Recent Progress in the Development of HIV-1 Entry Inhibitors: From Small Molecules to Potent Anti-HIV Agents

Page: [1599 - 1620] Pages: 22

  • * (Excluding Mailing and Handling)

Abstract

Viral entry, the first process in the reproduction of viruses, primarily involves attachment of the viral envelope proteins to membranes of the host cell. The crucial components that play an important role in viral entry include viral surface glycoprotein gp120, viral transmembrane glycoprotein gp41, host cell glycoprotein (CD4), and host cell chemokine receptors (CCR5 and CXCR4). Inhibition of the multiple molecular interactions of these components can restrain viruses, such as HIV-1, from fusion with the host cell, blocking them from reproducing. This review article specifically focuses on the recent progress in the development of small-molecule HIV-1 entry inhibitors and incorporates important aspects of their structural modification that lead to the discovery of new molecular scaffolds with more potency.

Keywords: HIV-1 entry inhibitors, Anti-HIV-1, CXCR4 antagonists, CCR5 antagonists, Fusion inhibitors, CD4 mimic molecules.

Graphical Abstract

[1]
Wilen, C.B.; Tilton, J.C.; Doms, R.W. Molecular mechanisms of HIV entry. Adv. Exp. Med. Biol., 2012, 726, 223-242.
[http://dx.doi.org/10.1007/978-1-4614-0980-9_10] [PMID: 22297516]
[2]
Hallenberger, S.; Bosch, V.; Angliker, H.; Shaw, E.; Klenk, H.D.; Garten, W. Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gp160. Nature, 1992, 360(6402), 358-361.
[http://dx.doi.org/10.1038/360358a0] [PMID: 1360148]
[3]
Chan, D.C.; Fass, D.; Berger, J.M.; Kim, P.S. Core structure of gp41 from the HIV envelope glycoprotein. Cell, 1997, 89(2), 263-273.
[http://dx.doi.org/10.1016/S0092-8674(00)80205-6] [PMID: 9108481]
[4]
Chan, D.C.; Kim, P.S. HIV entry and its inhibition. Cell, 1998, 93(5), 681-684.
[http://dx.doi.org/10.1016/S0092-8674(00)81430-0] [PMID: 9630213]
[5]
Sougrat, R.; Bartesaghi, A.; Lifson, J.D.; Bennett, A.E.; Bess, J.W.; Zabransky, D.J.; Subramaniam, S. Electron tomography of the contact between T cells and SIV/HIV-1: implications for viral entry. PLoS Pathog., 2007, 3(5)e63
[http://dx.doi.org/10.1371/journal.ppat.0030063] [PMID: 17480119]
[6]
Zanetti, G.; Briggs, J.A.G.; Grünewald, K.; Sattentau, Q.J.; Fuller, S.D. Cryo-electron tomographic structure of an immunodeficiency virus envelope complex in situ. PLoS Pathog., 2006, 2(8)e83
[http://dx.doi.org/10.1371/journal.ppat.0020083] [PMID: 16933990]
[7]
Zhu, P.; Chertova, E.; Bess, J., Jr; Lifson, J.D.; Arthur, L.O.; Liu, J.; Taylor, K.A.; Roux, K.H. Electron tomography analysis of envelope glycoprotein trimers on HIV and simian immunodeficiency virus virions. Proc. Natl. Acad. Sci. USA, 2003, 100(26), 15812-15817.
[http://dx.doi.org/10.1073/pnas.2634931100] [PMID: 14668432]
[8]
Zhu, P.; Liu, J.; Bess, J., Jr; Chertova, E.; Lifson, J.D.; Grisé, H.; Ofek, G.A.; Taylor, K.A.; Roux, K.H. Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature, 2006, 441(7095), 847-852.
[http://dx.doi.org/10.1038/nature04817] [PMID: 16728975]
[9]
Zhu, P.; Winkler, H.; Chertova, E.; Taylor, K.A.; Roux, K.H. Cryoelectron tomography of HIV-1 envelope spikes: further evidence for tripod-like legs. PLoS Pathog., 2008, 4(11)e1000203
[http://dx.doi.org/10.1371/journal.ppat.1000203] [PMID: 19008954]
[10]
Magnus, C.; Rusert, P.; Bonhoeffer, S.; Trkola, A.; Regoes, R.R. Estimating the stoichiometry of human immunodeficiency virus entry. J. Virol., 2009, 83(3), 1523-1531.
[http://dx.doi.org/10.1128/JVI.01764-08] [PMID: 19019953]
[11]
Yang, X.; Kurteva, S.; Ren, X.; Lee, S.; Sodroski, J. Stoichiometry of envelope glycoprotein trimers in the entry of human immunodeficiency virus type 1. J. Virol., 2005, 79(19), 12132-12147.
[http://dx.doi.org/10.1128/JVI.79.19.12132-12147.2005] [PMID: 16160141]
[12]
Yang, X.; Kurteva, S.; Ren, X.; Lee, S.; Sodroski, J. Subunit stoichiometry of human immunodeficiency virus type 1 envelope glycoprotein trimers during virus entry into host cells. J. Virol., 2006, 80(9), 4388-4395.
[http://dx.doi.org/10.1128/JVI.80.9.4388-4395.2006] [PMID: 16611898]
[13]
Kwong, P.D.; Wyatt, R.; Sattentau, Q.J.; Sodroski, J.; Hendrickson, W.A. Oligomeric modeling and electrostatic analysis of the gp120 envelope glycoprotein of human immunodeficiency virus. J. Virol., 2000, 74(4), 1961-1972.
[http://dx.doi.org/10.1128/JVI.74.4.1961-1972.2000] [PMID: 10644369]
[14]
Weiss, C.D.; Levy, J.A.; White, J.M. Oligomeric organization of gp120 on infectious human immunodeficiency virus type 1 particles. J. Virol., 1990, 64(11), 5674-5677.
[PMID: 2214033]
[15]
Ashkenazi, A.; Shai, Y. Insights into the mechanism of HIV-1 envelope induced membrane fusion as revealed by its inhibitory peptides. Eur. Biophys. J., 2011, 40(4), 349-357.
[http://dx.doi.org/10.1007/s00249-010-0666-z] [PMID: 21258789]
[16]
Cai, L.; Jiang, S. Development of peptide and small-molecule HIV-1 fusion inhibitors that target gp41. ChemMedChem, 2010, 5(11), 1813-1824.
[http://dx.doi.org/10.1002/cmdc.201000289] [PMID: 20845360]
[17]
Chan, D.C.; Fass, D.; Berger, J.M.; Kim, P.S. Core structure of gp41 from the HIV envelope glycoprotein. Cell, 1997, 89(2), 263-273.
[http://dx.doi.org/10.1016/S0092-8674(00)80205-6] [PMID: 9108481]
[18]
Barré-Sinoussi, F.; Chermann, J.C.; Rey, F.; Nugeyre, M.T.; Chamaret, S.; Gruest, J.; Dauguet, C.; Axler-Blin, C.; Vézinet-Brun, F.; Rouzioux, C.; Rozenbaum, W.; Montagnier, L. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science, 1983, 220(4599), 868-871.
[http://dx.doi.org/10.1126/science.6189183] [PMID: 6189183]
[19]
Gallo, R.C.; Sarin, P.S.; Gelmann, E.P.; Robert-Guroff, M.; Richardson, E.; Kalyanaraman, V.S.; Mann, D.; Sidhu, G.D.; Stahl, R.E.; Zolla-Pazner, S.; Leibowitch, J.; Popovic, M. Isolation of human T-cell leukemia virus in acquired immune deficiency syndrome (AIDS). Science, 1983, 220(4599), 865-867.
[http://dx.doi.org/10.1126/science.6601823] [PMID: 6601823]
[20]
Jacobson, J.M.; Kuritzkes, D.R.; Godofsky, E.; DeJesus, E.; Larson, J.A.; Weinheimer, S.P.; Lewis, S.T. Safety, pharmacokinetics, and antiretroviral activity of multiple doses of ibalizumab (formerly TNX-355), an anti-CD4 monoclonal antibody, in human immunodeficiency virus type 1-infected adults. Antimicrob. Agents Chemother., 2009, 53(2), 450-457.
[http://dx.doi.org/10.1128/AAC.00942-08] [PMID: 19015347]
[21]
Emu, B.; Fessel, J.; Schrader, S.; Kumar, P.; Richmond, G.; Win, S.; Weinheimer, S.; Marsolais, C.; Lewis, S. Phase 3 study of Ibalizumab for multidrug-resistant HIV-1. N. Engl. J. Med., 2018, 379(7), 645-654.
[http://dx.doi.org/10.1056/NEJMoa1711460] [PMID: 30110589]
[22]
Dhody, K.; Pourhassan, N.; Kazempour, K.; Green, D.; Badri, S.; Mekonnen, H.; Burger, D.; Maddon, P.J. PRO 140, a monoclonal antibody targeting CCR5, as a long-acting, single-agent maintenance therapy for HIV-1 infection. HIV Clin. Trials, 2018, 19(3), 85-93.
[http://dx.doi.org/10.1080/15284336.2018.1452842] [PMID: 29676212]
[23]
Lu, L.; Yu, F.; Cai, L.; Debnath, A.K.; Jiang, S. Development of small-molecule HIV entry inhibitors specifically targeting gp120 or gp41. Curr. Top. Med. Chem., 2016, 16(10), 1074-1090.
[http://dx.doi.org/10.2174/1568026615666150901114527] [PMID: 26324044]
[24]
Sharma, A.K.; George, V.; Valiathan, R.; Pilakka-Kanthikeel, S.; Pallikkuth, S. Inhibitors of HIV-1 entry and integration: Recent developments and impact on treatment. Recent Pat. Inflamm. Allergy Drug Discov., 2013, 7(2), 151-161.
[http://dx.doi.org/10.2174/1872213X11307020006] [PMID: 23578097]
[25]
Xu, F.; Acosta, E.P.; Liang, L.; He, Y.; Yang, J.; Kerstner-Wood, C.; Zheng, Q.; Huang, J.; Wang, K. Current status of the pharmacokinetics and pharmacodynamics of HIV-1 entry inhibitors and HIV therapy. Curr. Drug Metab., 2017, 18(8), 769-781.
[http://dx.doi.org/10.2174/1389200218666170724112412] [PMID: 28738768]
[26]
Micewicz, E.D.; Ruchala, P. Inhibitors of HIV-1 entry. Curr. Pharm. Des., 2013, 19(10), 1784-1799.
[http://dx.doi.org/10.2174/1381612811319100003] [PMID: 23092280]
[27]
Flores, A.; Quesada, E. Entry inhibitors directed towards glycoprotein gp120: An overview on a promising target for HIV-1 therapy. Curr. Med. Chem., 2013, 20(6), 751-771.
[PMID: 23278399]
[28]
Lu, K.; Asyifah, M.R.; Shao, F.; Zhang, D. Development of HIV-1 fusion inhibitors targeting gp41. Curr. Med. Chem., 2014, 21(17), 1976-1996.
[http://dx.doi.org/10.2174/0929867321666131218094559] [PMID: 24350848]
[29]
Yi, H.A.; Fochtman, B.C.; Rizzo, R.C.; Jacobs, A. Inhibition of HIV entry by targeting the envelope transmembrane subunit gp41. Curr. HIV Res., 2016, 14(3), 283-294.
[http://dx.doi.org/10.2174/1570162X14999160224103908] [PMID: 26957202]
[30]
Patel, R.V.; Park, S.W. Journey describing the discoveries of anti-HIV triterpene acid families targeting HIV-entry/fusion, protease functioning and maturation stages. Curr. Top. Med. Chem., 2014, 14(17), 1940-1966.
[http://dx.doi.org/10.2174/1568026614666140929115202] [PMID: 25262805]
[31]
Zhou, G.; Chu, S. Discovery of small molecule fusion inhibitors targeting HIV-1 gp41. Curr. Pharm. Des., 2013, 19(10), 1818-1826.
[http://dx.doi.org/10.2174/1381612811319100006] [PMID: 23092284]
[32]
Tan, J.J.; Ma, X.T.; Liu, C.; Zhang, X.Y.; Wang, C.X. The current status and challenges in the development of fusion inhibitors as therapeutics for HIV-1 infection. Curr. Pharm. Des., 2013, 19(10), 1810-1817.
[http://dx.doi.org/10.2174/1381612811319100005] [PMID: 23092283]
[33]
Tian, Y.; Zhang, D.; Zhan, P.; Liu, X. Medicinal chemistry of small molecule CCR5 antagonists for blocking HIV-1 entry: a review of structural evolution. Curr. Top. Med. Chem., 2014, 14(13), 1515-1538.
[http://dx.doi.org/10.2174/1568026614666140827143934] [PMID: 25159164]
[34]
Miyamoto, F.; Kodama, E.N. Development of small molecule HIV-1 fusion inhibitors: linking biology to chemistry. Curr. Pharm. Des., 2013, 19(10), 1827-1834.
[http://dx.doi.org/10.2174/1381612811319100007] [PMID: 23092276]
[35]
Freed, E.O. HIV-1 replication. Somat. Cell Mol. Genet., 2001, 26(1-6), 13-33.
[http://dx.doi.org/10.1023/A:1021070512287] [PMID: 12465460]
[36]
Pandey, D.; Chouhan, U.; Verma, N. HIV infection: A review of their inhibitors progression. Biomed. Pharmacol. J., 2017, 10, 749-758.
[http://dx.doi.org/10.13005/bpj/1164]
[37]
Starcich, B.R.; Hahn, B.H.; Shaw, G.M.; McNeely, P.D.; Modrow, S.; Wolf, H.; Parks, E.S.; Parks, W.P.; Josephs, S.F.; Gallo, R.C. Identification and characterization of conserved and variable regions in the envelope gene of HTLV-III/LAV, the retrovirus of AIDS. Cell, 1986, 45(5), 637-648.
[http://dx.doi.org/10.1016/0092-8674(86)90778-6] [PMID: 2423250]
[38]
Leonard, C.K.; Spellman, M.W.; Riddle, L.; Harris, R.J.; Thomas, J.N.; Gregory, T.J. Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J. Biol. Chem., 1990, 265(18), 10373-10382.
[PMID: 2355006]
[39]
Kwong, P.D.; Wyatt, R.; Robinson, J.; Sweet, R.W.; Sodroski, J.; Hendrickson, W.A. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature, 1998, 393(6686), 648-659.
[http://dx.doi.org/10.1038/31405] [PMID: 9641677]
[40]
Finzi, A.; Xiang, S-H.; Pacheco, B.; Wang, L.; Haight, J.; Kassa, A.; Danek, B.; Pancera, M.; Kwong, P.D.; Sodroski, J. Topological layers in the HIV-1 gp120 inner domain regulate gp41 interaction and CD4-triggered conformational transitions. Mol. Cell, 2010, 37(5), 656-667.
[http://dx.doi.org/10.1016/j.molcel.2010.02.012] [PMID: 20227370]
[41]
Huang, C-C.; Lam, S.N.; Acharya, P.; Tang, M.; Xiang, S-H.; Hussan, S.S-U.; Stanfield, R.L.; Robinson, J.; Sodroski, J.; Wilson, I.A.; Wyatt, R.; Bewley, C.A.; Kwong, P.D. Structures of the CCR5 N terminus and of a tyrosine-sulfated antibody with HIV-1 gp120 and CD4. Science, 2007, 317(5846), 1930-1934.
[http://dx.doi.org/10.1126/science.1145373] [PMID: 17901336]
[42]
Kwon, Y.D.; Finzi, A.; Wu, X.; Dogo-Isonagie, C.; Lee, L.K.; Moore, L.R.; Schmidt, S.D.; Stuckey, J.; Yang, Y.; Zhou, T.; Zhu, J.; Vicic, D.A.; Debnath, A.K.; Shapiro, L.; Bewley, C.A.; Mascola, J.R.; Sodroski, J.G.; Kwong, P.D. Unliganded HIV-1 gp120 core structures assume the CD4-bound conformation with regulation by quaternary interactions and variable loops. Proc. Natl. Acad. Sci. USA, 2012, 109(15), 5663-5668.
[http://dx.doi.org/10.1073/pnas.1112391109] [PMID: 22451932]
[43]
Xiang, S.H.; Kwong, P.D.; Gupta, R.; Rizzuto, C.D.; Casper, D.J.; Wyatt, R.; Wang, L.; Hendrickson, W.A.; Doyle, M.L.; Sodroski, J. Mutagenic stabilization and/or disruption of a CD4-bound state reveals distinct conformations of the human immunodeficiency virus type 1 gp120 envelope glycoprotein. J. Virol., 2002, 76(19), 9888-9899.
[http://dx.doi.org/10.1128/JVI.76.19.9888-9899.2002] [PMID: 12208966]
[44]
Dey, B.; Pancera, M.; Svehla, K.; Shu, Y.; Xiang, S.H.; Vainshtein, J.; Li, Y.; Sodroski, J.; Kwong, P.D.; Mascola, J.R.; Wyatt, R. Characterization of human immunodeficiency virus type 1 monomeric and trimeric gp120 glycoproteins stabilized in the CD4-bound state: antigenicity, biophysics, and immunogenicity. J. Virol., 2007, 81(11), 5579-5593.
[http://dx.doi.org/10.1128/JVI.02500-06] [PMID: 17360741]
[45]
Dey, B.; Berger, E.A. Blocking HIV-1 gp120 at the Phe43 cavity: if the extension fit. Structure, 2013, 21(6), 871-872.
[http://dx.doi.org/10.1016/j.str.2013.05.004] [PMID: 23747109]
[46]
Muñoz-Barroso, I.; Salzwedel, K.; Hunter, E.; Blumenthal, R. Role of the membrane-proximal domain in the initial stages of human immunodeficiency virus type 1 envelope glycoprotein-mediated membrane fusion. J. Virol., 1999, 73(7), 6089-6092.
[PMID: 10364363]
[47]
Premack, B.A.; Schall, T.J. Chemokine receptors: gateways to inflammation and infection. Nat. Med., 1996, 2(11), 1174-1178.
[http://dx.doi.org/10.1038/nm1196-1174] [PMID: 8898734]
[48]
Zlotnik, A.; Yoshie, O.; Nomiyama, H. The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol., 2006, 7(12), 243.
[http://dx.doi.org/10.1186/gb-2006-7-12-243] [PMID: 17201934]
[49]
Murphy, P.M. The molecular biology of leukocyte chemoattractant receptors. Annu. Rev. Immunol., 1994, 12, 593-633.
[http://dx.doi.org/10.1146/annurev.iy.12.040194.003113] [PMID: 8011292]
[50]
Berger, E.A.; Murphy, P.M.; Farber, J.M. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu. Rev. Immunol., 1999, 17, 657-700.
[http://dx.doi.org/10.1146/annurev.immunol.17.1.657] [PMID: 10358771]
[51]
Bockaert, J.; Pin, J.P. Molecular tinkering of G protein-coupled receptors: An evolutionary success. EMBO J., 1999, 18(7), 1723-1729.
[http://dx.doi.org/10.1093/emboj/18.7.1723] [PMID: 10202136]
[52]
Murphy, P.M. International Union of Pharmacology. XXX. Update on chemokine receptor nomenclature. Pharmacol. Rev., 2002, 54(2), 227-229.
[http://dx.doi.org/10.1124/pr.54.2.227] [PMID: 12037138]
[53]
Murphy, P.M.; Baggiolini, M.; Charo, I.F.; Hébert, C.A.; Horuk, R.; Matsushima, K.; Miller, L.H.; Oppenheim, J.J.; Power, C.A. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol. Rev., 2000, 52(1), 145-176.
[PMID: 10699158]
[54]
Murdoch, C.; Finn, A. Chemokine receptors and their role in inflammation and infectious diseases. Blood, 2000, 95(10), 3032-3043.
[PMID: 10807766]
[55]
Le, Y.; Zhou, Y.; Iribarren, P.; Wang, J. Chemokines and chemokine receptors: their manifold roles in homeostasis and disease. Cell. Mol. Immunol., 2004, 1(2), 95-104.
[PMID: 16212895]
[56]
Bleul, C.C.; Farzan, M.; Choe, H.; Parolin, C.; Clark-Lewis, I.; Sodroski, J.; Springer, T.A. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature, 1996, 382(6594), 829-833.
[http://dx.doi.org/10.1038/382829a0] [PMID: 8752280]
[57]
Oberlin, E.; Amara, A.; Bachelerie, F.; Bessia, C.; Virelizier, J.L. ArenzanaSeisdedos, F.; Schwartz, O.; Heard, J. M.; ClarkLewis, I.; Legler, D. F.; Loetscher, M.; Baggiolini, M.; Moser, B. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1 (vol 382, pg833, pg 1996). Nature, 1996, 382(6594), 833-835.
[http://dx.doi.org/10.1038/384288a0]
[58]
Osterhoff, C.; Ivell, R.; Kirchhoff, C. Cloning of a human epididymis-specific mRNA, HE6, encoding a novel member of the seven transmembrane-domain receptor superfamily. DNA Cell Biol., 1997, 16(4), 379-389.
[http://dx.doi.org/10.1089/dna.1997.16.379] [PMID: 9150425]
[59]
Chabot, D.J.; Zhang, P.F.; Quinnan, G.V.; Broder, C.C. Mutagenesis of CXCR4 identifies important domains for human immunodeficiency virus type 1 X4 isolate envelope-mediated membrane fusion and virus entry and reveals cryptic coreceptor activity for R5 isolates. J. Virol., 1999, 73(8), 6598-6609.
[PMID: 10400757]
[60]
Zhou, N.; Luo, Z.; Luo, J.; Liu, D.; Hall, J.W.; Pomerantz, R.J.; Huang, Z. Structural and functional characterization of human CXCR4 as a chemokine receptor and HIV-1 co-receptor by mutagenesis and molecular modeling studies. J. Biol. Chem., 2001, 276(46), 42826-42833.
[http://dx.doi.org/10.1074/jbc.M106582200] [PMID: 11551942]
[61]
Pawig, L.; Klasen, C.; Weber, C.; Bernhagen, J.; Noels, H. Diversity and inter-connections in the CXCR4 chemokine receptor/ligand family: molecular perspectives. Front. Immunol., 2015, 6, 429.
[http://dx.doi.org/10.3389/fimmu.2015.00429] [PMID: 26347749]
[62]
Wu, B. L.; Chien, E. Y. T.; Mol, C. D.; Fenalti, G.; Liu, W.; Katritch, V.; Abagyan, R.; Brooun, A.; Wells, P.; Bi, F. C.; Hamel, D. J.; Kuhn, P.; Handel, T. M.; Cherezov, V.; Stevens, R. C. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists.. Science., 2010, 330, 066-1071.
[http://dx.doi.org/10.1126/science.1194396]
[63]
Blanpain, C.; Migeotte, I.; Lee, B.; Vakili, J.; Doranz, B.J.; Govaerts, C.; Vassart, G.; Doms, R.W.; Parmentier, M. CCR5 binds multiple CC-chemokines: MCP-3 acts as a natural antagonist. Blood, 1999, 94(6), 1899-1905.
[PMID: 10477718]
[64]
Samson, M.; Labbe, O.; Mollereau, C.; Vassart, G.; Parmentier, M. Molecular cloning and functional expression of a new human CC-chemokine receptor gene. Biochemistry, 1996, 35(11), 3362-3367.
[http://dx.doi.org/10.1021/bi952950g] [PMID: 8639485]
[65]
Struyf, S.; Menten, P.; Lenaerts, J.P.; Put, W.; D’Haese, A.; De Clercq, E.; Schols, D.; Proost, P.; Van Damme, J. Diverging binding capacities of natural LD78beta isoforms of macrophage inflammatory protein-1alpha to the CC chemokine receptors 1, 3 and 5 affect their anti-HIV-1 activity and chemotactic potencies for neutrophils and eosinophils. Eur. J. Immunol., 2001, 31(7), 2170-2178.
[http://dx.doi.org/10.1002/1521-4141(200107)31:72170:AID-IMMU21703.0.CO;2-D] [PMID: 11449371]
[66]
Miyakawa, T.; Obaru, K.; Maeda, K.; Harada, S.; Mitsuya, H. Identification of amino acid residues critical for LD78beta, a variant of human macrophage inflammatory protein-1alpha, binding to CCR5 and inhibition of R5 human immunodeficiency virus type 1 replication. J. Biol. Chem., 2002, 277(7), 4649-4655.
[http://dx.doi.org/10.1074/jbc.M109198200] [PMID: 11734558]
[67]
Slimani, H.; Charnaux, N.; Mbemba, E.; Saffar, L.; Vassy, R.; Vita, C.; Gattegno, L. Interaction of RANTES with syndecan-1 and syndecan-4 expressed by human primary macrophages. Biochim. Biophys. Acta, 2003, 1617(1-2), 80-88.
[http://dx.doi.org/10.1016/j.bbamem.2003.09.006] [PMID: 14637022]
[68]
Proudfoot, A.E.; Fritchley, S.; Borlat, F.; Shaw, J.P.; Vilbois, F.; Zwahlen, C.; Trkola, A.; Marchant, D.; Clapham, P.R.; Wells, T.N. The BBXB motif of RANTES is the principal site for heparin binding and controls receptor selectivity. J. Biol. Chem., 2001, 276(14), 10620-10626.
[http://dx.doi.org/10.1074/jbc.M010867200] [PMID: 11116158]
[69]
Rossi, R.; Lichtner, M.; De Rosa, A.; Sauzullo, I.; Mengoni, F.; Massetti, A.P.; Mastroianni, C.M.; Vullo, V. In vitro effect of anti-human immunodeficiency virus CCR5 antagonist maraviroc on chemotactic activity of monocytes, macrophages and dendritic cells. Clin. Exp. Immunol., 2011, 166(2), 184-190.
[http://dx.doi.org/10.1111/j.1365-2249.2011.04409.x] [PMID: 21985364]
[70]
Feng, Y.; Broder, C.C.; Kennedy, P.E.; Berger, E.A. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science, 1996, 272(5263), 872-877.
[http://dx.doi.org/10.1126/science.272.5263.872] [PMID: 8629022]
[71]
Deng, H.; Liu, R.; Ellmeier, W.; Choe, S.; Unutmaz, D.; Burkhart, M.; Di Marzio, P.; Marmon, S.; Sutton, R.E.; Hill, C.M.; Davis, C.B.; Peiper, S.C.; Schall, T.J.; Littman, D.R.; Landau, N.R. Identification of a major co-receptor for primary isolates of HIV-1. Nature, 1996, 381(6584), 661-666.
[http://dx.doi.org/10.1038/381661a0] [PMID: 8649511]
[72]
Dragic, T.; Litwin, V.; Allaway, G.P.; Martin, S.R.; Huang, Y.; Nagashima, K.A.; Cayanan, C.; Maddon, P.J.; Koup, R.A.; Moore, J.P.; Paxton, W.A. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature, 1996, 381(6584), 667-673.
[http://dx.doi.org/10.1038/381667a0] [PMID: 8649512]
[73]
Alkhatib, G.; Combadiere, C.; Broder, C.C.; Feng, Y.; Kennedy, P.E.; Murphy, P.M.; Berger, E.A. CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science, 1996, 272(5270), 1955-1958.
[http://dx.doi.org/10.1126/science.272.5270.1955] [PMID: 8658171]
[74]
Cheng-Mayer, C.; Seto, D.; Tateno, M.; Levy, J.A. Biologic features of HIV-1 that correlate with virulence in the host. Science, 1988, 240(4848), 80-82.
[http://dx.doi.org/10.1126/science.2832945] [PMID: 2832945]
[75]
Tersmette, M.; Lange, J.M.; de Goede, R.E.; de Wolf, F.; Eeftink-Schattenkerk, J.K.; Schellekens, P.T.; Coutinho, R.A.; Huisman, J.G.; Goudsmit, J.; Miedema, F. Association between biological properties of human immunodeficiency virus variants and risk for AIDS and AIDS mortality. Lancet, 1989, 1(8645), 983-985.
[http://dx.doi.org/10.1016/S0140-6736(89)92628-7] [PMID: 2565516]
[76]
Schellekens, P.T.; Tersmette, M.; Roos, M.T.; Keet, R.P.; de Wolf, F.; Coutinho, R.A.; Miedema, F. Biphasic rate of CD4+ cell count decline during progression to AIDS correlates with HIV-1 phenotype. AIDS, 1992, 6(7), 665-669.
[http://dx.doi.org/10.1097/00002030-199207000-00008] [PMID: 1354447]
[77]
Bleul, C.C.; Farzan, M.; Choe, H.; Parolin, C.; Clark-Lewis, I.; Sodroski, J.; Springer, T.A. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature, 1996, 382(6594), 829-833.
[http://dx.doi.org/10.1038/382829a0] [PMID: 8752280]
[78]
Oberlin, E.; Amara, A.; Bachelerie, F.; Bessia, C.; Virelizier, J.L.; Arenzana-Seisdedos, F.; Schwartz, O.; Heard, J.M.; Clark-Lewis, I.; Legler, D.F.; Loetscher, M.; Baggiolini, M.; Moser, B. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature, 1996, 382(6594), 833-835.
[http://dx.doi.org/10.1038/382833a0] [PMID: 8752281]
[79]
Amara, A.; Gall, S.L.; Schwartz, O.; Salamero, J.; Montes, M.; Loetscher, P.; Baggiolini, M.; Virelizier, J-L.; Arenzana-Seisdedos, F. HIV coreceptor downregulation as antiviral principle: SDF-1alpha-dependent internalization of the chemokine receptor CXCR4 contributes to inhibition of HIV replication. J. Exp. Med., 1997, 186(1), 139-146.
[http://dx.doi.org/10.1084/jem.186.1.139] [PMID: 9207008]
[80]
Förster, R.; Kremmer, E.; Schubel, A.; Breitfeld, D.; Kleinschmidt, A.; Nerl, C.; Bernhardt, G.; Lipp, M. Intracellular and surface expression of the HIV-1 coreceptor CXCR4/fusin on various leukocyte subsets: rapid internalization and recycling upon activation. J. Immunol., 1998, 160(3), 1522-1531.
[PMID: 9570576]
[81]
Lu, L.; Yu, F.; Cai, L.; Debnath, A.K.; Jiang, S. Development of small-molecule HIV entry inhibitors specifically targeting gp120 or gp41. Curr. Top. Med. Chem., 2016, 16(10), 1074-1090.
[http://dx.doi.org/10.2174/1568026615666150901114527] [PMID: 26324044]
[82]
Yamada, Y.; Ochiai, C.; Yoshimura, K.; Tanaka, T.; Ohashi, N.; Narumi, T.; Nomura, W.; Harada, S.; Matsushita, S.; Tamamura, H. CD4 mimics targeting the mechanism of HIV entry. Bioorg. Med. Chem. Lett., 2010, 20(1), 354-358.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.098] [PMID: 19926478]
[83]
Narumi, T.; Ochiai, C.; Yoshimura, K.; Harada, S.; Tanaka, T.; Nomura, W.; Arai, H.; Ozaki, T.; Ohashi, N.; Matsushita, S.; Tamamura, H. CD4 mimics targeting the HIV entry mechanism and their hybrid molecules with a CXCR4 antagonist. Bioorg. Med. Chem. Lett., 2010, 20(19), 5853-5858.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.106] [PMID: 20728351]
[84]
Narumi, T.; Arai, H.; Yoshimura, K.; Harada, S.; Nomura, W.; Matsushita, S.; Tamamura, H. Small molecular CD4 mimics as HIV entry inhibitors. Bioorg. Med. Chem., 2011, 19(22), 6735-6742.
[http://dx.doi.org/10.1016/j.bmc.2011.09.045] [PMID: 22014753]
[85]
Narumi, T.; Arai, H.; Yoshimura, K.; Harada, S.; Hirota, Y.; Ohashi, N.; Hashimoto, C.; Nomura, W.; Matsushita, S.; Tamamura, H. CD4 mimics as HIV entry inhibitors: lead optimization studies of the aromatic substituents. Bioorg. Med. Chem., 2013, 21(9), 2518-2526.
[http://dx.doi.org/10.1016/j.bmc.2013.02.041] [PMID: 23535561]
[86]
Madani, N.; Princiotto, A.M.; Schön, A.; LaLonde, J.; Feng, Y.; Freire, E.; Park, J.; Courter, J.R.; Jones, D.M.; Robinson, J.; Liao, H.X.; Moody, M.A.; Permar, S.; Haynes, B.; Smith, A.B., III; Wyatt, R.; Sodroski, J. CD4-mimetic small molecules sensitize human immunodeficiency virus to vaccine-elicited antibodies. J. Virol., 2014, 88(12), 6542-6555.
[http://dx.doi.org/10.1128/JVI.00540-14] [PMID: 24696475]
[87]
Zhao, Q.; Ma, L.; Jiang, S.; Lu, H.; Liu, S.; He, Y.; Strick, N.; Neamati, N.; Debnath, A.K. Identification of N-phenyl-N'-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamides as a new class of HIV-1 entry inhibitors that prevent gp120 binding to CD4. Virology, 2005, 339(2), 213-225.
[http://dx.doi.org/10.1016/j.virol.2005.06.008] [PMID: 15996703]
[88]
Mizuguchi, T.; Harada, S.; Miura, T.; Ohashi, N.; Narumi, T.; Mori, H.; Irahara, Y.; Yamada, Y.; Nomura, W.; Matsushita, S.; Yoshimura, K.; Tamamura, H. A minimally cytotoxic CD4 mimic as an HIV entry inhibitor. Bioorg. Med. Chem. Lett., 2016, 26(2), 397-400.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.103] [PMID: 26706175]
[89]
Kobayakawa, T.; Konno, K.; Ohashi, N.; Takahashi, K.; Masuda, A.; Yoshimura, K.; Harada, S.; Tamamura, H. Soluble-type small-molecule CD4 mimics as HIV entry inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(5), 719-723.
[http://dx.doi.org/10.1016/j.bmcl.2019.01.011] [PMID: 30665681]
[90]
Narumi, T.; Arai, H.; Yoshimura, K.; Harada, S.; Nomura, W.; Matsushita, S.; Tamamura, H. Small molecular CD4 mimics as HIV entry inhibitors. Bioorg. Med. Chem., 2011, 19(22), 6735-6742.
[http://dx.doi.org/10.1016/j.bmc.2011.09.045] [PMID: 22014753]
[91]
Ohashi, N.; Harada, S.; Mizuguchi, T.; Irahara, Y.; Yamada, Y.; Kotani, M.; Nomura, W.; Matsushita, S.; Yoshimura, K.; Tamamura, H. Small-molecule CD4 mimics containing mono-cyclohexyl moieties as HIV entry inhibitors. ChemMedChem, 2016, 11(8), 940-946.
[http://dx.doi.org/10.1002/cmdc.201500590] [PMID: 26891461]
[92]
Madani, N.; Schön, A.; Princiotto, A.M.; Lalonde, J.M.; Courter, J.R.; Soeta, T.; Ng, D.; Wang, L.; Brower, E.T.; Xiang, S.H.; Kwon, Y.D.; Huang, C.C.; Wyatt, R.; Kwong, P.D.; Freire, E.; Smith, A.B., III; Sodroski, J. Small-molecule CD4 mimics interact with a highly conserved pocket on HIV-1 gp120. Structure, 2008, 16(11), 1689-1701.
[http://dx.doi.org/10.1016/j.str.2008.09.005] [PMID: 19000821]
[93]
Lalonde, J.M.; Elban, M.A.; Courter, J.R.; Sugawara, A.; Soeta, T.; Madani, N.; Princiotto, A.M.; Kwon, Y.D.; Kwong, P.D.; Schön, A.; Freire, E.; Sodroski, J.; Smith, A.B. III Design, synthesis and biological evaluation of small molecule inhibitors of CD4-gp120 binding based on virtual screening. Bioorg. Med. Chem., 2011, 19(1), 91-101.
[http://dx.doi.org/10.1016/j.bmc.2010.11.049] [PMID: 21169023]
[94]
Schön, A.; Madani, N.; Klein, J.C.; Hubicki, A.; Ng, D.; Yang, X.; Smith, A.B., III; Sodroski, J.; Freire, E. Thermodynamics of binding of a low-molecular-weight CD4 mimetic to HIV-1 gp120. Biochemistry, 2006, 45(36), 10973-10980.
[http://dx.doi.org/10.1021/bi061193r] [PMID: 16953583]
[95]
Schön, A.; Madani, N.; Smith, A.B., III; Lalonde, J.M.; Freire, E. Some binding-related drug properties are dependent on thermodynamic signature. Chem. Biol. Drug Des., 2011, 77(3), 161-165.
[http://dx.doi.org/10.1111/j.1747-0285.2010.01075.x] [PMID: 21288305]
[96]
LaLonde, J.M.; Kwon, Y.D.; Jones, D.M.; Sun, A.W.; Courter, J.R.; Soeta, T.; Kobayashi, T.; Princiotto, A.M.; Wu, X.; Schön, A.; Freire, E.; Kwong, P.D.; Mascola, J.R.; Sodroski, J.; Madani, N.; Smith, A.B. III Structure-based design, synthesis, and characterization of dual hotspot small-molecule HIV-1 entry inhibitors. J. Med. Chem., 2012, 55(9), 4382-4396.
[http://dx.doi.org/10.1021/jm300265j] [PMID: 22497421]
[97]
Courter, J.R.; Madani, N.; Sodroski, J.; Schön, A.; Freire, E.; Kwong, P.D.; Hendrickson, W.A.; Chaiken, I.M.; LaLonde, J.M.; Smith, A.B. III Structure-based design, synthesis and validation of CD4-mimetic small molecule inhibitors of HIV-1 entry: conversion of a viral entry agonist to an antagonist. Acc. Chem. Res., 2014, 47(4), 1228-1237.
[http://dx.doi.org/10.1021/ar4002735] [PMID: 24502450]
[98]
Lalonde, J.M.; Le-Khac, M.; Jones, D.M.; Courter, J.R.; Park, J.; Schön, A.; Princiotto, A.M.; Wu, X.; Mascola, J.R.; Freire, E.; Sodroski, J.; Madani, N.; Hendrickson, W.A.; Smith, A.B. III Structure-based design and synthesis of an HIV-1 entry inhibitor exploiting x-ray and thermodynamic characterization. ACS Med. Chem. Lett., 2013, 4(3), 338-343.
[http://dx.doi.org/10.1021/ml300407y] [PMID: 23667716]
[99]
Melillo, B.; Liang, S.; Park, J.; Schön, A.; Courter, J.R.; LaLonde, J.M.; Wendler, D.J.; Princiotto, A.M.; Seaman, M.S.; Freire, E.; Sodroski, J.; Madani, N.; Hendrickson, W.A.; Smith, A.B. III III Small-molecule CD4-mimics: Structure-based optimization of HIV-1 entry inhibitor. ACS Med. Chem. Lett., 2016, 7(3), 330-334.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00471] [PMID: 26985324]
[100]
Kobayakawa, T.; Ohashi, N.; Hirota, Y.; Takahashi, K.; Yamada, Y.; Narumi, T.; Yoshimura, K.; Matsushita, S.; Harada, S.; Tamamura, H. Flexibility of small molecular CD4 mimics as HIV entry inhibitors. Bioorg. Med. Chem., 2018, 26(21), 5664-5671.
[http://dx.doi.org/10.1016/j.bmc.2018.10.011] [PMID: 30366786]
[101]
Curreli, F.; Kwon, Y.D.; Zhang, H.; Yang, Y.; Scacalossi, D.; Kwong, P.D.; Debnath, A.K. Binding mode characterization of NBD series CD4-mimetic HIV-1 entry inhibitors by X-ray structure and resistance study. Antimicrob. Agents Chemother., 2014, 58(9), 5478-5491.
[http://dx.doi.org/10.1128/AAC.03339-14] [PMID: 25001301]
[102]
Curreli, F.; Choudhury, S.; Pyatkin, I.; Zagorodnikov, V.P.; Bulay, A.K.; Altieri, A.; Kwon, Y.D.; Kwong, P.D.; Debnath, A.K. Design, synthesis, and antiviral activity of entry inhibitors that target the CD4-binding site of HIV-1. J. Med. Chem., 2012, 55(10), 4764-4775.
[http://dx.doi.org/10.1021/jm3002247] [PMID: 22524483]
[103]
Curreli, F.; Kwon, Y.D.; Zhang, H.; Scacalossi, D.; Belov, D.S.; Tikhonov, A.A.; Andreev, I.A.; Altieri, A.; Kurkin, A.V.; Kwong, P.D.; Debnath, A.K. Structure-based design of a small molecule CD4-antagonist with broad spectrum anti-HIV-1 activity. J. Med. Chem., 2015, 58(17), 6909-6927.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00709] [PMID: 26301736]
[104]
Curreli, F.; Belov, D.S.; Ramesh, R.R.; Patel, N.; Altieri, A.; Kurkin, A.V.; Debnath, A.K. Design, synthesis and evaluation of small molecule CD4-mimics as entry inhibitors possessing broad spectrum anti-HIV-1 activity. Bioorg. Med. Chem., 2016, 24(22), 5988-6003.
[http://dx.doi.org/10.1016/j.bmc.2016.09.057] [PMID: 27707628]
[105]
Curreli, F.; Belov, D.S.; Kwon, Y.D.; Ramesh, R.; Furimsky, A.M.; O’Loughlin, K.; Byrge, P.C.; Iyer, L.V.; Mirsalis, J.C.; Kurkin, A.V.; Altieri, A.; Debnath, A.K. Structure-based lead optimization to improve antiviral potency and ADMET properties of phenyl-1H-pyrrole-carboxamide entry inhibitors targeted to HIV-1 gp120. Eur. J. Med. Chem., 2018, 154, 367-391.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.062] [PMID: 29860061]
[106]
Curreli, F.; Kwon, Y.D.; Belov, D.S.; Ramesh, R.R.; Kurkin, A.V.; Altieri, A.; Kwong, P.D.; Debnath, A.K. Synthesis, antiviral potency, in vitro ADMET, and X-ray structure of potent CD4 mimics as entry inhibitors that target the Phe43 cavity of HIV-1 gp120. J. Med. Chem., 2017, 60(7), 3124-3153.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00179] [PMID: 28266845]
[107]
Morellato-Castillo, L.; Acharya, P.; Combes, O.; Michiels, J.; Descours, A.; Ramos, O.H.; Yang, Y.; Vanham, G.; Ariën, K.K.; Kwong, P.D.; Martin, L.; Kessler, P. Interfacial cavity filling to optimize CD4-mimetic miniprotein interactions with HIV-1 surface glycoprotein. J. Med. Chem., 2013, 56(12), 5033-5047.
[http://dx.doi.org/10.1021/jm4002988] [PMID: 23710622]
[108]
Curreli, F.; Haque, K.; Xie, L.; Qiu, Q.; Xu, J.; Yong, W.; Tong, X.; Debnath, A.K. Synthesis, antiviral activity and resistance of a novel small molecule HIV-1 entry inhibitor. Bioorg. Med. Chem., 2015, 23(24), 7618-7628.
[http://dx.doi.org/10.1016/j.bmc.2015.11.006] [PMID: 26602829]
[109]
Heredia, A.; Latinovic, O.S.; Barbault, F.; de Leeuw, E.P. A novel small-molecule inhibitor of HIV-1 entry. Drug Des. Devel. Ther., 2015, 9, 5469-5478.
[PMID: 26491257]
[110]
Bocharnikova, A.V.; Massagetov, P.S. The alkaloids of Leptorhabdos parvif lora Benth. Zh. Obshch. Khim., 1964, 34, 1025-1028.
[111]
Brosius, A.D.; Ziller, J.W.; Zhang, Q. Relative and absolute configuration of aloperine. Acta Crystallogr. C, 1997, 53(Pt 10), 1510-1512.
[http://dx.doi.org/10.1107/S0108270197009244] [PMID: 9362555]
[112]
Dang, Z.; Jung, K.; Zhu, L.; Lai, W.; Xie, H.; Lee, K.H.; Huang, L.; Chen, C-H. Identification and synthesis of quinolizidines with anti-influenza a virus activity. ACS Med. Chem. Lett., 2014, 5(8), 942-946.
[http://dx.doi.org/10.1021/ml500236n] [PMID: 25147619]
[113]
Dang, Z.; Zhu, L.; Lai, W.; Bogerd, H.; Lee, K.H.; Huang, L.; Chen, C.H. Aloperine and its derivatives as a new class of HIV-1 entry inhibitors. ACS Med. Chem. Lett., 2016, 7(3), 240-244.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00339] [PMID: 26985308]
[114]
Dang, Z.; Xie, H.; Zhu, L.; Zhang, Q.; Li, Z.; Huang, L.; Chen, C.H. Zhu, Lei.; Zhang, Q.; Li, Z.; Huang, L.; Chen, C.-H. Structure optimization of aloperine derivatives as HIV-1 entry inhibitors. ACS Med. Chem. Lett., 2017, 8(11), 1199-1203.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00376] [PMID: 29152054]
[115]
Sivan, S.K.; Vangala, R.; Manga, V. Molecular docking guided structure based design of symmetrical N,N′-disubstituted urea/thiourea as HIV-1 gp120-CD4 binding inhibitors. Bioorg. Med. Chem., 2013, 21(15), 4591-4599.
[http://dx.doi.org/10.1016/j.bmc.2013.05.038] [PMID: 23777826]
[116]
Pan, W.; Miao, H.Q.; Xu, Y.J.; Navarro, E.C.; Tonra, J.R.; Corcoran, E.; Lahiji, A.; Kussie, P.; Kiselyov, A.S.; Wong, W.C.; Liu, H. 1-[4-(1H-Benzoimidazol-2-yl)-phenyl]-3-[4-(1H-benzoimida-zol-2-yl)-phenyl]-urea derivatives as small molecule heparanase inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(2), 409-412.
[http://dx.doi.org/10.1016/j.bmcl.2005.09.069] [PMID: 16246560]
[117]
Ozawa, T.; Kitagawa, H.; Yamamoto, Y.; Takahata, S.; Iida, M.; Osaki, Y.; Yamada, K. Phenylimidazole derivatives as specific inhibitors of bacterial enoyl-acyl carrier protein reductase FabK. Bioorg. Med. Chem., 2007, 15(23), 7325-7336.
[http://dx.doi.org/10.1016/j.bmc.2007.08.050]
[118]
Ashkenazi, A.; Shai, Y. Insights into the mechanism of HIV-1 envelope induced membrane fusion as revealed by its inhibitory peptides. Eur. Biophys. J., 2011, 40(4), 349-357.
[http://dx.doi.org/10.1007/s00249-010-0666-z] [PMID: 21258789]
[119]
Harrison, S.C. Viral membrane fusion. Nat. Struct. Mol. Biol., 2008, 15(7), 690-698.
[http://dx.doi.org/10.1038/nsmb.1456] [PMID: 18596815]
[120]
Eckert, D.M.; Kim, P.S. Mechanisms of viral membrane fusion and its inhibition. Annu. Rev. Biochem., 2001, 70, 777-810.
[http://dx.doi.org/10.1146/annurev.biochem.70.1.777] [PMID: 11395423]
[121]
Chan, D.C.; Fass, D.; Berger, J.M.; Kim, P.S. Core structure of gp41 from the HIV envelope glycoprotein. Cell, 1997, 89(2), 263-273.
[http://dx.doi.org/10.1016/S0092-8674(00)80205-6] [PMID: 9108481]
[122]
Lazzarin, A. Enfuvirtide: the first HIV fusion inhibitor. Expert Opin. Pharmacother., 2005, 6(3), 453-464.
[http://dx.doi.org/10.1517/14656566.6.3.453] [PMID: 15794736]
[123]
Hardy, H.; Skolnik, P.R. Enfuvirtide, A new fusion inhibitor for therapy of human immunodeficiency virus infection. Pharmacotherapy, 2004, 24(2), 198-211.
[http://dx.doi.org/10.1592/phco.24.2.198.33141] [PMID: 14998221]
[124]
Debnath, A.K.; Radigan, L.; Jiang, S. Structure-based identification of small molecule antiviral compounds targeted to the gp41 core structure of the human immunodeficiency virus type 1. J. Med. Chem., 1999, 42(17), 3203-3209.
[http://dx.doi.org/10.1021/jm990154t] [PMID: 10464007]
[125]
Jiang, S.; Tala, S.R.; Lu, H.; Abo-Dya, N.E.; Avan, I.; Gyanda, K.; Lu, L.; Katritzky, A.R.; Debnath, A.K. Design, synthesis, and biological activity of novel 5-((arylfuran/1H-pyrrol-2-yl)methylene)-2-thioxo-3-(3-(trifluoromethyl)phenyl)thiazolidin-4-ones as HIV-1 fusion inhibitors targeting gp41. J. Med. Chem., 2011, 54(2), 572-579.
[http://dx.doi.org/10.1021/jm101014v] [PMID: 21190369]
[126]
Katritzky, A.R.; Tala, S.R.; Lu, H.; Vakulenko, A.V.; Chen, Q.Y.; Sivapackiam, J.; Pandya, K.; Jiang, S.; Debnath, A.K. Design, synthesis, and structure-activity relationship of a novel series of 2-aryl 5-(4-oxo-3-phenethyl-2-thioxothiazolidinylidenemethyl)furans as HIV-1 entry inhibitors. J. Med. Chem., 2009, 52(23), 7631-7639.
[http://dx.doi.org/10.1021/jm900450n] [PMID: 19746983]
[127]
Zhou, G.; Wu, D.; Hermel, E.; Balogh, E.; Gochin, M. Design, synthesis, and evaluation of indole compounds as novel inhibitors targeting Gp41. Bioorg. Med. Chem. Lett., 2010, 20(5), 1500-1503.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.111] [PMID: 20153190]
[128]
Zhou, G.; Wu, D.; Snyder, B.; Ptak, R.G.; Kaur, H.; Gochin, M. Development of indole compounds as small molecule fusion inhibitors targeting HIV-1 glycoprotein-41. J. Med. Chem., 2011, 54(20), 7220-7231.
[http://dx.doi.org/10.1021/jm200791z] [PMID: 21928824]
[129]
Stewart, K.D.; Huth, J.R.; Ng, T.I.; McDaniel, K.; Hutchinson, R.N.; Stoll, V.S.; Mendoza, R.R.; Matayoshi, E.D.; Carrick, R.; Mo, H.; Severin, J.; Walter, K.; Richardson, P.L.; Barrett, L.W.; Meadows, R.; Anderson, S.; Kohlbrenner, W.; Maring, C.; Kempf, D.J.; Molla, A.; Olejniczak, E.T. Non-peptide entry inhibitors of HIV-1 that target the gp41 coiled coil pocket. Bioorg. Med. Chem. Lett., 2010, 20(2), 612-617.
[http://dx.doi.org/10.1016/j.bmcl.2009.11.076] [PMID: 20004576]
[130]
Liu, B.; Joseph, R.W.; Dorsey, B.D.; Schiksnis, R.A.; Northrop, K.; Bukhtiyarova, M.; Springman, E.B. Structure-based design of substituted biphenyl ethylene ethers as ligands binding in the hydrophobic pocket of gp41 and blocking the helical bundle formation. Bioorg. Med. Chem. Lett., 2009, 19(19), 5693-5697.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.018] [PMID: 19699090]
[131]
Whitby, L.R.; Boyle, K.E.; Cai, L.; Yu, X.; Gochin, M.; Boger, D.L. Discovery of HIV fusion inhibitors targeting gp41 using a comprehensive α-helix mimetic library. Bioorg. Med. Chem. Lett., 2012, 22(8), 2861-2865.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.062] [PMID: 22424973]
[132]
Ernst, J.T.; Kutzki, O.; Debnath, A.K.; Jiang, S.; Lu, H.; Hamilton, A.D. Design of a protein surface antagonist based on α-helix mimicry: inhibition of gp41 assembly and viral fusion. Angew. Chem. Int. Ed. Engl., 2002, 41(2), 278-281.
[http://dx.doi.org/10.1002/1521-3773(20020118)41:2278:AID-ANIE2783.0.CO;2-A] [PMID: 12491408]
[133]
Yang, J.; Zhang, F.; Li, J.; Chen, G.; Wu, S.; Ouyang, W.; Pan, W.; Yu, R.; Yang, J.; Tien, P. Synthesis and antiviral activities of novel gossypol derivatives. Bioorg. Med. Chem. Lett., 2012, 22(3), 1415-1420.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.076] [PMID: 22226654]
[134]
Liu, S.; Lu, H.; Zhao, Q.; He, Y.; Niu, J.; Debnath, A.K.; Wu, S.; Jiang, S. Theaflavin derivatives in black tea and catechin derivatives in green tea inhibit HIV-1 entry by targeting gp41. Biochim. Biophys. Acta, 2005, 1723(1-3), 270-281.
[http://dx.doi.org/10.1016/j.bbagen.2005.02.012] [PMID: 15823507]
[135]
Bao, J.; Zhang, D.W.; Zhang, J.Z.; Huang, P.L.; Huang, P.L.; Lee-Huang, S. Computational study of bindings of olive leaf extract (OLE) to HIV-1 fusion protein gp41. FEBS Lett., 2007, 581(14), 2737-2742.
[http://dx.doi.org/10.1016/j.febslet.2007.05.029] [PMID: 17537437]
[136]
He, X-Y.; Lu, L.; Qiu, J.; Zou, P.; Yu, F.; Jiang, X-K.; Li, L.; Jiang, S.; Liu, S.; Xie, L. Small molecule fusion inhibitors: design, synthesis and biological evaluation of (Z)-3-(5-(3-benzyl-4-oxo-2-thioxothiazolidinylidene)methyl)-N-(3-carboxy-4-hydroxy)phenyl-2,5-dimethylpyrroles and related derivatives targeting HIV-1 gp41. Bioorg. Med. Chem., 2013, 21(23), 7539-7548.
[http://dx.doi.org/10.1016/j.bmc.2013.04.046] [PMID: 23673219]
[137]
Munnaluri, R.; Sivan, S.; Manga, V. Molecular docking and MM/GBSA integrated protocol for designing small molecule inhibitors against HIV-1 gp41. Med. Chem. Res., 2015, 24, 829-841.
[http://dx.doi.org/10.1007/s00044-014-1185-8]
[138]
Debnath, A.K.; Radigan, L.; Jiang, S. Structure-based identification of small molecule antiviral compounds targeted to the gp41 core structure of the human immunodeficiency virus type 1. J. Med. Chem., 1999, 42(17), 3203-3209.
[http://dx.doi.org/10.1021/jm990154t] [PMID: 10464007]
[139]
Wang, H.; Qi, Z.; Guo, A.; Mao, Q.; Lu, H.; An, X.; Xia, C.; Li, X.; Debnath, A.; Wu, S.; Liu, S.; Jiang, S. ADS-J1 inhibits HIV-1 entry by interacting with the gp41 pocket region and blocking the fusion-active gp41 core formation. Antimicrob. Agents Chemother., 2009, 53, 4987-4998.
[http://dx.doi.org/10.1128/AAC.00670-09] [PMID: 19786602]
[140]
Yu, F.; Lu, L.; Liu, Q.; Yu, X.; Wang, L.; He, E.; Zou, P.; Du, L.; Sanders, R.W.; Liu, S.; Jiang, S. ADS-J1 inhibits HIV-1 infection and membrane fusion by targeting the highly conserved pocket in the gp41 NHR-trimer. Biochim. Biophys. Acta, 2014, 1838(5), 1296-1305.
[http://dx.doi.org/10.1016/j.bbamem.2013.12.022] [PMID: 24388952]
[141]
Zhou, G.; Wu, D.; Snyder, B.; Ptak, R.G.; Kaur, H.; Gochin, M. Development of indole compounds as small molecule inhibitors of HIV-1 gp41. J. Med. Chem., 2011, 54, 7220-7231.
[http://dx.doi.org/10.1021/jm200791z] [PMID: 21928824]
[142]
Zhou, G.; Sofiyev, V.; Kaur, H.; Snyder, B.A.; Mankowski, M.K.; Hogan, P.A.; Ptak, R.G.; Gochin, M. Structure-activity relationship studies of indole-based compounds as small molecule HIV-1 fusion inhibitors targeting glycoprotein 41. J. Med. Chem., 2014, 57(12), 5270-5281.
[http://dx.doi.org/10.1021/jm500344y] [PMID: 24856833]
[143]
Zhou, G.; Chu, S.; Nemati, A.; Huang, C.; Snyder, B.A.; Ptak, R.G.; Gochin, M. Investigation of the molecular characteristics of bisindole inhibitors as HIV-1 glycoprotein-41 fusion inhibitors. Eur. J. Med. Chem., 2019, 161, 533-542.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.048] [PMID: 30390441]
[144]
MacArthur, R.D.; Novak, R.M. Reviews of anti-infective agents: maraviroc: the first of a new class of antiretroviral agents. Clin. Infect. Dis., 2008, 47(2), 236-241.
[http://dx.doi.org/10.1086/589289] [PMID: 18532888]
[145]
Kazmierski, W.M.; Aquino, C.; Chauder, B.A.; Deanda, F.; Ferris, R.; Jones-Hertzog, D.K.; Kenakin, T.; Koble, C.S.; Watson, C.; Wheelan, P.; Yang, H.; Youngman, M. Discovery of bioavailable 4,4-disubstituted piperidines as potent ligands of the chemokine receptor 5 and inhibitors of the human immunodeficiency virus-1. J. Med. Chem., 2008, 51(20), 6538-6546.
[http://dx.doi.org/10.1021/jm800598a] [PMID: 18811134]
[146]
Kazmierski, W.M.; Anderson, D.L.; Aquino, C.; Chauder, B.A.; Duan, M.; Ferris, R.; Kenakin, T.; Koble, C.S.; Lang, D.G.; McIntyre, M.S.; Peckham, J.; Watson, C.; Wheelan, P.; Spaltenstein, A.; Wire, M.B.; Svolto, A.; Youngman, M. Novel 4,4-disubstituted piperidine-based C-C chemokine receptor-5 inhibitors with high potency against human immunodeficiency virus-1 and an improved human ether-a-go-go related gene (hERG) profile. J. Med. Chem., 2011, 54(11), 3756-3767.
[http://dx.doi.org/10.1021/jm200279v] [PMID: 21539377]
[147]
Stupple, P.A.; Batchelor, D.V.; Corless, M.; Dorr, P.K.; Ellis, D.; Fenwick, D.R.; Galan, S.R.; Jones, R.M.; Mason, H.J.; Middleton, D.S.; Perros, M.; Perruccio, F.; Platts, M.Y.; Pryde, D.C.; Rodrigues, D.; Smith, N.N.; Stephenson, P.T.; Webster, R.; Westby, M.; Wood, A. An imidazopiperidine series of CCR5 antagonists for the treatment of HIV: the discovery of N-(1S)-1-(3-fluorophenyl)-3-[(3-endo)-3-(5-isobutyryl-2-methyl-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridin-1-yl)-8-azabicyclo[3.2.1]oct-8-yl]propylacetamide (PF-232798). J. Med. Chem., 2011, 54(1), 67-77.
[http://dx.doi.org/10.1021/jm100978n] [PMID: 21128663]
[148]
Kazmierski, W.M.; Aquino, C.; Chauder, B.A.; Deanda, F.; Ferris, R.; Jones-Hertzog, D.K.; Kenakin, T.; Koble, C.S.; Watson, C.; Wheelan, P.; Yang, H.; Youngman, M. Discovery of bioavailable 4,4-disubstituted piperidines as potent ligands of the chemokine receptor 5 and inhibitors of the human immunodeficiency virus-1. J. Med. Chem., 2008, 51(20), 6538-6546.
[http://dx.doi.org/10.1021/jm800598a] [PMID: 18811134]
[149]
Kazmierski, W.M.; Anderson, D.L.; Aquino, C.; Chauder, B.A.; Duan, M.; Ferris, R.; Kenakin, T.; Koble, C.S.; Lang, D.G.; McIntyre, M.S.; Peckham, J.; Watson, C.; Wheelan, P.; Spaltenstein, A.; Wire, M.B.; Svolto, A.; Youngman, M. Novel 4,4-disubstituted piperidine-based C-C chemokine receptor-5 inhibitors with high potency against human immunodeficiency virus-1 and an improved human ether-a-go-go related gene (hERG) profile. J. Med. Chem., 2011, 54(11), 3756-3767.
[http://dx.doi.org/10.1021/jm200279v] [PMID: 21539377]
[150]
Duan, M.; Kazmierski, W.M.; Chong, P.Y.; Deanda, F.; Edelstein, M.; Ferris, R.; Peckham, J.; Wheelan, P.; Xiong, Z.; Zhang, H.; Nishizawa, R.; Takaoka, Y. Discovery of novel pyridyl carboxamides as potent CCR5 antagonists and optimization of their pharmacokinetic profile in rats. Bioorg. Med. Chem. Lett., 2011, 21(21), 6470-6475.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.080] [PMID: 21920742]
[151]
Duan, M.; Aquino, C.; Ferris, R.; Kazmierski, W.M.; Kenakin, T.; Koble, C.; Wheelan, P.; Watson, C.; Youngman, M. [2-(4-Phenyl-4-piperidinyl)ethyl]amine based CCR5 antagonists: derivatizations at the N-terminal of the piperidine ring. Bioorg. Med. Chem. Lett., 2009, 19(6), 1610-1613.
[http://dx.doi.org/10.1016/j.bmcl.2009.02.014] [PMID: 19233649]
[152]
Duan, M.; Aquino, C.; Dorsey, G.F., Jr; Ferris, R.; Kazmierski, W.M.; Watson, C.; Wheelan, P. 4,4-Disubstituted cyclohexylamine based CCR5 chemokine receptor antagonists as anti-HIV-1 agents. Bioorg. Med. Chem. Lett., 2009, 19(17), 4988-4992.
[http://dx.doi.org/10.1016/j.bmcl.2009.07.074] [PMID: 19664920]
[153]
Tallant, M.D.; Duan, M.; Freeman, G.A.; Ferris, R.G.; Edelstein, M.P.; Kazmierski, W.M.; Wheelan, P.J. Synthesis and evaluation of 2-phenyl-1,4-butanediamine-based CCR5 antagonists for the treatment of HIV-1. Bioorg. Med. Chem. Lett., 2011, 21(5), 1394-1398.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.030] [PMID: 21292480]
[154]
Takashima, K.; Miyake, H.; Kanzaki, N.; Tagawa, Y.; Wang, X.; Sugihara, Y.; Iizawa, Y.; Baba, M. Highly potent inhibition of human immunodeficiency virus type 1 replication by TAK-220, an orally bioavailable small-molecule CCR5 antagonist. Antimicrob. Agents Chemother., 2005, 49(8), 3474-3482.
[http://dx.doi.org/10.1128/AAC.49.8.3474-3482.2005] [PMID: 16048963]
[155]
Nishikawa, M.; Takashima, K.; Nishi, T.; Furuta, R.A.; Kanzaki, N.; Yamamoto, Y.; Fujisawa, J. Analysis of binding sites for the new small-molecule CCR5 antagonist TAK-220 on human CCR5. Antimicrob. Agents Chemother., 2005, 49(11), 4708-4715.
[http://dx.doi.org/10.1128/AAC.49.11.4708-4715.2005] [PMID: 16251315]
[156]
Kondru, R.; Zhang, J.; Ji, C.; Mirzadegan, T.; Rotstein, D.; Sankuratri, S.; Dioszegi, M. Molecular interactions of CCR5 with major classes of small-molecule anti-HIV CCR5 antagonists. Mol. Pharmacol., 2008, 73(3), 789-800.
[http://dx.doi.org/10.1124/mol.107.042101] [PMID: 18096812]
[157]
Dong, M.X.; Lu, L.; Li, H.; Wang, X.; Lu, H.; Jiang, S.; Dai, Q.Y. Design, synthesis, and biological activity of novel 1,4-disubstituted piperidine/piperazine derivatives as CCR5 antagonist-based HIV-1 entry inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(9), 3284-3286.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.019] [PMID: 22464131]
[158]
Feng, D.Z.; Song, Y.L.; Jiang, X.H.; Chen, L.; Long, Y.Q. Forward- and reverse-synthesis of piperazinopiperidine amide analogs: a general access to structurally diverse 4-piperazinopiperidine-based CCR5 antagonists. Org. Biomol. Chem., 2007, 5(16), 2690-2697.
[http://dx.doi.org/10.1039/b707175b] [PMID: 18019544]
[159]
Jiang, X.H.; Song, Y.L.; Long, Y.Q. Facile synthesis of 4-substituted-4-aminopiperidine derivatives, the key building block of piperazine-based CCR5 antagonists. Bioorg. Med. Chem. Lett., 2004, 14(14), 3675-3678.
[http://dx.doi.org/10.1016/j.bmcl.2004.05.014] [PMID: 15203141]
[160]
Liu, T.; Weng, Z.; Dong, X.; Chen, L.; Ma, L.; Cen, S.; Zhou, N.; Hu, Y. Design, synthesis and biological evaluation of novel piperazine derivatives as CCR5 antagonists. PLoS One, 2013, 8(1)e53636
[http://dx.doi.org/10.1371/journal.pone.0053636] [PMID: 23308267]
[161]
Long, Y.Q.; Feng, D.Z.; Chen, L.; Chen, R.H. 1-(3-Amino-propyl)- piperidin-4-ylamides, pharmaceutical compositions, processes for their preparation and uses. PCT Int. Appl., 27,, 2009.
[162]
Hu, S.; Gu, Q.; Wang, Z.; Weng, Z.; Cai, Y.; Dong, X.; Hu, Y.; Liu, T.; Xie, X. Design, synthesis, and biological evaluation of novel piperidine-4-carboxamide derivatives as potent CCR5 inhibitors. Eur. J. Med. Chem., 2014, 71, 259-266.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.013] [PMID: 24316669]
[163]
Skerlj, R.; Bridger, G.; Zhou, Y.; Bourque, E.; McEachern, E.; Danthi, S.; Langille, J.; Harwig, C.; Veale, D.; Carpenter, B.; Ba, T.; Bey, M.; Baird, I.; Wilson, T.; Metz, M.; MacFarland, R.; Mosi, R.; Bodart, V.; Wong, R.; Fricker, S.; Huskens, D.; Schols, D. Mitigating hERG Inhibition: Design of orally bioavailable CCR5 antagonists as potent inhibitors of R5 HIV-1 replication. ACS Med. Chem. Lett., 2012, 3(3), 216-221.
[http://dx.doi.org/10.1021/ml2002604] [PMID: 24900457]
[164]
Skerlj, R.; Bridger, G.; Zhou, Y.; Bourque, E.; McEachern, E.; Metz, M.; Harwig, C.; Li, T.S.; Yang, W.; Bogucki, D.; Zhu, Y.; Langille, J.; Veale, D.; Ba, T.; Bey, M.; Baird, I.; Kaller, A.; Krumpak, M.; Leitch, D.; Satori, M.; Vocadlo, K.; Guay, D.; Nan, S.; Yee, H.; Crawford, J.; Chen, G.; Wilson, T.; Carpenter, B.; Gauthier, D.; Macfarland, R.; Mosi, R.; Bodart, V.; Wong, R.; Fricker, S.; Schols, D. Design of substituted imidazolidinylpiperidinylbenzoic acids as chemokine receptor 5 antagonists: potent inhibitors of R5 HIV-1 replication. J. Med. Chem., 2013, 56(20), 8049-8065.
[http://dx.doi.org/10.1021/jm401101p] [PMID: 24090135]
[165]
Nakata, H.; Maeda, K.; Das, D.; Chang, S.B.; Matsuda, K.; Rao, K.V.; Harada, S.; Yoshimura, K.; Ghosh, A.K.; Mitsuya, H. Activity and structural analysis of GRL-117C: a novel small molecule CCR5 inhibitor active against R5-tropic HIV-1s. Sci. Rep., 2019, 9(1), 4828.
[http://dx.doi.org/10.1038/s41598-019-41080-w] [PMID: 30886166]
[166]
Tan, Q.; Zhu, Y.; Li, J.; Chen, Z.; Han, G.W.; Kufareva, I.; Li, T.; Ma, L.; Fenalti, G.; Li, J.; Zhang, W.; Xie, X.; Yang, H.; Jiang, H.; Cherezov, V.; Liu, H.; Stevens, R.C.; Zhao, Q.; Wu, B. Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science, 2013, 341(6152), 1387-1390.
[http://dx.doi.org/10.1126/science.1241475] [PMID: 24030490]
[167]
Skerlj, R.T.; Bridger, G.J.; Kaller, A.; McEachern, E.J.; Crawford, J.B.; Zhou, Y.; Atsma, B.; Langille, J.; Nan, S.; Veale, D.; Wilson, T.; Harwig, C.; Hatse, S.; Princen, K.; De Clercq, E.; Schols, D. Discovery of novel small molecule orally bioavailable C-X-C chemokine receptor 4 antagonists that are potent inhibitors of T-tropic (X4) HIV-1 replication. J. Med. Chem., 2010, 53(8), 3376-3388.
[http://dx.doi.org/10.1021/jm100073m] [PMID: 20297846]
[168]
Wilson, L.; Liotta, D. Emergence of small-molecule CXCR4 antagonists as novel immune and hematopoietic system regulatory agents. Drug Dev. Res., 2011, 72, 598-602.
[http://dx.doi.org/10.1002/ddr.20469]
[169]
Stone, N.D.; Dunaway, S.B.; Flexner, C.; Tierney, C.; Calandra, G.B.; Becker, S.; Cao, Y-J.; Wiggins, I.P.; Conley, J.; MacFarland, R.T.; Park, J-G.; Lalama, C.; Snyder, S.; Kallungal, B.; Klingman, K.L.; Hendrix, C.W. Multiple-dose escalation study of the safety, pharmacokinetics, and biologic activity of oral AMD070, a selective CXCR4 receptor inhibitor, in human subjects. Antimicrob. Agents Chemother., 2007, 51(7), 2351-2358.
[http://dx.doi.org/10.1128/AAC.00013-07] [PMID: 17452489]
[170]
Jenkinson, S.; Thomson, M.; McCoy, D.; Edelstein, M.; Danehower, S.; Lawrence, W.; Wheelan, P.; Spaltenstein, A.; Gudmundsson, K. Blockade of X4-tropic HIV-1 cellular entry by GSK812397, a potent noncompetitive CXCR4 receptor antagonist. Antimicrob. Agents Chemother., 2010, 54(2), 817-824.
[http://dx.doi.org/10.1128/AAC.01293-09] [PMID: 19949058]
[171]
Thoma, G.; Streiff, M.B.; Kovarik, J.; Glickman, F.; Wagner, T.; Beerli, C.; Zerwes, H-G. Orally bioavailable isothioureas block function of the chemokine receptor CXCR4 in vitro and in vivo. J. Med. Chem., 2008, 51(24), 7915-7920.
[http://dx.doi.org/10.1021/jm801065q] [PMID: 19053768]
[172]
Wilkinson, R.A.; Pincus, S.H.; Song, K.; Shepard, J.B.; Weaver, A.J., Jr; Labib, M.E.; Teintze, M. Improved guanide compounds which bind the CXCR4 co-receptor and inhibit HIV-1 infection. Bioorg. Med. Chem. Lett., 2013, 23(7), 2197-2201.
[http://dx.doi.org/10.1016/j.bmcl.2013.01.107] [PMID: 23434419]
[173]
Truax, V.M.; Zhao, H.; Katzman, B.M.; Prosser, A.R.; Alcaraz, A.A.; Saindane, M.T.; Howard, R.B.; Culver, D.; Arrendale, R.F.; Gruddanti, P.R.; Evers, T.J.; Natchus, M.G.; Snyder, J.P.; Liotta, D.C.; Wilson, L.J. Discovery of tetrahydroisoquinoline-based CXCR4 antagonists. ACS Med. Chem. Lett., 2013, 4(11), 1025-1030.
[http://dx.doi.org/10.1021/ml400183q] [PMID: 24936240]
[174]
Wong, R.S.; Bodart, V.; Metz, M.; Labrecque, J.; Bridger, G.; Fricker, S.P. Comparison of the potential multiple binding modes of bicyclam, monocylam, and noncyclam small-molecule CXC chemokine receptor 4 inhibitors. Mol. Pharmacol., 2008, 74(6), 1485-1495.
[http://dx.doi.org/10.1124/mol.108.049775] [PMID: 18768385]
[175]
Jecs, E.; Miller, E.J.; Wilson, R.J.; Nguyen, H.H.; Tahirovic, Y.A.; Katzman, B.M.; Truax, V.M.; Kim, M.B.; Kuo, K.M.; Wang, T.; Sum, C.S.; Cvijic, M.E.; Schroeder, G.M.; Wilson, L.J.; Liotta, D.C. Synthesis of novel tetrahydroisoquinoline CXCR4 antagonists with rigidified side-chains. ACS Med. Chem. Lett., 2017, 9(2), 89-93.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00406] [PMID: 29456793]
[176]
Nguyen, H.H.; Kim, M.B.; Wilson, R.J.; Butch, C.J.; Kuo, K.M.; Miller, E.J.; Tahirovic, Y.A.; Jecs, E.; Truax, V.M.; Wang, T.; Sum, C.S.; Cvijic, M.E.; Schroeder, G.M.; Wilson, L.J.; Liotta, D.C. Design, synthesis, and pharmacological evaluation of second-generation tetrahydroisoquinoline-based CXCR4 antagonists with favorable ADME properties. J. Med. Chem., 2018, 61(16), 7168-7188.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00450] [PMID: 30052039]
[177]
Wilson, R.J.; Jecs, E.; Miller, E.J.; Nguyen, H.H.; Tahirovic, Y.A.; Truax, V.M.; Kim, M.B.; Kuo, K.M.; Wang, T.; Sum, C.S.; Cvijic, M.E.; Paiva, A.A.; Schroeder, G.M.; Wilson, L.J.; Liotta, D.C. Synthesis and SAR of 1,2,3,4-tetrahydroisoquinoline based CXCR4 antagonists. ACS Med. Chem. Lett., 2017, 9(1), 17-22.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00381] [PMID: 29348805]
[178]
Skerlj, R.; Bridger, G.; McEachern, E.; Harwig, C.; Smith, C.; Kaller, A.; Veale, D.; Yee, H.; Skupinska, K.; Wauthy, R.; Wang, L.; Baird, I.; Zhu, Y.; Burrage, K.; Yang, W.; Sartori, M.; Huskens, D.; De Clercq, E.; Schols, D. Design of novel CXCR4 antagonists that are potent inhibitors of T-tropic (X4) HIV-1 replication. Bioorg. Med. Chem. Lett., 2011, 21(5), 1414-1418.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.021] [PMID: 21295470]
[179]
Miller, E.J.; Jecs, E.; Truax, V.M.; Katzman, B.M.; Tahirovic, Y.A.; Wilson, R.J.; Kuo, K.M.; Kim, M.B.; Nguyen, H.H.; Saindane, M.T.; Zhao, H.; Wang, T.; Sum, C.S.; Cvijic, M.E.; Schroeder, G.M.; Wilson, L.J.; Liotta, D.C. Discovery of tetrahydroisoquinoline-containing CXCR4 antagonists with improved in vitro ADMET properties. J. Med. Chem., 2018, 61(3), 946-979.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01420] [PMID: 29350534]
[180]
Tahirovic, Y.A.; Truax, V.M.; Wilson, R.J.; Jecs, E.; Nguyen, H.H.; Miller, E.J.; Kim, M.B.; Kuo, K.M.; Wang, T.; Sum, C.S.; Cvijic, M.E.; Schroeder, G.M.; Wilson, L.J.; Liotta, D.C. Discovery of N-alkyl piperazine side chain based CXCR4 antagonists with improved drug-like properties. ACS Med. Chem. Lett., 2018, 9(5), 446-451.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00030] [PMID: 29795757]
[181]
Wu, C.H.; Chang, C.P.; Song, J.S.; Jan, J.J.; Chou, M.C.; Wu, S.H.; Yeh, K.C.; Wong, Y.C.; Hsieh, C.J.; Chen, C.T.; Kao, T.T.; Wu, S.Y.; Yeh, C.F.; Tseng, C.T.; Chao, Y.S.; Shia, K.S. Discovery of novel stem cell mobilizers that target the CXCR4 receptor. ChemMedChem, 2012, 7(2), 209-212.
[http://dx.doi.org/10.1002/cmdc.201100525] [PMID: 22190478]
[182]
Wu, C.H.; Wang, C.J.; Chang, C.P.; Cheng, Y.C.; Song, J.S.; Jan, J.J.; Chou, M.C.; Ke, Y.Y.; Ma, J.; Wong, Y.C.; Hsieh, T.C.; Tien, Y.C.; Gullen, E.A.; Lo, C.F.; Cheng, C.Y.; Liu, Y.W.; Sadani, A.A.; Tsai, C.H.; Hsieh, H.P.; Tsou, L.K.; Shia, K.S. Function-oriented development of CXCR4 antagonists as selective human immunodeficiency virus (HIV)-1 entry inhibitors. J. Med. Chem., 2015, 58(3), 1452-1465.
[http://dx.doi.org/10.1021/jm501772w] [PMID: 25584630]
[183]
Debnath, B.; Xu, S.; Grande, F.; Garofalo, A.; Neamati, N. Small molecule inhibitors of CXCR4. Theranostics, 2013, 3(1), 47-75.
[http://dx.doi.org/10.7150/thno.5376] [PMID: 23382786]
[184]
Gudmundsson, K.S.; Boggs, S.D.; Catalano, J.G.; Svolto, A.; Spaltenstein, A.; Thomson, M.; Wheelan, P.; Jenkinson, S. Imidazopyridine-5,6,7,8-tetrahydro-8-quinolinamine derivatives with potent activity against HIV-1. Bioorg. Med. Chem. Lett., 2009, 19(22), 6399-6403.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.056] [PMID: 19818609]
[185]
Li, Z.; Wang, Y.; Fu, C.; Wang, X.; Wang, J.J.; Zhang, Y.; Zhou, D.; Zhao, Y.; Luo, L.; Ma, H.; Lu, W.; Zheng, J.; Zhang, X. Design, synthesis, and structure-activity-relationship of a novel series of CXCR4 antagonists. Eur. J. Med. Chem., 2018, 149, 30-44.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.042] [PMID: 29494843]