-72.
[http://dx.doi.org/10.1007/s11760-011-0223-y]
[27]
Massoptier L, Casciaro S. A new fully automatic and robust algorithm for fast segmentation of liver tissue and tumors from CT scans. Eur Radiol 2008; 18(8): 1658-65.
[http://dx.doi.org/10.1007/s00330-008-0924-y] [PMID: 18369633]
[28]
Knops ZF, Maintz JB, Viergever MA, Pluim JP. Normalized mutual information based registration using k-means clustering and shading correction. Med Image Anal 2006; 10(3): 432-9.
[http://dx.doi.org/10.1016/j.media.2005.03.009] [PMID: 16111913]
[29]
Linguraru MG, Richbourg WJ, Liu J, et al. Tumor burden analysis on computed tomography by automated liver and tumor segmentation. IEEE Trans Med Imaging 2012; 31(10): 1965-76.
[http://dx.doi.org/10.1109/TMI.2012.2211887] [PMID: 22893379]
[30]
Huang W, Li N, Lin Z, et al. Liver tumor detection and segmentation using kernel-based extreme learning machine. Conf Proc IEEE Eng Med Biol Soc 2013; 013: 3662-5.
[31]
Alirr OI, Rahni AAA, Golkar E. An automated liver tumour segmentation from abdominal CT scans for hepatic surgical planning. Int J CARS 2018; 13(8): 1169-76.
[http://dx.doi.org/10.1007/s11548-018-1801-z] [PMID: 29860549]
[32]
Kumar YR, Muthukrishnan NM, Mahajan A, et al. Statistical parameter-based automatic liver tumor segmentation from abdominal CT scans: a potiential radiomic signature. Procedia Comput Sci 2016; 93: 446-52.
[http://dx.doi.org/10.1016/j.procs.2016.07.232]
[33]
Raj A, Jayasree M. Automated liver tumor detection using markov random field segmentation. Procedia Technology 2016; 24: 1305-10.
[http://dx.doi.org/10.1016/j.protcy.2016.05.126]
[34]
Ruskó L, Bekes G, Fidrich M. Automatic segmentation of the liver from multi- and single-phase contrast-enhanced CT images. Med Image Anal 2009; 13(6): 871-82.
[http://dx.doi.org/10.1016/j.media.2009.07.009] [PMID: 19692288]
[35]
Liao M, Zhao YQ, Liu XY, et al. Automatic liver segmentation from abdominal CT volumes using graph cuts and border marching. Comput Methods Programs Biomed 2017; 143: 1-12.
[http://dx.doi.org/10.1016/j.cmpb.2017.02.015] [PMID: 28391807]
[36]
Sun C, Guo S, Zhang H, et al. Automatic segmentation of liver tumors from multiphase contrast-enhanced CT images based on FCNs. Artif Intell Med 2017; 83: 58-66.
[http://dx.doi.org/10.1016/j.artmed.2017.03.008] [PMID: 28347562]
[37]
Hoogi A, Subramaniam A, Veerapaneni R, Rubin DL. Adaptive estimation of active contour parameters using convolutional neural networks and texture analysis. IEEE Trans Med Imaging 2017; 36(3): 781-91.
[http://dx.doi.org/10.1109/TMI.2016.2628084] [PMID: 28113927]
[38]
Drozdzal M, Chartrand G, Vorontsov E, et al. Learning normalized inputs for iterative estimation in medical image segmentation. Med Image Anal 2018; 44: 1-13.
[http://dx.doi.org/10.1016/j.media.2017.11.005] [PMID: 29169029]
[39]
Kumar SS, Moni RS, Rajeesh J. An automatic computer-aided diagnosis system for liver tumours on computed tomography images. Comput Electr Eng 2013; 39(5): 1516-26.
[http://dx.doi.org/10.1016/j.compeleceng.2013.02.008]
[40]
Hartung MP, Weerakkody Y. Cases and Figures of hepatic hemangioma Available at: https://radiopaedia.org/articles/hepatic-haemangioma-3
[41]
Ross TJ. Fuzzy logic with engineering applications. 2nd ed. New Mexico: Wiley 2005.
[42]
Heiken JP. Distinguishing benign from malignant liver tumours. Cancer Imaging 2007; 7: S1-S14.
[http://dx.doi.org/10.1102/1470-7330.2007.9084]
[43]
Cuete D. Hepatic hemangioma Available at: https://radiopaedia.org/cases/hepatic-haemangioma-13?lang=us
[44]
Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 2004; 13(4): 600-12.
[http://dx.doi.org/10.1109/TIP.2003.819861] [PMID: 15376593]
[45]
Jayachandran A, Dhanasekaran R. Severity analysis of brain tumor in MRI images using modified multi-texton structure descriptor and kernel-SVM. Arab J Sci Eng 2014; 39(10): 7073-86.
[http://dx.doi.org/10.1007/s13369-014-1334-x]
[46]
Qidwai U, Chen CH. Digital image processing: an algorithmic approach with MATLAB. 1st ed. New York: Chapman and Hall/CRC 2009.
[http://dx.doi.org/10.1201/9781420079517]
[47]
Lidong H, Wei Z, Jun W, Zebin S. Combination of contrast limited adaptive histogram equalization and discrete wavelet transform for image enhancement. IET Image Process 9(10): 908-15.
[http://dx.doi.org/10.1049/iet-ipr.2015.0150]
[48]
Huang RY, Dung LR, Chu CF, Wu YY. Noise removal and contrast enhancement for x-ray images. J Biomed Engineer Med Imaging 2016; 3(1): 56.
[49]
Sundaram M, Ramar K, Arumugam N, Prabin G. Histogram modified local contrast enhancement for mammogram images. Appl Soft Comput 2011; 11(8): 5809-16.
[http://dx.doi.org/10.1016/j.asoc.2011.05.003]
[50]
Lal S, Chandra M. Efficient algorithm for contrast enhancement of natural images. Int Arab J Inf Technol 2014; 11(1): 95-102.
[51]
Trivedi M, Jaiswal A, Bhateja V. A no-reference image quality index for contrast and sharpness measurement. 3rd IEEE International Advance Computing Conference (IACC) Ghaziabad, India IEEE 2013 1234-9.
[http://dx.doi.org/10.1109/IAdCC.2013.6514404]
[52]
Li C, Xu C, Gui C, Fox MD. Distance regularized level set evolution and its application to image segmentation. IEEE Trans Image Process 2010; 19(12): 3243-54.
[http://dx.doi.org/10.1109/TIP.2010.2069690] [PMID: 20801742]
[53]
Zhang K, Zhang L, Song H, Zhou W. Active contours with selective local or global segmentation: a new formulation and level set method. Image Vis Comput 2010; 28(4): 668-76.
[http://dx.doi.org/10.1016/j.imavis.2009.10.009]
[54]
Sethi G, Saini BS, Singh D. Segmentation of cancerous regions in liver using an edge-based and phase congruent region enhancement method. Comput Electr Eng 2016; 53: 244-62.
[http://dx.doi.org/10.1016/j.compeleceng.2015.06.025]
[55]
Schwier M, Moltz JH, Peitgen HO. Object-based analysis of CT images for automatic detection and segmentation of hypodense liver lesions. Int J Cars 2011; 6(6): 737-47.
[http://dx.doi.org/10.1007/s11548-011-0562-8] [PMID: 21516506]
[56]
Militzer A, Hager T, Jager F, Tietjen C, Hornegger J. Automatic detection and segmentation of focal liver lesions in contrast enhanced CT images. In: 20th International Conference on Pattern Recognition IEEE: Istanbul, Turkey 2010; pp 2524-7.
[http://dx.doi.org/10.1109/ICPR.2010.618]