Current Status in the Design and Development of Agonists and Antagonists of Adenosine A3 Receptor as Potential Therapeutic Agents

Page: [2772 - 2787] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Adenosine receptors (ARs) belongs to the family of G-protein coupled receptors (GPCR) that are responsible for the modulation of a wide variety of physiological functions. The ARs are also implicated in many diseases such as cancer, arthritis, cardiovascular and renal diseases. The adenosine A3 receptor (A3AR) has emerged as a potential drug target for the progress of new and effective therapeutic agents for the treatment of various pathological conditions. This receptor’s involvement in many diseases and its validity as a target has been established by many studies. Both agonists and antagonists of A3AR have been extensively investigated in the last decade with the goal of developing novel drugs for treating diseases related to immune disorders, inflammation, cancer, and others. In this review, we shall focus on the medicinal chemistry of A3AR ligands, exploring the diverse chemical classes that have been projected as future leading drug candidates. Also, the recent advances in the therapeuetic applications of A3AR ligands are highlighted.

Keywords: Adenosine receptor, adenosine a3 receptor, bioactive heterocycles, immune disorders, anti-inflammatory, neuroprotective.

[1]
Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pharmacology of adenosine receptors: The state of the art. Physiol Rev 2018; 98(3): 1591-625.
[http://dx.doi.org/10.1152/physrev.00049.2017] [PMID: 29848236]
[2]
Varani K, Vincenzi F, Ravani A, et al. Adenosine receptors as a biological pathway for the anti-inflammatory and beneficial effects of low frequency low energy pulsed electromagnetic fields. Mediat Inflam 2017.2017.
[http://dx.doi.org/10.1155/2017/2740963]
[3]
Müller CE, Jacobson KA. Recent developments in adenosine receptor ligands and their potential as novel drugs. Biochim Biophys Acta 2011; 1808(5): 1290-308.
[http://dx.doi.org/10.1016/j.bbamem.2010.12.017] [PMID: 21185259]
[4]
Müller CE. Medicinal chemistry of adenosine A3 receptor ligands. Curr Top Med Chem 2003; 3(4): 445-62.
[http://dx.doi.org/10.2174/1568026033392174] [PMID: 12570761]
[5]
Jacobson KA, Merighi S, Varani K, et al. A3 adenosine receptors as modulators of inflammation: From medicinal chemistry to therapy. Med Res Rev 2018; 38(4): 1031-72.
[http://dx.doi.org/10.1002/med.21456] [PMID: 28682469]
[6]
Gaspar A, Reis J, Kachler S, et al. Discovery of novel A3 adenosine receptor ligands based on chromone scaffold. Biochem Pharmacol 2012; 84(1): 21-9.
[http://dx.doi.org/10.1016/j.bcp.2012.03.007] [PMID: 22433284]
[7]
Almerico AM, Tutone M, Pantano L, Lauria A. A3 adenosine receptor: Homology modeling and 3D-QSAR studies. J Mol Graph Model 2013; 42: 60-72.
[http://dx.doi.org/10.1016/j.jmgm.2013.03.001] [PMID: 23567933]
[8]
Jacobson KA. Introduction to adenosine receptors as therapeutic targets Adenosine receptors in health and disease. Springer 2009; pp. 1-24.
[9]
Fishman P, Bar-Yehuda S, Liang BT, Jacobson KA. Pharmacological and therapeutic effects of A3 adenosine receptor agonists. Drug Discov Today 2012; 17(7-8): 359-66.
[http://dx.doi.org/10.1016/j.drudis.2011.10.007] [PMID: 22033198]
[10]
Cohen S, Stemmer SM, Zozulya G, et al. CF102 an A3 adenosine receptor agonist mediates anti-tumor and anti-inflammatory effects in the liver. J Cell Physiol 2011; 226(9): 2438-47.
[http://dx.doi.org/10.1002/jcp.22593] [PMID: 21660967]
[11]
Alnouri MW, Jepards S, Casari A, Schiedel AC, Hinz S, Müller CE. Selectivity is species-dependent: Characterization of standard agonists and antagonists at human, rat, and mouse adenosine receptors. Purinergic Signal 2015; 11(3): 389-407.
[http://dx.doi.org/10.1007/s11302-015-9460-9] [PMID: 26126429]
[12]
Rose AS, Bradley AR, Valasatava Y, Duarte JM, Prlić A, Rose PW. NGL viewer: Web-based molecular graphics for large complexes. Bioinformatics 2018; 34(21): 3755-8.
[http://dx.doi.org/10.1093/bioinformatics/bty419] [PMID: 29850778]
[13]
Sun B, Bachhawat P, Chu ML-H, et al. Crystal structure of the adenosine A2A receptor bound to an antagonist reveals a potential allosteric pocket. Proc Natl Acad Sci USA 2017; 114(8): 2066-71.
[http://dx.doi.org/10.1073/pnas.1621423114] [PMID: 28167788]
[14]
Jacobson KA, Gao Z-G. Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 2006; 5(3): 247-64.
[http://dx.doi.org/10.1038/nrd1983] [PMID: 16518376]
[15]
Jacobson KA. Introduction to adenosine receptors as therapeutic targets Adenosine receptors in health and disease. Springer 2009; pp. 1-24.
[16]
Khasim S, Pran Kishore D, Raghuprasad M, et al. 7-Amino-2-aryl/heteroaryl-5-oxo-5,8-dihydro[1,2,4]triazolo[1,5-a]pyridine-6-carbonitriles: Synthesis and Adenosine Receptor Binding Studies. Chem Biol Drug Des 2019; 94(2): 1568-73.
[http://dx.doi.org/10.1111/cbdd.13528]
[17]
Deb PK. Recent updates in the computer aided drug design strategies for the discovery of agonists and antagonists of adenosine receptors. Curr Pharm Des 2019; 25(7): 747-9.
[http://dx.doi.org/10.2174/1381612825999190515120510] [PMID: 31232230]
[18]
Ayoub BM, Attia YM, Ahmed MS. Structural re-positioning, in silico molecular modelling, oxidative degradation, and biological screening of linagliptin as adenosine 3 receptor (ADORA3) modulators targeting hepatocellular carcinoma. J Enzyme Inhib Med Chem 2018; 33(1): 858-66.
[http://dx.doi.org/10.1080/14756366.2018.1462801] [PMID: 29768061]
[19]
Gao Z-G, Kim S-K, Biadatti T, et al. Structural determinants of A(3) adenosine receptor activation: Nucleoside ligands at the agonist/antagonist boundary. J Med Chem 2002; 45(20): 4471-84.
[http://dx.doi.org/10.1021/jm020211+] [PMID: 12238926]
[20]
Borea PA, Varani K, Vincenzi F, et al. The A3 adenosine receptor: History and perspectives. Pharmacol Rev 2015; 67(1): 74-102.
[http://dx.doi.org/10.1124/pr.113.008540] [PMID: 25387804]
[21]
Deb PK, Al-Attraqchi O, Al-Qattan MN, Prasad MR, Tekade RK. Applications of computers in pharmaceutical product formulation dosage form design parameters. Elsevier 2018; pp. 665-703.
[http://dx.doi.org/10.1016/B978-0-12-814421-3.00019-1]
[22]
Chandrasekaran B, Deb PK, Kachler S, Akkinepalli RR, Mailavaram R, Klotz K-N. Synthesis and adenosine receptors binding studies of new fluorinated analogues of pyrido [2, 3-d] pyrimidines and quinazolines. Med Chem Res 2018; 27(3): 756-67.
[http://dx.doi.org/10.1007/s00044-017-2099-z]
[23]
Ahmed SS, Ahameethunisa A, Santosh W. QSAR and pharmacophore modeling of 4-arylthieno[3, 2-d]pyrimidine derivatives against adenosine receptor of parkinson’s disease. J Theor Comput Chem 2010; 9(06): 975-91.
[http://dx.doi.org/10.1142/S0219633610006146]
[24]
Samanta PN, Kar S, Leszczynski J. Recent advances of In-Silico modeling of potent antagonists for the adenosine receptors. Curr Pharm Des 2019; 25(7): 750-73.
[http://dx.doi.org/10.2174/1381612825666190304123545] [PMID: 30836910]
[25]
Agrawal N, Chandrasekaran B, Al-Aboudi A. Recent advances in the in-silico structure-based and ligand-based approaches for the design and discovery of agonists and antagonists of A2A adenosine receptor. Curr Pharm Des 2019; 25(7): 774-82.
[http://dx.doi.org/10.2174/1381612825666190306162006] [PMID: 30848185]
[26]
Al-Shar’i NA, Al-Balas QA. Molecular dynamics simulations of adenosine receptors: Advances, applications and trends. Curr Pharm Des 2019; 25(7): 783-816.
[http://dx.doi.org/10.2174/1381612825666190304123414] [PMID: 30834825]
[27]
Mahmod Al-Qattan MN, Mordi MN. Molecular basis of modulating adenosine receptors activities. Curr Pharm Des 2019; 25(7): 817-31.
[http://dx.doi.org/10.2174/1381612825666190304122624] [PMID: 30834826]
[28]
Deb PK, Chandrasekaran B, Mailavaram R, Tekade RK, Jaber AMY. Molecular modeling approaches for the discovery of adenosine A2B receptor antagonists: Current status and future perspectives. Drug Discov Today 2019; pii:S1359-6446(19): 30045-5..
[http://dx.doi.org/10.1016/j.drudis.2019.05.011] [PMID: 31103731]
[29]
Pran Kishore D, Balakumar C, Raghuram Rao A, Roy PP, Roy K. QSAR of adenosine receptor antagonists: Exploring physicochemical requirements for binding of pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine derivatives with human adenosine A(3) receptor subtype. Bioorg Med Chem Lett 2011; 21(2): 818-23.
[http://dx.doi.org/10.1016/j.bmcl.2010.11.094] [PMID: 21163647]
[30]
Baraldi PG, Fruttarolo F, Tabrizi MA, et al. Synthesis and biological evaluation of novel N6-[4-(substituted) sulfonamidophenylcarbamoyl]adenosine-5′-uronamides as A3 adenosine receptor agonists. J Med Chem 2004; 47(22): 5535-40.
[http://dx.doi.org/10.1021/jm0408161] [PMID: 15481989]
[31]
DeNinno MP, Masamune H, Chenard LK, et al. 3′-Aminoadenosine-5′-uronamides: Discovery of the first highly selective agonist at the human adenosine A3 receptor. J Med Chem 2003; 46(3): 353-5.
[http://dx.doi.org/10.1021/jm0255724] [PMID: 12540233]
[32]
Jeong LS, Lee HW, Jacobson KA, et al. Structure-activity relationships of 2-chloro-N6-substituted-4′-thioadenosine-5′-uronamides as highly potent and selective agonists at the human A3 adenosine receptor. J Med Chem 2006; 49(1): 273-81.
[http://dx.doi.org/10.1021/jm050595e] [PMID: 16392812]
[33]
Gao Z-G, Jacobson KA. Partial agonists for A(3) adenosine receptors. Curr Top Med Chem 2004; 4(8): 855-62.
[http://dx.doi.org/10.2174/1568026043450989] [PMID: 15078216]
[34]
van Tilburg EW, van der Klein PA, von Frijtag Drabbe Künzel J, et al. 5′-O-alkyl ethers of N,2-substituted adenosine derivatives: Partial agonists for the adenosine A1 and A3 receptors. J Med Chem 2001; 44(18): 2966-75.
[http://dx.doi.org/10.1021/jm001114o] [PMID: 11520205]
[35]
van Tilburg EW, von Frijtag Drabbe Künzel J, de Groote M, IJzerman AP. 2,5′-Disubstituted adenosine derivatives: Evaluation of selectivity and efficacy for the adenosine A1, A2A, and A3 receptor. J Med Chem 2002; 45(2): 420-9.
[http://dx.doi.org/10.1021/jm010952v] [PMID: 11784146]
[36]
Gao Z-G, Jeong LS, Moon HR, et al. Structural determinants of efficacy at A3 adenosine receptors: Modification of the ribose moiety. Biochem Pharmacol 2004; 67(5): 893-901.
[http://dx.doi.org/10.1016/j.bcp.2003.10.006] [PMID: 15104242]
[37]
Azuaje J, Carbajales C, González-Gómez M, et al. Pyrazin-2(1H)-ones as a novel class of selective A3 adenosine receptor antagonists. Future Med Chem 2015; 7(11): 1373-80.
[http://dx.doi.org/10.4155/fmc.15.69] [PMID: 26230877]
[38]
Jung K-Y, Kim S-K, Gao Z-G, et al. Structure-activity relationships of thiazole and thiadiazole derivatives as potent and selective human adenosine A3 receptor antagonists. Bioorg Med Chem 2004; 12(3): 613-23.
[http://dx.doi.org/10.1016/j.bmc.2003.10.041] [PMID: 14738972]
[39]
Miwatashi S, Arikawa Y, Matsumoto T, et al. Synthesis and biological activities of 4-phenyl-5-pyridyl-1,3-thiazole derivatives as selective adenosine A3 antagonists. Chem Pharm Bull (Tokyo) 2008; 56(8): 1126-37.
[http://dx.doi.org/10.1248/cpb.56.1126] [PMID: 18670113]
[40]
Yaziji V, Rodríguez D, Gutiérrez-de-Terán H, et al. Pyrimidine derivatives as potent and selective A3 adenosine receptor antagonists. J Med Chem 2011; 54(2): 457-71.
[http://dx.doi.org/10.1021/jm100843z] [PMID: 21186795]
[41]
Cosimelli B, Greco G, Ehlardo M, et al. Derivatives of 4-amino-6-hydroxy-2-mercaptopyrimidine as novel, potent, and selective A3 adenosine receptor antagonists. J Med Chem 2008; 51(6): 1764-70.
[http://dx.doi.org/10.1021/jm701159t] [PMID: 18269230]
[42]
van Rhee AM, Jiang JL, Melman N, Olah ME, Stiles GL, Jacobson KA. Interaction of 1,4-dihydropyridine and pyridine derivatives with adenosine receptors: Selectivity for A3 receptors. J Med Chem 1996; 39(15): 2980-9.
[http://dx.doi.org/10.1021/jm9600205] [PMID: 8709132]
[43]
Jiang JL, van Rhee AM, Melman N, Ji XD, Jacobson KA. 6-phenyl-1,4-dihydropyridine derivatives as potent and selective A3 adenosine receptor antagonists. J Med Chem 1996; 39(23): 4667-75.
[http://dx.doi.org/10.1021/jm960457c] [PMID: 8917655]
[44]
van Muijlwijk-Koezen JE, Timmerman H, Link R, van der Goot H, Ijzerman AP. A novel class of adenosine A3 receptor ligands. 2. Structure affinity profile of a series of isoquinoline and quinazoline compounds. J Med Chem 1998; 41(21): 3994-4000.
[http://dx.doi.org/10.1021/jm980037i] [PMID: 9767637]
[45]
van Muijlwijk-Koezen JE, Timmerman H, van der Goot H, et al. Isoquinoline and quinazoline urea analogues as antagonists for the human adenosine A(3) receptor. J Med Chem 2000; 43(11): 2227-38.
[http://dx.doi.org/10.1021/jm000002u] [PMID: 10841801]
[46]
Jacobson KA, Park K-S, Jiang J-L, et al. Pharmacological characterization of novel A3 adenosine receptor-selective antagonists. Neuropharmacology 1997; 36(9): 1157-65.
[http://dx.doi.org/10.1016/S0028-3908(97)00104-4] [PMID: 9364471]
[47]
Karton Y, Jiang JL, Ji XD, et al. Synthesis and biological activities of flavonoid derivatives as A3 adenosine receptor antagonists. J Med Chem 1996; 39(12): 2293-301.
[http://dx.doi.org/10.1021/jm950923i] [PMID: 8691424]
[48]
Jacobson KA, Moro S, Manthey JA, West PL, Ji X-d. Interactions of flavones and other phytochemicals with adenosine receptors Flavonoids in Cell Function. Springer 2002; pp. 163-71.
[49]
Taliani S, La Motta C, Mugnaini L, et al. Novel N2-substituted pyrazolo[3,4-d]pyrimidine adenosine A3 receptor antagonists: Inhibition of A3-mediated human glioblastoma cell proliferation. J Med Chem 2010; 53(10): 3954-63.
[http://dx.doi.org/10.1021/jm901785w] [PMID: 20408530]
[50]
Poli D, Falsini M, Varano F, et al. Imidazo[1,2-a]pyrazin-8-amine core for the design of new adenosine receptor antagonists: Structural exploration to target the A3 and A2A subtypes. Eur J Med Chem 2017; 125: 611-28.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.076] [PMID: 27721147]
[51]
Poli D, Catarzi D, Colotta V, et al. The identification of the 2-phenylphthalazin-1(2H)-one scaffold as a new decorable core skeleton for the design of potent and selective human A3 adenosine receptor antagonists. J Med Chem 2011; 54(7): 2102-13.
[http://dx.doi.org/10.1021/jm101328n] [PMID: 21401121]
[52]
Deb PK, Mailavaram R, Chandrasekaran B, et al. Synthesis, adenosine receptor binding and molecular modelling studies of novel thieno[2,3-d]pyrimidine derivatives. Chem Biol Drug Des 2018; 91(4): 962-9.
[http://dx.doi.org/10.1111/cbdd.13155] [PMID: 29194979]
[53]
Baraldi PG, Fruttarolo F, Tabrizi MA, et al. Design, synthesis, and biological evaluation of C9- and C2-substituted pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines as new A2A and A3 adenosine receptors antagonists. J Med Chem 2003; 46(7): 1229-41.
[http://dx.doi.org/10.1021/jm021023m] [PMID: 12646033]
[54]
Cheong SL, Dolzhenko A, Kachler S, et al. The significance of 2-furyl ring substitution with a 2-(para-substituted) aryl group in a new series of pyrazolo-triazolo-pyrimidines as potent and highly selective hA(3) adenosine receptors antagonists: New insights into structure-affinity relationship and receptor-antagonist recognition. J Med Chem 2010; 53(8): 3361-75.
[http://dx.doi.org/10.1021/jm100049f] [PMID: 20307065]
[55]
Baraldi PG, Tabrizi MA, Romagnoli R, et al. Pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine ligands, new tools to characterize A3 adenosine receptors in human tumor cell lines. Curr Med Chem 2005; 12(11): 1319-29.
[http://dx.doi.org/10.2174/0929867054020963] [PMID: 15974999]
[56]
Baraldi PG, Tabrizi MA, Preti D, et al. New 2-arylpyrazolo[4,3-c]quinoline derivatives as potent and selective human A3 adenosine receptor antagonists. J Med Chem 2005; 48(15): 5001-8.
[http://dx.doi.org/10.1021/jm050125k] [PMID: 16033279]
[57]
Colotta V, Catarzi D, Varano F, et al. New 2-arylpyrazolo[3,4-c]quinoline derivatives as potent and selective human A3 adenosine receptor antagonists. Synthesis, pharmacological evaluation, and ligand-receptor modeling studies. J Med Chem 2007; 50(17): 4061-74.
[http://dx.doi.org/10.1021/jm070123v] [PMID: 17665891]
[58]
Colotta V, Capelli F, Lenzi O, et al. Novel potent and highly selective human A(3) adenosine receptor antagonists belonging to the 4-amido-2-arylpyrazolo[3,4-c]quinoline series: Molecular docking analysis and pharmacological studies. Bioorg Med Chem 2009; 17(1): 401-10.
[http://dx.doi.org/10.1016/j.bmc.2008.10.018] [PMID: 18996701]
[59]
Kim Y-C, Ji XD, Jacobson KA. Derivatives of the triazoloquinazoline adenosine antagonist (CGS15943) are selective for the human A3 receptor subtype. J Med Chem 1996; 39(21): 4142-8.
[http://dx.doi.org/10.1021/jm960482i] [PMID: 8863790]
[60]
Kim Y-C, de Zwart M, Chang L, et al. Derivatives of the triazoloquinazoline adenosine antagonist (CGS 15943) having high potency at the human A2B and A3 receptor subtypes. J Med Chem 1998; 41(15): 2835-45.
[http://dx.doi.org/10.1021/jm980094b] [PMID: 9667972]
[61]
Catarzi D, Varano F, Poli D, et al. 1,2,4-triazolo[1,5-a]quinoxaline derivatives and their simplified analogues as adenosine A3 receptor antagonists. Synthesis, structure-affinity relationships and molecular modeling studies. Bioorg Med Chem 2015; 23(1): 9-21.
[http://dx.doi.org/10.1016/j.bmc.2014.11.033] [PMID: 25497490]
[62]
Catarzi D, Colotta V, Varano F, et al. 2-aryl-8-chloro-1,2,4-triazolo[1,5-a]quinoxalin-4-amines as highly potent A1 and A3 adenosine receptor antagonists. Bioorg Med Chem 2005; 13(3): 705-15.
[http://dx.doi.org/10.1016/j.bmc.2004.10.050] [PMID: 15653338]
[63]
Colotta V, Catarzi D, Varano F, et al. 1,2,4-Triazolo[4,3-a]quinoxalin-1-one: A versatile tool for the synthesis of potent and selective adenosine receptor antagonists. J Med Chem 2000; 43(6): 1158-64.
[http://dx.doi.org/10.1021/jm991096e] [PMID: 10737748]
[64]
Colotta V, Catarzi D, Varano F, et al. 1,2,4-triazolo[4,3-a]quinoxalin-1-one moiety as an attractive scaffold to develop new potent and selective human A3 adenosine receptor antagonists: Synthesis, pharmacological, and ligand-receptor modeling studies. J Med Chem 2004; 47(14): 3580-90.
[http://dx.doi.org/10.1021/jm031136l] [PMID: 15214785]
[65]
Lenzi O, Colotta V, Catarzi D, et al. 4-amido-2-aryl-1,2,4-triazolo[4,3-a]quinoxalin-1-ones as new potent and selective human A3 adenosine receptor antagonists. synthesis, pharmacological evaluation, and ligand-receptor modeling studies. J Med Chem 2006; 49(13): 3916-25.
[http://dx.doi.org/10.1021/jm060373w] [PMID: 16789747]
[66]
Catarzi D, Colotta V, Varano F, et al. 1,2,4-Triazolo[1,5-a]quinoxaline as a versatile tool for the design of selective human A3 adenosine receptor antagonists: Synthesis, biological evaluation, and molecular modeling studies of 2-(hetero)aryl- and 2-carboxy-substituted derivatives. J Med Chem 2005; 48(25): 7932-45.
[http://dx.doi.org/10.1021/jm0504149] [PMID: 16335918]
[67]
Okamura T, Kurogi Y, Nishikawa H, Hashimoto K, Fujiwara H, Nagao Y. 1,2,4-Triazolo[5,1-i]purine derivatives as highly potent and selective human adenosine A(3) receptor ligands. J Med Chem 2002; 45(17): 3703-8.
[http://dx.doi.org/10.1021/jm010570p] [PMID: 12166943]
[68]
Foster DJ, Conn PJ. Allosteric modulation of GPCRs: New insights and potential utility for treatment of schizophrenia and other CNS disorders. Neuron Full form 2017; 94(3): 431-6..
[http://dx.doi.org/10.1016/j.neuron.2017.03.016]
[69]
Kenakin T. What is pharmacological ‘affinity’? Relevance to biased agonism and antagonism. Trends Pharmacol Sci 2014; 35(9): 434-41.
[http://dx.doi.org/10.1016/j.tips.2014.06.003] [PMID: 25042457]
[70]
Heitman LH, Göblyös A, Zweemer AM, et al. A series of 2,4-disubstituted quinolines as a new class of allosteric enhancers of the adenosine A3 receptor. J Med Chem 2009; 52(4): 926-31.
[http://dx.doi.org/10.1021/jm8014052] [PMID: 19161279]
[71]
Gao Z-G, Kim SG, Soltysiak KA, Melman N, IJzerman AP, Jacobson KA. Selective allosteric enhancement of agonist binding and function at human A3 adenosine receptors by a series of imidazoquinoline derivatives. Mol Pharmacol 2002; 62(1): 81-9.
[http://dx.doi.org/10.1124/mol.62.1.81] [PMID: 12065758]
[72]
Göblyös A, Brussee J, Ijzerman AP, Gao Z-G, Jacobson KA. 3 adenosine receptor allosteric modulators. Google Patents US9326978B2. 2016.
[73]
Gao Z-G, Van Muijlwijk-Koezen JE, Chen A, Müller CE, Ijzerman AP, Jacobson KA. Allosteric modulation of A(3) adenosine receptors by a series of 3-(2-pyridinyl)isoquinoline derivatives. Mol Pharmacol 2001; 60(5): 1057-63.
[http://dx.doi.org/10.1124/mol.60.5.1057] [PMID: 11641434]
[74]
Kiesewetter DO, Lang L, Ma Y, et al. Synthesis and characterization of [76Br]-labeled high-affinity A3 adenosine receptor ligands for positron emission tomography. Nucl Med Biol 2009; 36(1): 3-10.
[http://dx.doi.org/10.1016/j.nucmedbio.2008.10.003] [PMID: 19181263]
[75]
Rivkees SA, Thevananther S, Hao H. Are A3 adenosine receptors expressed in the brain? Neuroreport 2000; 11(5): 1025-30.
[http://dx.doi.org/10.1097/00001756-200004070-00026] [PMID: 10790877]
[76]
Auchampach JA, Gizewski ET, Wan TC, de Castro S, Brown GG Jr, Jacobson KA. Synthesis and pharmacological characterization of [(125)I]MRS5127, a high affinity, selective agonist radioligand for the A3 adenosine receptor. Biochem Pharmacol 2010; 79(7): 967-73.
[http://dx.doi.org/10.1016/j.bcp.2009.11.009] [PMID: 19917269]
[77]
Burnstock G, Pelleg A. Cardiac purinergic signalling in health and disease. Purinergic Signal 2015; 11(1): 1-46.
[http://dx.doi.org/10.1007/s11302-014-9436-1] [PMID: 25527177]
[78]
Headrick JP, Ashton KJ, Rose’meyer RB, Peart JN. Cardiovascular adenosine receptors: Expression, actions and interactions. Pharmacol Ther 2013; 140(1): 92-111.
[http://dx.doi.org/10.1016/j.pharmthera.2013.06.002] [PMID: 23764371]
[79]
Gile J, Eckle T. ADORA 2b signaling in cardioprotection. J Nat Sci 2016; 2(10)e222
[PMID: 27747290]
[80]
Choi I-Y, Lee J-C, Ju C, et al. A3 adenosine receptor agonist reduces brain ischemic injury and inhibits inflammatory cell migration in rats. Am J Pathol 2011; 179(4): 2042-52.
[http://dx.doi.org/10.1016/j.ajpath.2011.07.006] [PMID: 21854743]
[81]
Haeusler D, Grassinger L, Fuchshuber F, et al. Hide and seek: A comparative autoradiographic in vitro investigation of the adenosine A3 receptor. Eur J Nucl Med Mol Imaging 2015; 42(6): 928-39.
[http://dx.doi.org/10.1007/s00259-014-2985-2] [PMID: 25739834]
[82]
Della Latta V, Cabiati M, Rocchiccioli S, Del Ry S, Morales M-A. The role of the adenosinergic system in lung fibrosis. Pharmacol Res 2013; 76: 182-9.
[http://dx.doi.org/10.1016/j.phrs.2013.08.004] [PMID: 23994158]
[83]
Mulloy DP, Sharma AK, Fernandez LG, et al. Adenosine A3 receptor activation attenuates lung ischemia-reperfusion injury. Ann Thorac Surg 2013; 95(5): 1762-7.
[http://dx.doi.org/10.1016/j.athoracsur.2013.01.059] [PMID: 23541429]
[84]
Gazoni LM, Walters DM, Unger EB, Linden J, Kron IL, Laubach VE. Activation of A1, A2A, or A3 adenosine receptors attenuates lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg 2010; 140(2): 440-6.
[http://dx.doi.org/10.1016/j.jtcvs.2010.03.002] [PMID: 20398911]
[85]
Luo C, Yi B, Tao G, et al. Adenosine A3 receptor agonist reduces early brain injury in subarachnoid haemorrhage. Neuroreport 2010; 21(13): 892-6.
[http://dx.doi.org/10.1097/WNR.0b013e32833dbd13] [PMID: 21150487]
[86]
Rosito M, Deflorio C, Limatola C, Trettel F. CXCL16 orchestrates adenosine A3 receptor and MCP-1/CCL2 activity to protect neurons from excitotoxic cell death in the CNS. J Neurosci 2012; 32(9): 3154-63.
[http://dx.doi.org/10.1523/JNEUROSCI.4046-11.2012] [PMID: 22378888]
[87]
Rivera-Oliver M, Díaz-Ríos M. Using caffeine and other adenosine receptor antagonists and agonists as therapeutic tools against neurodegenerative diseases: A review. Life Sci 2014; 101(1-2): 1-9.
[http://dx.doi.org/10.1016/j.lfs.2014.01.083] [PMID: 24530739]
[88]
Galvao J, Elvas F, Martins T, Cordeiro MF, Ambrósio AF, Santiago AR. Adenosine A3 receptor activation is neuroprotective against retinal neurodegeneration. Exp Eye Res 2015; 140: 65-74.
[http://dx.doi.org/10.1016/j.exer.2015.08.009] [PMID: 26297614]
[89]
Nakashima K-I, Iwao K, Inoue T, et al. Stimulation of the adenosine A3 receptor, not the A1 or A2 receptors, promote neurite outgrowth of retinal ganglion cells. Exp Eye Res 2018; 170: 160-8.
[http://dx.doi.org/10.1016/j.exer.2018.02.019] [PMID: 29486164]
[90]
Lee J, Hwang I, Lee JH, Lee HW, Jeong L-S, Ha H. The selective A3AR antagonist LJ-1888 ameliorates UUO-induced tubulointerstitial fibrosis. Am J Pathol 2013; 183(5): 1488-97.
[http://dx.doi.org/10.1016/j.ajpath.2013.07.010] [PMID: 24001475]
[91]
Nayak A, Chandra G, Hwang I, et al. Synthesis and anti-renal fibrosis activity of conformationally locked truncated 2-hexynyl-N(6)-substituted-(N)-methanocarba-nucleosides as A3 adenosine receptor antagonists and partial agonists. J Med Chem 2014; 57(4): 1344-54.
[http://dx.doi.org/10.1021/jm4015313] [PMID: 24456490]
[92]
Zhong Y, Yang Z, Huang W-C, Luo X. Adenosine, adenosine receptors and glaucoma: An updated overview. Biochim Biophys Acta 2013; 1830(4): 2882-90.
[http://dx.doi.org/10.1016/j.bbagen.2013.01.005]
[93]
Varani K, Vincenzi F, Tosi A, et al. Expression and functional role of adenosine receptors in regulating inflammatory responses in human synoviocytes. Br J Pharmacol 2010; 160(1): 101-15.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00667.x] [PMID: 20331607]
[94]
Koscsó B, Csóka B, Pacher P, Haskó G. Investigational A3 adenosine receptor targeting agents. Expert Opin Investig Drugs 2011; 20(6): 757-68.
[http://dx.doi.org/10.1517/13543784.2011.573785] [PMID: 21457061]
[95]
Antonioli L, Csóka B, Fornai M, et al. Adenosine and inflammation: What’s new on the horizon? Drug Discov Today 2014; 19(8): 1051-68.
[http://dx.doi.org/10.1016/j.drudis.2014.02.010] [PMID: 24607729]
[96]
Butler M, Sanmugalingam D, Burton VJ, et al. Impairment of adenosine A3 receptor activity disrupts neutrophil migratory capacity and impacts innate immune function in vivo. Eur J Immunol 2012; 42(12): 3358-68.
[http://dx.doi.org/10.1002/eji.201242655] [PMID: 23027555]
[97]
Corriden R, Self T, Akong-Moore K, et al. Adenosine-A3 receptors in neutrophil microdomains promote the formation of bacteria-tethering cytonemes. EMBO Rep 2013; 14(8): 726-32.
[http://dx.doi.org/10.1038/embor.2013.89] [PMID: 23817552]
[98]
Bar-Yehuda S, Luger D, Ochaion A, et al. Inhibition of experimental auto-immune uveitis by the A3 adenosine receptor agonist CF101. Int J Mol Med 2011; 28(5): 727-31.
[PMID: 21887476]
[99]
Joseph A, Brasington R, Kahl L, Ranganathan P, Cheng TP, Atkinson J. Immunologic rheumatic disorders. J Allergy Clin Immunol 2010; 125(2)(Suppl. 2): S204-15.
[http://dx.doi.org/10.1016/j.jaci.2009.10.067] [PMID: 20176259]
[100]
Weissmann G. The pathogenesis of rheumatoid arthritis. Bull NYU Hosp Jt Dis 2006; 64(1-2): 12-5.
[PMID: 17121483]
[101]
Bekisz JM, Lopez CD, Corciulo C, et al. The role of adenosine receptor activation in attenuating cartilaginous inflammation. Inflammation 2018; 41(4): 1135-41.
[http://dx.doi.org/10.1007/s10753-018-0781-z] [PMID: 29656316]
[102]
Cronstein B. How does methotrexate suppress inflammation? Clin Exp Rheumatol 2010; 28(5)(Suppl. 61): S21-3.
[PMID: 21044428]
[103]
Ernst PB, Garrison JC, Thompson LF. Much ado about adenosine: Adenosine synthesis and function in regulatory T cell biology. J Immunol 2010; 185(4): 1993-8.
[http://dx.doi.org/10.4049/jimmunol.1000108] [PMID: 20686167]
[104]
Varani K, Padovan M, Govoni M, Vincenzi F, Trotta F, Borea PA. The role of adenosine receptors in rheumatoid arthritis. Autoimmun Rev 2010; 10(2): 61-4.
[http://dx.doi.org/10.1016/j.autrev.2010.07.019] [PMID: 20691813]
[105]
Varani K, Padovan M, Vincenzi F, et al. A2A and A3 adenosine receptor expression in rheumatoid arthritis: Upregulation, inverse correlation with disease activity score and suppression of inflammatory cytokine and metalloproteinase release. Arthritis Res Ther 2011; 13(6): R197.
[http://dx.doi.org/10.1186/ar3527] [PMID: 22146575]
[106]
Matsiko A. Cancer immunotherapy making headway. Nat Mater 2018; 17(6): 472.
[http://dx.doi.org/10.1038/s41563-018-0091-8] [PMID: 29795216]
[107]
Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science 2018; 359(6382): 1350-5.
[http://dx.doi.org/10.1126/science.aar4060] [PMID: 29567705]
[108]
Lumniczky K, Candéias SM, Gaipl US, Frey B. Radiation and the immune System: Current knowledge and future perspectives. Front Immunol 2018; 8: 1933.
[http://dx.doi.org/10.3389/fimmu.2017.01933] [PMID: 29410662]
[109]
Yu Y, Cui J. Present and future of cancer immunotherapy: A tumor microenvironmental perspective. Oncol Lett 2018; 16(4): 4105-13.
[http://dx.doi.org/10.3892/ol.2018.9219] [PMID: 30214551]
[110]
Gessi S, Merighi S, Borea PA, Cohen S, Fishman P. Adenosine receptors and current opportunities to treat cancer The Adenosine Receptors. Springer 2018; pp. 543-55.
[111]
Nagaya H, Gotoh A, Kanno T, Nishizaki T. A3 adenosine receptor mediates apoptosis in in vitro RCC4-VHL human renal cancer cells by up-regulating AMID expression. J Urol 2013; 189(1): 321-8.
[http://dx.doi.org/10.1016/j.juro.2012.08.193] [PMID: 23174235]
[112]
Jafari SM, Panjehpour M, Aghaei M, Joshaghani HR, Enderami SEA. A3 adenosine receptor agonist inhibited survival of breast cancer stem cells via GLI‐1 and ERK1/2 pathway. J Cell Biochem 2017; 118(9): 2909-20.
[http://dx.doi.org/10.1002/jcb.25945] [PMID: 28230290]
[113]
Janes K, Esposito E, Doyle T, et al. A3 adenosine receptor agonist prevents the development of paclitaxel-induced neuropathic pain by modulating spinal glial-restricted redox-dependent signaling pathways. Pain 2014; 155(12): 2560-7.
[http://dx.doi.org/10.1016/j.pain.2014.09.016] [PMID: 25242567]
[114]
Chen Z, Janes K, Chen C, et al. Controlling murine and rat chronic pain through A3 adenosine receptor activation. FASEB J 2012; 26(5): 1855-65.
[http://dx.doi.org/10.1096/fj.11-201541] [PMID: 22345405]
[115]
Little JW, Ford A, Symons-Liguori AM, et al. Endogenous adenosine A3 receptor activation selectively alleviates persistent pain states. Brain 2015; 138(Pt 1): 28-35.
[http://dx.doi.org/10.1093/brain/awu330] [PMID: 25414036]
[116]
Paoletta S, Tosh DK, Finley A, et al. Rational design of sulfonated A3 adenosine receptor-selective nucleosides as pharmacological tools to study chronic neuropathic pain. J Med Chem 2013; 56(14): 5949-63.
[http://dx.doi.org/10.1021/jm4007966] [PMID: 23789857]