Anti-VEGF Treatment and Response in Age-related Macular Degeneration: Disease’s Susceptibility, Pharmacogenetics and Pharmacokinetics

Page: [549 - 569] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

The current review is focussing different factors that contribute and directly correlate to the onset and progression of Age-related Macular Degeneration (AMD). In particular, the susceptibility to AMD due to genetic and non-genetic factors and the establishment of risk scores, based on the analysis of different genes to measure the risk of developing the disease. A correlation with the actual therapeutic landscape to treat AMD patients from the point of view of pharmacokinetics and pharmacogenetics is also exposed. Treatments commonly used, as well as different regimes of administration, will be especially important in trying to classify individuals as “responders” and “non-responders”. Analysis of different genes correlated with drug response and also the emerging field of microRNAs (miRNAs) as possible biomarkers for early AMD detection and response will be also reviewed.

This article aims to provide the reader a review of different publications correlated with AMD from the molecular and kinetic point of view as well as its commonly used treatments, major pitfalls and future directions that, to our knowledge, could be interesting to assess and follow in order to develop a personalized medicine model for AMD.

Keywords: Susceptibility, pharmacogenetics, pharmacokinetics, treatments, age-related macular degeneration, anti-VEGF.

[1]
Bird, A.C.; Bressler, N.M.; Bressler, S.B.; Chisholm, I.H.; Coscas, G.; Davis, M.D.; de Jong, P.T.; Klaver, C.C.; Klein, B.E.; Klein, R. An international classification and grading system for age-related maculopathy and age-related macular degeneration. Surv. Ophthalmol., 1995, 39(5), 367-374.
[http://dx.doi.org/10.1016/S0039-6257(05)80092-X] [PMID: 7604360]
[2]
Resnikoff, S.; Pascolini, D.; Etya’ale, D.; Kocur, I.; Pararajasegaram, R.; Pokharel, G.P.; Mariotti, S.P. Global data on visual impairment in the year 2002. Bull. World Health Organ., 2004, 82(11), 844-851.
[http://dx.doi.org/S0042-96862004001100009] [PMID: 15640920]
[3]
Chen, Y.; Bedell, M.; Zhang, K. Age-related macular degeneration: genetic and environmental factors of disease. Mol. Interv., 2010, 10(5), 271-281.
[http://dx.doi.org/10.1124/mi.10.5.4] [PMID: 21045241]
[4]
Haddad, S.; Chen, C.A.; Santangelo, S.L.; Seddon, J.M. The genetics of age-related macular degeneration: a review of progress to date. Surv. Ophthalmol., 2006, 51(4), 316-363.
[http://dx.doi.org/10.1016/j.survophthal.2006.05.001] [PMID: 16818082]
[5]
Klein, R.; Cruickshanks, K.J.; Nash, S.D.; Krantz, E.M.; Nieto, F.J.; Huang, G.H.; Pankow, J.S.; Klein, B.E.K. The prevalence of age-related macular degeneration and associated risk factors. Arch. Ophthalmol., 2010, 128(6), 750-758.
[http://dx.doi.org/10.1001/archophthalmol.2010.92] [PMID: 20547953]
[6]
Sobrin, L.; Seddon, J.M. Nature and nurture- genes and environment- predict onset and progression of macular degeneration. Prog. Retin. Eye Res., 2014, 40, 1-15.
[http://dx.doi.org/10.1016/j.preteyeres.2013.12.004] [PMID: 24374240]
[7]
Seddon, J.M.; Cote, J.; Page, W.F.; Aggen, S.H.; Neale, M.C. The US twin study of age-related macular degeneration: relative roles of genetic and environmental influences. Arch. Ophthalmol., 2005, 123(3), 321-327.
[http://dx.doi.org/10.1001/archopht.123.3.321] [PMID: 15767473]
[8]
Fritsche, L.G.; Fariss, R.N.; Stambolian, D.; Abecasis, G.R.; Curcio, C.A.; Swaroop, A. Age-related macular degeneration: genetics and biology coming together. Annu. Rev. Genomics Hum. Genet., 2014, 15, 151-171.
[http://dx.doi.org/10.1146/annurev-genom-090413-025610] [PMID: 24773320]
[9]
Age-Related Eye Disease Study 2 Research Group. Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial. JAMA, 2013, 309(19), 2005-2015.
[http://dx.doi.org/10.1001/jama.2013.4997] [PMID: 23644932]
[10]
Juan, V.T. Degeneración macular relacionada a la edad. Rev. Med. Clin. Las Condes, 2010, 21(6), 949-955.
[http://dx.doi.org/10.1016/S0716-8640(10)70620-9]
[11]
Rosenfeld, P.J.; Shapiro, H.; Tuomi, L.; Webster, M.; Elledge, J.; Blodi, B. MARINA and ANCHOR Study Groups. Characteristics of patients losing vision after 2 years of monthly dosing in the phase III ranibizumab clinical trials. Ophthalmology, 2011, 118(3), 523-530.
[http://dx.doi.org/10.1016/j.ophtha.2010.07.011] [PMID: 20920825]
[12]
Tolentino, M.J.; Dennrick, A.; John, E.; Tolentino, M.S. Drugs in Phase II clinical trials for the treatment of age-related macular degeneration. Expert Opin. Investig. Drugs, 2015, 24(2), 183-199.
[http://dx.doi.org/10.1517/13543784.2015.961601] [PMID: 25243494]
[13]
Martin, D.F.; Maguire, M.G.; Ying, G.S.; Grunwald, J.E.; Fine, S.L.; Jaffe, G.J. CATT Research Group. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N. Engl. J. Med., 2011, 364(20), 1897-1908.
[http://dx.doi.org/10.1056/NEJMoa1102673] [PMID: 21526923]
[14]
Chakravarthy, U.; Harding, S.P.; Rogers, C.A.; Downes, S.M.; Lotery, A.J.; Wordsworth, S.; Reeves, B.C. IVAN Study Investigators. Ranibizumab versus bevacizumab to treat neovascular age-related macular degeneration: one-year findings from the IVAN randomized trial. Ophthalmology, 2012, 119(7), 1399-1411.
[http://dx.doi.org/10.1016/j.ophtha.2012.04.015] [PMID: 22578446]
[15]
Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microbial flora. Science, 2005, 308(5728), 1635-1638.
[http://dx.doi.org/10.1126/science.1110591] [PMID: 15831718]
[16]
Grassmann, F.; Schoenberger, P.G.A.; Brandl, C.; Schick, T.; Hasler, D.; Meister, G.; Fleckenstein, M.; Lindner, M.; Helbig, H.; Fauser, S.; Weber, B.H. A circulating microrna profile is associated with late-stage neovascular age-related macular degeneration. PLoS One, 2014, 9(9)e107461
[http://dx.doi.org/10.1371/journal.pone.0107461] [PMID: 25203061]
[17]
Hung, T.; Chang, H.Y. Long noncoding RNA in genome regulation: prospects and mechanisms. RNA Biol., 2010, 7(5), 582-585.
[http://dx.doi.org/10.4161/rna.7.5.13216] [PMID: 20930520]
[18]
Smith, W.; Assink, J.; Klein, R.; Mitchell, P.; Klaver, C.C.; Klein, B.E.; Hofman, A.; Jensen, S.; Wang, J.J.; de Jong, P.T. Risk factors for age-related macular degeneration: Pooled findings from three continents. Ophthalmology, 2001, 108(4), 697-704.
[http://dx.doi.org/10.1016/S0161-6420(00)00580-7] [PMID: 11297486]
[19]
Seddon, J.M.; Ajani, U.A.; Mitchell, B.D. Familial aggregation of age-related maculopathy. Am. J. Ophthalmol., 1997, 123(2), 199-206.
[http://dx.doi.org/10.1016/S0002-9394(14)71036-0] [PMID: 9186125]
[20]
Tomany, S.C.; Wang, J.J.; Van Leeuwen, R.; Klein, R.; Mitchell, P.; Vingerling, J.R.; Klein, B.E.K.; Smith, W.; De Jong, P.T.V.M. Risk factors for incident age-related macular degeneration: pooled findings from 3 continents. Ophthalmology, 2004, 111(7), 1280-1287.
[http://dx.doi.org/10.1016/j.ophtha.2003.11.010] [PMID: 15234127]
[21]
Velilla, S.; García-Medina, J.J.; García-Layana, A.; Dolz-Marco, R.; Pons-Vázquez, S.; Pinazo-Durán, M.D.; Gómez-Ulla, F.; Arévalo, J.F.; Díaz-Llopis, M.; Gallego-Pinazo, R. Smoking and age-related macular degeneration: review and update. J. Ophthalmol., 2013, 2013895147
[http://dx.doi.org/10.1155/2013/895147] [PMID: 24368940]
[22]
Ayala-Haedo, J.A.; Gallins, P.J.; Whitehead, P.L.; Schwartz, S.G.; Kovach, J.L.; Postel, E.A.; Agarwal, A.; Wang, G.; Haines, J.L.; Pericak-Vance, M.A.; Scott, W.K. Analysis of single nucleotide polymorphisms in the NOS2A gene and interaction with smoking in age-related macular degeneration. Ann. Hum. Genet., 2010, 74(3), 195-201.
[http://dx.doi.org/10.1111/j.1469-1809.2010.00x] [PMID: 20374233]
[23]
Naj, A.C.; Scott, W.K.; Courtenay, M.D.; Cade, W.H.; Schwartz, S.G.; Kovach, J.L.; Agarwal, A.; Wang, G.; Haines, J.L.; Pericak-Vance, M.A. Genetic factors in nonsmokers with age-related macular degeneration revealed through genome-wide gene-environment interaction analysis. Ann. Hum. Genet., 2013, 77(3), 215-231.
[http://dx.doi.org/10.1111/ahg.12011] [PMID: 23577725]
[24]
Jabbarpoor Bonyadi, M.H.; Yaseri, M.; Bonyadi, M.; Soheilian, M.; Nikkhah, H. Association of combined cigarette smoking and ARMS2/LOC387715 A69S polymorphisms with age-related macular degeneration: a meta-analysis. Ophthalmic Genet., 2017, 38(4), 308-313.
[http://dx.doi.org/10.1080/13816810.2016.1237664] [PMID: 28095100]
[25]
Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch. Ophthalmol., 2001, 119(10), 1417-1436.
[http://dx.doi.org/10.1001/archopht.119.10.1417] [PMID: 11594942]
[26]
Broekmans, W.M.; Berendschot, T.T.; Klöpping-Ketelaars, I.A.; de Vries, A.J.; Goldbohm, R.A.; Tijburg, L.B.; Kardinaal, A.F.; van Poppel, G. Macular pigment density in relation to serum and adipose tissue concentrations of lutein and serum concentrations of zeaxanthin. Am. J. Clin. Nutr., 2002, 76(3), 595-603.
[http://dx.doi.org/10.1093/ajcn/76.3.595] [PMID: 12198005]
[27]
Bovier, E.R.; Lewis, R.D.; Hammond, B.R., Jr The relationship between lutein and zeaxanthin status and body fat. Nutrients, 2013, 5(3), 750-757.
[http://dx.doi.org/10.3390/nu5030750] [PMID: 23529076]
[28]
Zhang, Q.Y.; Tie, L.J.; Wu, S.S. L.V, P.L.; Huang, H.W.; Wang, W.Q.; Wang, H.; Ma, L. Overweight, obesity, and risk of age-related macular degeneration. Invest. Ophthalmol. Vis. Sci., 2016, 57(3), 1276-1283.
[http://dx.doi.org/10.1167/iovs.15-18637] [PMID: 26990164]
[29]
Seddon, J.M.; Cote, J.; Davis, N.; Rosner, B. Progression of age-related macular degeneration: association with body mass index, waist circumference, and waist-hip ratio. Arch. Ophthalmol., 2003, 121(6), 785-792.
[http://dx.doi.org/10.1001/archopht.121.6.785] [PMID: 12796248]
[30]
Edwards, D.R.V.; Gallins, P.; Polk, M.; Ayala-Haedo, J.; Schwartz, S.G.; Kovach, J.L.; Spencer, K.; Wang, G.; Agarwal, A.; Postel, E.A.; Haines, J.L.; Pericak-Vance, M.; Scott, W.K. Inverse association of female hormone replacement therapy with age-related macular degeneration and interactions with ARMS2 polymorphisms. Invest. Ophthalmol. Vis. Sci., 2010, 51(4), 1873-1879.
[http://dx.doi.org/10.1167/iovs.09-4000] [PMID: 19933179]
[31]
Cascella, R.; Strafella, C.; Caputo, V.; Errichiello, V.; Zampatti, S.; Milano, F.; Potenza, S.; Mauriello, S.; Novelli, G.; Ricci, F.; Cusumano, A.; Giardina, E. Towards the application of precision medicine in age-related macular degeneration. Prog. Retin. Eye Res., 2018, 63, 132-146.
[http://dx.doi.org/10.1016/j.preteyeres.2017.11.004] [PMID: 29197628]
[32]
Hammond, C.J.; Webster, A.R.; Snieder, H.; Bird, A.C.; Gilbert, C.E.; Spector, T.D. Genetic influence on early age-related maculopathy: a twin study. Ophthalmology, 2002, 109(4), 730-736.
[http://dx.doi.org/10.1016/S0161-6420(01)01049-1] [PMID: 11927430]
[33]
Klein, R.J.; Zeiss, C.; Chew, E.Y.; Tsai, J.Y.; Sackler, R.S.; Haynes, C.; Henning, A.K.; SanGiovanni, J.P.; Mane, S.M.; Mayne, S.T.; Bracken, M.B.; Ferris, F.L.; Ott, J.; Barnstable, C.; Hoh, J. Complement factor H polymorphism in age-related macular degeneration. Science, 2005, 308(5720), 385-389.
[http://dx.doi.org/10.1126/science.1109557] [PMID: 15761122]
[34]
Rivera, A.; Fisher, S.A.; Fritsche, L.G.; Keilhauer, C.N.; Lichtner, P.; Meitinger, T.; Weber, B.H.F. Hypothetical LOC387715 is a second major susceptibility gene for age-related macular degeneration, contributing independently of complement factor H to disease risk. Hum. Mol. Genet., 2005, 14(21), 3227-3236.
[http://dx.doi.org/10.1093/hmg/ddi353] [PMID: 16174643]
[35]
Fritsche, L.G.; Chen, W.; Schu, M.; Yaspan, B.L.; Yu, Y.; Thorleifsson, G.; Zack, D.J.; Arakawa, S.; Cipriani, V.; Ripke, S. Seven new loci associated with age-related macular degeneration. Nat. Genet., 2013, 45(4), 433-439.
[http://dx.doi.org/10.1038%2Fng.2578] [PMID: 23455636]
[36]
Hageman, G.S.; Anderson, D.H.; Johnson, L.V.; Hancox, L.S.; Taiber, A.J.; Hardisty, L.I.; Hageman, J.L.; Stockman, H.A.; Borchardt, J.D.; Gehrs, K.M.; Smith, R.J.; Silvestri, G.; Russell, S.R.; Klaver, C.C.; Barbazetto, I.; Chang, S.; Yannuzzi, L.A.; Barile, G.R.; Merriam, J.C.; Smith, R.T.; Olsh, A.K.; Bergeron, J.; Zernant, J.; Merriam, J.E.; Gold, B.; Dean, M.; Allikmets, R. A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc. Natl. Acad. Sci. USA, 2005, 102(20), 7227-7232.
[http://dx.doi.org/10.1073/pnas.0501536102] [PMID: 15870199]
[37]
Gold, B.; Merriam, J.E.; Zernant, J.; Hancox, L.S.; Taiber, A.J.; Gehrs, K.; Cramer, K.; Neel, J.; Bergeron, J.; Barile, G.R.; Smith, R.T.; Hageman, G.S.; Dean, M.; Allikmets, R. AMD Genetics Clinical Study Group. Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat. Genet., 2006, 38(4), 458-462.
[http://dx.doi.org/10.1038/ng1750] [PMID: 16518403]
[38]
Li, M.; Atmaca-Sonmez, P.; Othman, M.; Branham, K.E.H.; Khanna, R.; Wade, M.S.; Li, Y.; Liang, L.; Zareparsi, S.; Swaroop, A.; Abecasis, G.R. CFH haplotypes without the Y402H coding variant show strong association with susceptibility to age-related macular degeneration. Nat. Genet., 2006, 38(9), 1049-1054.
[http://dx.doi.org/10.1038/ng1871] [PMID: 16936733]
[39]
Yates, J.R.W.; Sepp, T.; Matharu, B.K.; Khan, J.C.; Thurlby, D.A.; Shahid, H.; Clayton, D.G.; Hayward, C.; Morgan, J.; Wright, A.F.; Armbrecht, A.M.; Dhillon, B.; Deary, I.J.; Redmond, E.; Bird, A.C.; Moore, A.T. Genetic Factors in AMD Study Group. Complement C3 variant and the risk of age-related macular degeneration. N. Engl. J. Med., 2007, 357(6), 553-561.
[http://dx.doi.org/10.1056/NEJMoa072618] [PMID: 17634448]
[40]
Seddon, J.M.; Yu, Y.; Miller, E.C.; Reynolds, R.; Tan, P.L.; Gowrisankar, S.; Goldstein, J.I.; Triebwasser, M.; Anderson, H.E.; Zerbib, J.; Kavanagh, D.; Souied, E.; Katsanis, N.; Daly, M.J.; Atkinson, J.P.; Raychaudhuri, S. Rare variants in CFI, C3 and C9 are associated with high risk of advanced age-related macular degeneration. Nat. Genet., 2013, 45(11), 1366-1370.
[http://dx.doi.org/10.1038/ng.2741] [PMID: 24036952]
[41]
Nishiguchi, K.M.; Yasuma, T.R.; Tomida, D.; Nakamura, M.; Ishikawa, K.; Kikuchi, M.; Ohmi, Y.; Niwa, T.; Hamajima, N.; Furukawa, K.; Terasaki, H. C9-R95X polymorphism in patients with neovascular age-related macular degeneration. Invest. Ophthalmol. Vis. Sci., 2012, 53(1), 508-512.
[http://dx.doi.org/10.1167/iovs.11-8425] [PMID: 22190594]
[42]
Thakkinstian, A.; Bowe, S.; McEvoy, M.; Smith, W.; Attia, J. Association between apolipoprotein E polymorphisms and age-related macular degeneration: A HuGE review and meta-analysis. Am. J. Epidemiol., 2006, 164(9), 813-822.
[http://dx.doi.org/10.1093/aje/kwj279] [PMID: 16916985]
[43]
Kaur, I.; Hussain, A.; Hussain, N.; Das, T.; Pathangay, A.; Mathai, A.; Hussain, A.; Nutheti, R.; Nirmalan, P.K.; Chakrabarti, S. Analysis of CFH, TLR4, and APOE polymorphism in India suggests the Tyr402His variant of CFH to be a global marker for age-related macular degeneration. Invest. Ophthalmol. Vis. Sci., 2006, 47(9), 3729-3735.
[http://dx.doi.org/10.1167/iovs.05-1430] [PMID: 16936080]
[44]
Souied, E.H.; Ducroq, D.; Rozet, J.M.; Gerber, S.; Perrault, I.; Munnich, A.; Coscas, G.; Soubrane, G.; Kaplan, J. ABCR gene analysis in familial exudative age-related macular degeneration. Invest. Ophthalmol. Vis. Sci., 2000, 41(1), 244-247.
[PMID: 10634626]
[45]
Yang, Z.; Camp, N.J.; Sun, H.; Tong, Z.; Gibbs, D.; Cameron, D.J.; Chen, H.; Zhao, Y.; Pearson, E.; Li, X.; Chien, J.; Dewan, A.; Harmon, J.; Bernstein, P.S.; Shridhar, V.; Zabriskie, N.A.; Hoh, J.; Howes, K.; Zhang, K. A variant of the HTRA1 gene increases susceptibility to age-related macular degeneration. Science, 2006, 314(5801), 992-993.
[http://dx.doi.org/10.1126/science.1133811] [PMID: 17053109]
[46]
Chen, H.; Yang, Z.; Gibbs, D.; Yang, X.; Hau, V.; Zhao, P.; Ma, X.; Zeng, J.; Luo, L.; Pearson, E.; Constantine, R.; Kaminoh, Y.; Harmon, J.; Tong, Z.; Stratton, C.A.; Cameron, D.J.; Tang, S.; Zhang, K. Association of HTRA1 polymorphism and bilaterality in advanced age-related macular degeneration. Vision Res., 2008, 48(5), 690-694.
[http://dx.doi.org/10.1016/j.visres.2007.10.014] [PMID: 18206206]
[47]
Cameron, D.J.; Yang, Z.; Gibbs, D.; Chen, H.; Kaminoh, Y.; Jorgensen, A.; Zeng, J.; Luo, L.; Brinton, E.; Brinton, G.; Brand, J.M.; Bernstein, P.S.; Zabriskie, N.A.; Tang, S.; Constantine, R.; Tong, Z.; Zhang, K. HTRA1 variant confers similar risks to geographic atrophy and neovascular age-related macular degeneration. Cell Cycle, 2007, 6(9), 1122-1125.
[http://dx.doi.org/10.4161/cc.6.9.4157] [PMID: 17426452]
[48]
Huang, C.; Xu, Y.; Li, X.; Wang, W. Vascular endothelial growth factor A polymorphisms and age-related macular degeneration: a systematic review and meta-analysis. Mol. Vis., 2013, 19, 1211-1221.
[PMID: 23761723]
[49]
Fritsche, L.G.; Igl, W.; Bailey, J.N.C.; Grassmann, F.; Sengupta, S.; Bragg-Gresham, J.L.; Burdon, K.P.; Hebbring, S.J.; Wen, C.; Gorski, M.; Kim, I.K.; Cho, D.; Zack, D.; Souied, E.; Scholl, H.P.; Bala, E.; Lee, K.E.; Hunter, D.J.; Sardell, R.J.; Mitchell, P.; Merriam, J.E.; Cipriani, V.; Hoffman, J.D.; Schick, T.; Lechanteur, Y.T.; Guymer, R.H.; Johnson, M.P.; Jiang, Y.; Stanton, C.M.; Buitendijk, G.H.; Zhan, X.; Kwong, A.M.; Boleda, A.; Brooks, M.; Gieser, L.; Ratnapriya, R.; Branham, K.E.; Foerster, J.R.; Heckenlively, J.R.; Othman, M.I.; Vote, B.J.; Liang, H.H.; Souzeau, E.; McAllister, I.L.; Isaacs, T.; Hall, J.; Lake, S.; Mackey, D.A.; Constable, I.J.; Craig, J.E.; Kitchner, T.E.; Yang, Z.; Su, Z.; Luo, H.; Chen, D.; Ouyang, H.; Flagg, K.; Lin, D.; Mao, G.; Ferreyra, H.; Stark, K.; von Strachwitz, C.N.; Wolf, A.; Brandl, C.; Rudolph, G.; Olden, M.; Morrison, M.A.; Morgan, D.J.; Schu, M.; Ahn, J.; Silvestri, G.; Tsironi, E.E.; Park, K.H.; Farrer, L.A.; Orlin, A.; Brucker, A.; Li, M.; Curcio, C.A.; Mohand-Saïd, S.; Sahel, J.A.; Audo, I.; Benchaboune, M.; Cree, A.J.; Rennie, C.A.; Goverdhan, S.V.; Grunin, M.; Hagbi-Levi, S.; Campochiaro, P.; Katsanis, N.; Holz, F.G.; Blond, F.; Blanché, H.; Deleuze, J.F.; Igo, R.P., Jr; Truitt, B.; Peachey, N.S.; Meuer, S.M.; Myers, C.E.; Moore, E.L.; Klein, R.; Hauser, M.A.; Postel, E.A.; Courtenay, M.D.; Schwartz, S.G.; Kovach, J.L.; Scott, W.K.; Liew, G.; Tan, A.G.; Gopinath, B.; Merriam, J.C.; Smith, R.T.; Khan, J.C.; Shahid, H.; Moore, A.T.; McGrath, J.A.; Laux, R.; Brantley, M.A., Jr; Agarwal, A.; Ersoy, L.; Caramoy, A.; Langmann, T.; Saksens, N.T.; de Jong, E.K.; Hoyng, C.B.; Cain, M.S.; Richardson, A.J.; Martin, T.M.; Blangero, J.; Weeks, D.E.; Dhillon, B.; van Duijn, C.M.; Doheny, K.F.; Romm, J.; Klaver, C.C.; Hayward, C.; Gorin, M.B.; Klein, M.L.; Baird, P.N.; den Hollander, A.I.; Fauser, S.; Yates, J.R.; Allikmets, R.; Wang, J.J.; Schaumberg, D.A.; Klein, B.E.; Hagstrom, S.A.; Chowers, I.; Lotery, A.J.; Léveillard, T.; Zhang, K.; Brilliant, M.H.; Hewitt, A.W.; Swaroop, A.; Chew, E.Y.; Pericak-Vance, M.A.; DeAngelis, M.; Stambolian, D.; Haines, J.L.; Iyengar, S.K.; Weber, B.H.; Abecasis, G.R.; Heid, I.M. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat. Genet., 2016, 48(2), 134-143.
[http://dx.doi.org/10.1038/ng.3448] [PMID: 26691988]
[50]
Mousavi, M.; Armstrong, R.A. Genetic risk factors and age-related macular degeneration (AMD). J. Optom., 2013, 6(4), 176-184.
[http://dx.doi.org/10.1016/j.optom.2013.07.002]
[51]
Brión, M.; Sanchez-Salorio, M.; Cortón, M.; de la Fuente, M.; Pazos, B.; Othman, M.; Swaroop, A.; Abecasis, G.; Sobrino, B.; Carracedo, A. Spanish multi-centre group of AMD. Genetic association study of age-related macular degeneration in the Spanish population. Acta Ophthalmol., 2011, 89(1), e12-e22.
[http://dx.doi.org/10.1111/j.1755-3768.2010.02040.x] [PMID: 21106043]
[52]
Mullins, R.F.; Skeie, J.M.; Folk, J.C.; Solivan-Timpe, F.M.; Oetting, T.A.; Huang, J.; Wang, K.; Stone, E.M.; Fingert, J.H. Evaluation of variants in the selectin genes in age-related macular degeneration. BMC Med. Genet., 2011, 12(1), 58.
[http://dx.doi.org/10.1186/1471-2350-12-58] [PMID: 21521525]
[53]
Fuse, N.; Mengkegale, M.; Miyazawa, A.; Abe, T.; Nakazawa, T.; Wakusawa, R.; Nishida, K. Polymorphisms in ARMS2 (LOC387715) and LOXL1 genes in the Japanese with age-related macular degeneration. Am. J. Ophthalmol., 2011, 151(3), 550-556.
[http://dx.doi.org/10.1016/j.ajo.2010.08.048] [PMID: 21236409]
[54]
Hautamäki, A.; Seitsonen, S.; Holopainen, J.M.; Moilanen, J.A.; Kivioja, J.; Onkamo, P.; Järvelä, I.; Immonen, I. The genetic variant rs4073 A→T of the Interleukin-8 promoter region is associated with the earlier onset of exudative age-related macular degeneration. Acta Ophthalmol., 2015, 93(8), 726-733.
[http://dx.doi.org/10.1111/aos.12799] [PMID: 26154559]
[55]
Brown, D.M.; Michels, M.; Kaiser, P.K.; Heier, J.S.; Sy, J.P.; Ianchulev, T. ANCHOR Study Group. Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: two-year results of the ANCHOR study. Ophthalmology, 2009, 116(1), 57-65.
[http://dx.doi.org/10.1016/j.ophtha.2008.10.018] [PMID: 19118696]
[56]
Rosenfeld, P.J.; Brown, D.M.; Heier, J.S.; Boyer, D.S.; Kaiser, P.K.; Chung, C.Y.; Kim, R.Y. MARINA Study Group. Ranibizumab for neovascular age-related macular degeneration. N. Engl. J. Med., 2006, 355(14), 1419-1431.
[http://dx.doi.org/10.1056/NEJMoa054481] [PMID: 17021318]
[57]
Lalwani, G.A.; Rosenfeld, P.J.; Fung, A.E.; Dubovy, S.R.; Michels, S.; Feuer, W.; Davis, J.L.; Flynn, H.W., Jr; Esquiabro, M. A variable-dosing regimen with intravitreal ranibizumab for neovascular age-related macular degeneration: year 2 of the PrONTO Study. Am. J. Ophthalmol., 2009, 148(1), 43-e1.
[http://dx.doi.org/10.1016/j.ajo.2009.01.024] [PMID: 19376495]
[58]
Berg, K.; Pedersen, T.R.; Sandvik, L.; Bragadóttir, R. Comparison of ranibizumab and bevacizumab for neovascular age-related macular degeneration according to LUCAS treat-and-extend protocol. Ophthalmology, 2015, 122(1), 146-152.
[http://dx.doi.org/10.1016/j.ophtha.2014.07.041] [PMID: 25227499]
[59]
Wykoff, C.C.; Ou, W.C.; Brown, D.M.; Croft, D.E.; Wang, R.; Payne, J.F.; Clark, W.L.; Abdelfattah, N.S.; Sadda, S.R. TREX-AMD Study Group. Randomized trial of treat-and-extend versus monthly dosing for neovascular age-related macular degeneration: 2-Year results of the TREX-AMD study. Ophthalmol. Retina, 2017, 1(4), 314-321.
[http://dx.doi.org/10.1016/j.oret.2016.12.004] [PMID: 31047517]
[60]
Schmidt-Erfurth, U.; Kaiser, P.K.; Korobelnik, J-F.; Brown, D.M.; Chong, V.; Nguyen, Q.D.; Ho, A.C.; Ogura, Y.; Simader, C.; Jaffe, G.J.; Slakter, J.S.; Yancopoulos, G.D.; Stahl, N.; Vitti, R.; Berliner, A.J.; Soo, Y.; Anderesi, M.; Sowade, O.; Zeitz, O.; Norenberg, C.; Sandbrink, R.; Heier, J.S. Intravitreal aflibercept injection for neovascular age-related macular degeneration: ninety-six-week results of the VIEW studies. Ophthalmology, 2014, 121(1), 193-201.
[http://dx.doi.org/10.1016/j.ophtha.2013.08.011] [PMID: 24084500]
[61]
Wykoff, C. C.; Clark, W. L.; Nielsen, J. S.; Brill, J. V.; Greene, L. S.; Heggen, C. L. Optimizing anti-VEGF treatment outcomes for patients with neovascular age-related macular degeneration. J. Manag. Care Spec. Pharm, 2018, 24(2-a Suppl.), S3-S15.
[http://dx.doi.org/10.18553/jmcp.2018.24.2-a.s3] [PMID: 29383980]
[62]
Hatz, K.; Prünte, C. Treat and extend versus pro re nata regimens of ranibizumab in neovascular age-related macular degeneration: a comparative 12 Month study. Acta Ophthalmol., 2017, 95(1), e67-e72.
[http://dx.doi.org/10.1111/aos.13031] [PMID: 27009503]
[63]
Kvannli, L.; Krohn, J. Switching from pro re nata to treat-and-extend regimen improves visual acuity in patients with neovascular age-related macular degeneration. Acta Ophthalmol., 2017, 95(7), 678-682.
[http://dx.doi.org/10.1111/aos.13356] [PMID: 28139082]
[64]
Arias Barquet, L.; Monés, J. New treatment protocols and follow-up in patients with exudative age-related macular degeneration. Arch. Soc. Esp. Oftalmol., 2012, 87(Suppl. 1), 10-17.
[http://dx.doi.org/10.1016/S0365-6691(12)70047-3] [PMID: 23380436]
[65]
Gemenetzi, M.; Patel, P.J. A systematic review of the treat and extend treatment regimen with anti-VEGF agents for neovascular age-related macular degeneration. Ophthalmol. Ther., 2017, 6(1), 79-92.
[http://dx.doi.org/10.1007/s40123-017-0087-5] [PMID: 28451952]
[66]
Fung, A.E.; Lalwani, G.A.; Rosenfeld, P.J.; Dubovy, S.R.; Michels, S.; Feuer, W.J.; Puliafito, C.A.; Davis, J.L.; Flynn, H.W., Jr; Esquiabro, M. An optical coherence tomography-guided, variable dosing regimen with intravitreal ranibizumab (lucentis) for neovascular age-related macular degeneration. Am. J. Ophthalmol., 2007, 143(4), 566-583.
[http://dx.doi.org/10.1016/j.ajo.2007.01.028] [PMID: 17386270]
[67]
Muether, P.S.; Hermann, M.M.; Dröge, K.; Kirchhof, B.; Fauser, S. Long-term stability of vascular endothelial growth factor suppression time under ranibizumab treatment in age-related macular degeneration. Am. J. Ophthalmol., 2013, 156(5), 989-993.e2.
[http://dx.doi.org/10.1016/j.ajo.2013.06.020] [PMID: 23938122]
[68]
Saunders, D.J.; Muether, P.S.; Fauser, S. A model of the ocular pharmacokinetics involved in the therapy of neovascular age-related macular degeneration with ranibizumab. Br. J. Ophthalmol., 2015, 99(11), 1554-1559.
[http://dx.doi.org/10.1136/bjophthalmol-2015-306771] [PMID: 25957377]
[69]
Celik, N.; Scheuerle, A.; Auffarth, G.U.; Kopitz, J.; Dithmar, S. Intraocular pharmacokinetics of aflibercept and vascular endothelial growth factor-A. Invest. Ophthalmol. Vis. Sci., 2015, 56(9), 5574-5578.
[http://dx.doi.org/10.1167/iovs.15-16418] [PMID: 26305529]
[70]
Laude, A.; Tan, L.E.; Wilson, C.G.; Lascaratos, G.; Elashry, M.; Aslam, T.; Patton, N.; Dhillon, B. Intravitreal therapy for neovascular age-related macular degeneration and inter-individual variations in vitreous pharmacokinetics. Prog. Retin. Eye Res., 2010, 29(6), 466-475.
[http://dx.doi.org/10.1016/j.preteyeres.2010.04.003] [PMID: 20452456]
[71]
Xu, L.; Lu, T.; Tuomi, L.; Jumbe, N.; Lu, J.; Eppler, S.; Kuebler, P.; Damico-Beyer, L.A.; Joshi, A. Pharmacokinetics of ranibizumab in patients with neovascular age-related macular degeneration: a population approach. Invest. Ophthalmol. Vis. Sci., 2013, 54(3), 1616-1624.
[http://dx.doi.org/10.1167/iovs.12-10260] [PMID: 23361508]
[72]
Avery, R.L.; Castellarin, A.A.; Steinle, N.C.; Dhoot, D.S.; Pieramici, D.J.; See, R.; Couvillion, S.; Nasir, M.A.; Rabena, M.D.; Maia, M.; Van Everen, S.; Le, K.; Hanley, W.D. Systemic pharmacokinetics and pharmacodynamics of intravitreal aflibercept, bevacizumab, and ranibizumab. Retina, 2017, 37(10), 1847-1858.
[http://dx.doi.org/10.1097/IAE.0000000000001493] [PMID: 28106709]
[73]
Krohne, T.U.; Eter, N.; Holz, F.G.; Meyer, C.H. Intraocular pharmacokinetics of bevacizumab after a single intravitreal injection in humans. Am. J. Ophthalmol., 2008, 146(4), 508-512.
[http://dx.doi.org/10.1016/j.ajo.2008.05.036] [PMID: 18635152]
[74]
Meyer, C.H.; Krohne, T.U.; Holz, F.G. Intraocular pharmacokinetics after a single intravitreal injection of 1.5 mg versus 3.0 mg of bevacizumab in humans. Retina, 2011, 31(9), 1877-1884.
[http://dx.doi.org/10.1097/IAE.0b013e318217373c] [PMID: 21738089]
[75]
Stewart, M.W. Pharmacokinetics, pharmacodynamics and pre-clinical characteristics of ophthalmic drugs that bind VEGF. Expert Rev. Clin. Pharmacol., 2014, 7(2), 167-180.
[http://dx.doi.org/10.1586/17512433.2014.884458] [PMID: 24483136]
[76]
Avery, R.L.; Castellarin, A.A.; Steinle, N.C.; Dhoot, D.S.; Pieramici, D.J.; See, R.; Couvillion, S.; Nasir, M.A.; Rabena, M.D.; Le, K.; Maia, M.; Visich, J.E. Systemic pharmacokinetics following intravitreal injections of ranibizumab, bevacizumab or aflibercept in patients with neovascular AMD. Br. J. Ophthalmol., 2014, 98(12), 1636-1641.
[http://dx.doi.org/10.1136/bjophthalmol-2014-305252] [PMID: 25001321]
[77]
Liu, K.; Song, Y.; Xu, G.; Ye, J.; Wu, Z.; Liu, X.; Dong, X.; Zhang, M.; Xing, Y.; Zhu, S.; Chen, X.; Shen, Y.; Huang, H.; Yu, L.; Ke, Z.; Rosenfeld, P.J.; Kaiser, P.K.; Ying, G.; Sun, X.; Xu, X. PHOENIX Study Group. Conbercept for treatment of neovascular age-related macular degeneration: results of the randomized phase 3 PHOENIX study. Am. J. Ophthalmol., 2019, 197, 156-167.
[http://dx.doi.org/10.1016/j.ajo.2018.08.026] [PMID: 30148987]
[78]
Cui, J.; Sun, D.; Lu, H.; Dai, R.; Xing, L.; Dong, H.; Wang, L.; Wei, D.; Jiang, B.; Jiao, Y.; Jablonski, M.M.; Charles, S.; Gu, W.; Chen, H. Comparison of effectiveness and safety between conbercept and ranibizumab for treatment of neovascular age-related macular degeneration: a retrospective case-controlled non-inferiority multiple center study. Eye (Lond.), 2018, 32(2), 391-399.
[http://dx.doi.org/10.1038/eye.2017.187] [PMID: 28937147]
[79]
Li, H.; Lei, N.; Zhang, M.; Li, Y.; Xiao, H.; Hao, X. Pharmacokinetics of a long-lasting anti-VEGF fusion protein in rabbit. Exp. Eye Res., 2012, 97(1), 154-159.
[http://dx.doi.org/10.1016/j.exer.2011.09.002] [PMID: 21933673]
[80]
Lu, X.; Sun, X. Profile of conbercept in the treatment of neovascular age-related macular degeneration. Drug Des. Devel. Ther., 2015, 9, 2311-2320.
[http://dx.doi.org/10.2147/DDDT.S67536] [PMID: 25960634]
[81]
Cioffi, C.; Johnson, G.; Petrukhin, K. Recent Developments in Agents for the Treatment of Age-Related Macular Degeneration and Stargardt Disease, 2016, 261-278.
[http://dx.doi.org/10.29200/acsmedchemrev-v51.ch16]
[82]
Costa, J.; Nascimento, J.; Teixeira, S.; Silva, R. A.M.D Future Perspectives: New promising drugs, 2017. Available at: http://www.amdbook.org/content/amd-future-perspectives-new-promising-drugs
[83]
Dugel, P.U.; Koh, A.; Ogura, Y.; Jaffe, G.J.; Schmidt-Erfurth, U.; Brown, D.M.; Gomes, A.V.; Warburton, J.; Weichselberger, A.; Holz, F.G. HAWK and HARRIER: phase 3, multicenter, randomized, double-masked trials of brolucizumab for neovascular age-related macular degeneration. Ophthalmology, 2020, 127(1), 72-84.
[http://dx.doi.org/10.1016/j.ophtha.2019.04.017] [PMID: 30986442]
[84]
Wykoff, C.C.; Hariprasad, S.M.; Zhou, B. Innovation in neovascular age-related macular degeneration: consideration of brolucizumab, abicipar, and the port delivery system. Ophthalmic Surg. Lasers Imaging Retina, 2018, 49(12), 913-917.
[http://dx.doi.org/10.3928/23258160-20181203-01] [PMID: 30566697]
[85]
A Safety and Efficacy Study of Abicipar Pegol in Patients With Neovascular Age-related Macular Degeneration (CDER),, 2015. Available at : https://clinicaltrials.gov/ct2/show/NCT0246-2928/ December 19, 2018.
[86]
Safety and Efficacy of Abicipar Pegol in Patients With Neovascular Age-related Macular Degeneration, 2015. Available at: https://clinicaltrials.gov/ct2/show/NCT0246-2486/ December 19, 2018.
[87]
Schlottmann, P.G.; Alezzandrini, A.A.; Zas, M.; Rodriguez, F.J.; Luna, J.D.; Wu, L. New treatment modalities for neovascular age-related macular degeneration. Asia Pac. J. Ophthalmol. (Phila.), 2017, 6(6), 514-519.
[http://dx.doi.org/10.22608/APO.2017258] [PMID: 28933517]
[88]
Schwartz, S.G.; Puckett, B.J.; Allen, R.C.; Castillo, I.G.; Leffler, C.T. Beta1-adrenergic receptor polymorphisms and clinical efficacy of betaxolol hydrochloride in normal volunteers. Ophthalmology, 2005, 112(12), 2131-2136.
[http://dx.doi.org/10.1016/j.ophtha.2005.08.014] [PMID: 16325708]
[89]
Sakurai, M.; Higashide, T.; Ohkubo, S.; Takeda, H.; Sugiyama, K. Association between genetic polymorphisms of the prostaglandin F2α receptor gene, and response to latanoprost in patients with glaucoma and ocular hypertension. Br. J. Ophthalmol., 2014, 98(4), 469-473.
[http://dx.doi.org/10.1136/bjophthalmol-2013-304267] [PMID: 24457363]
[90]
Jeong, S.; Patel, N.; Edlund, C.K.; Hartiala, J.; Hazelett, D.J.; Itakura, T.; Wu, P-C.; Avery, R.L.; Davis, J.L.; Flynn, H.W.; Lalwani, G.; Puliafito, C.A.; Wafapoor, H.; Hijikata, M.; Keicho, N.; Gao, X.; Argüeso, P.; Allayee, H.; Coetzee, G.A.; Pletcher, M.T.; Conti, D.V.; Schwartz, S.G.; Eaton, A.M.; Fini, M.E. Identification of a novel mucin gene HCG22 associated with steroid-induced ocular hypertension. Invest. Ophthalmol. Vis. Sci., 2015, 56(4), 2737-2748.
[http://dx.doi.org/10.1167/iovs.14-14803] [PMID: 25813999]
[91]
Chen, G.; Tzekov, R.; Li, W.; Jiang, F.; Mao, S.; Tong, Y. Pharmacogenetics of complement factor H Y402H polymorphism and treatment of neovascular AMD with anti-VEGF agents: a meta-analysis. Sci. Rep., 2015, 5, 14517.
[http://dx.doi.org/10.1038/srep14517] [PMID: 26411831]
[92]
McKibbin, M.; Ali, M.; Bansal, S.; Baxter, P.D.; West, K.; Williams, G.; Cassidy, F.; Inglehearn, C.F. CFH, VEGF and HTRA1 promoter genotype may influence the response to intravitreal ranibizumab therapy for neovascular age-related macular degeneration. Br. J. Ophthalmol., 2012, 96(2), 208-212.
[http://dx.doi.org/10.1136/bjo.2010.193680] [PMID: 21558292]
[93]
Cruz-Gonzalez, F.; Cabrillo-Estévez, L.; López-Valverde, G.; Cieza-Borrella, C.; Hernández-Galilea, E.; González-Sarmiento, R. Predictive value of VEGF A and VEGFR2 polymorphisms in the response to intravitreal ranibizumab treatment for wet AMD. Graefes Arch. Clin. Exp. Ophthalmol., 2014, 252(3), 469-475.
[http://dx.doi.org/10.1007/s00417-014-2585-7] [PMID: 24522370]
[94]
Lazzeri, S.; Figus, M.; Orlandi, P.; Fioravanti, A.; Di Desidero, T.; Agosta, E.; Sartini, M.S.; Posarelli, C.; Nardi, M.; Danesi, R.; Bocci, G. VEGF-a polymorphisms predict short-term functional response to intravitreal ranibizumab in exudative age-related macular degeneration. Pharmacogenomics, 2013, 14(6), 623-630.
[http://dx.doi.org/10.2217/pgs.13.43] [PMID: 23570466]
[95]
Hermann, M.M.; van Asten, F.; Muether, P.S.; Smailhodzic, D.; Lichtner, P.; Hoyng, C.B.; Kirchhof, B.; Grefkes, C.; den Hollander, A.I.; Fauser, S. Polymorphisms in vascular endothelial growth factor receptor 2 are associated with better response rates to ranibizumab treatment in age-related macular degeneration. Ophthalmology, 2014, 121(4), 905-910.
[http://dx.doi.org/10.1016/j.ophtha.2013.10.047] [PMID: 24365177]
[96]
Wickremasinghe, S.S.; Xie, J.; Lim, J.; Chauhan, D.S.; Robman, L.; Richardson, A.J.; Hageman, G.; Baird, P.N.; Guymer, R. Variants in the APOE gene are associated with improved outcome after anti-VEGF treatment for neovascular AMD. Invest. Ophthalmol. Vis. Sci., 2011, 52(7), 4072-4079.
[http://dx.doi.org/10.1167/iovs.10-6550] [PMID: 21245410]
[97]
Bakbak, B.; Ozturk, B.T.; Zamani, A.G.; Gonul, S.; Iyit, N.; Gedik, S.; Yıldırım, M.S. Association of apolipoprotein E polymorphism with intravitreal ranibizumab treatment outcomes in age-related macular degeneration. Curr. Eye Res., 2016, 41(6), 862-866.
[http://dx.doi.org/10.3109/02713683.2015.1067325] [PMID: 26398858]
[98]
Lorés-Motta, L.; de Jong, E.K.; den Hollander, A.I. Exploring the use of molecular biomarkers for precision medicine in age-related macular degeneration. Mol. Diagn. Ther., 2018, 22(3), 315-343.
[http://dx.doi.org/10.1007/s40291-018-0332-1] [PMID: 29700787]
[99]
Kitchens, J.W.; Kassem, N.; Wood, W.; Stone, T.W.; Isernhagen, R.; Wood, E.; Hancock, B.A.; Radovich, M.; Waymire, J.; Li, L.; Schneider, B.P. A pharmacogenetics study to predict outcome in patients receiving anti-VEGF therapy in age related macular degeneration. Clin. Ophthalmol., 2013, 7, 1987-1993.
[http://dx.doi.org/10.2147/OPTH.S39635] [PMID: 24143065]
[100]
Hagstrom, S.A.; Ying, G-S.; Pauer, G.J.T.; Sturgill-Short, G.M.; Huang, J.; Callanan, D.G.; Kim, I.K.; Klein, M.L.; Maguire, M.G.; Martin, D.F. Comparison of AMD treatments trials research group. Pharmacogenetics for genes associated with age-related macular degeneration in the comparison of AMD treatments trials (CATT). Ophthalmology, 2013, 120(3), 593-599.
[http://dx.doi.org/10.1016/j.ophtha.2012.11.037] [PMID: 23337555]
[101]
Lotery, A.J.; Gibson, J.; Cree, A.J.; Downes, S.M.; Harding, S.P.; Rogers, C.A.; Reeves, B.C.; Ennis, S.; Chakravarthy, U. Alternative Treatments to Inhibit VEGF in Patients with Age-Related Choroidal Neovascularisation (IVAN) Study Group. Pharmacogenetic associations with vascular endothelial growth factor inhibition in participants with neovascular age-related macular degeneration in the IVAN Study. Ophthalmology, 2013, 120(12), 2637-2643.
[http://dx.doi.org/10.1016/j.ophtha.2013.07.046] [PMID: 24070809]
[102]
Hagstrom, S.A.; Ying, G.S.; Pauer, G.J.; Huang, J.; Maguire, M.G.; Martin, D.F. CATT Research Group. Endothelial PAS domain-containing protein 1 (EPAS1) gene polymorphisms and response to anti-VEGF therapy in the comparison of AMD treatments trials (CATT). Ophthalmology, 2014, 121(8), 1663-4.e1.
[http://dx.doi.org/10.1016/j.ophtha.2014.02.025] [PMID: 24813631]
[103]
Hagstrom, S.A.; Ying, G.S.; Pauer, G.J.T.; Sturgill-Short, G.M.; Huang, J.; Maguire, M.G.; Martin, D.F. Comparison of Age-Related Macular Degeneration Treatments Trials (CATT) Research Group. VEGFA and VEGFR2 gene polymorphisms and response to anti-vascular endothelial growth factor therapy: comparison of age-related macular degeneration treatments trials (CATT). JAMA Ophthalmol., 2014, 132(5), 521-527.
[http://dx.doi.org/10.1001/jamaophthalmol.2014.109] [PMID: 24652518]
[104]
Park, U.C.; Shin, J.Y.; McCarthy, L.C.; Kim, S.J.; Park, J.H.; Chung, H.; Yu, H.G. Pharmacogenetic associations with long-term response to anti-vascular endothelial growth factor treatment in neovascular AMD patients. Mol. Vis., 2014, 20, 1680-1694.
[PMID: 25558172]
[105]
Dedania, V.S.; Grob, S.; Zhang, K.; Bakri, S.J. Pharmacogenomics of response to anti-VEGF therapy in exudative age-related macular degeneration. Retina, 2015, 35(3), 381-391.
[http://dx.doi.org/10.1097/IAE.0000000000000466] [PMID: 25635578]
[106]
Clarke, S.F.; Murphy, E.F.; Nilaweera, K.; Ross, P.R.; Shanahan, F.; O’Toole, P.W.; Cotter, P.D. The gut microbiota and its relationship to diet and obesity: new insights. Gut Microbes, 2012, 3(3), 186-202.
[http://dx.doi.org/10.4161/gmic.20168] [PMID: 22572830]
[107]
Sun, L.; Ma, L.; Ma, Y.; Zhang, F.; Zhao, C.; Nie, Y. Insights into the role of gut microbiota in obesity: pathogenesis, mechanisms, and therapeutic perspectives. Protein Cell, 2018, 9(5), 397-403.
[http://dx.doi.org/10.1007/s13238-018-0546-3] [PMID: 29725936]
[108]
Zinkernagel, M.S.; Zysset-Burri, D.C.; Keller, I.; Berger, L.E.; Leichtle, A.B.; Largiadèr, C.R.; Fiedler, G.M.; Wolf, S. Association of the intestinal microbiome with the development of neovascular age-related macular degeneration. Sci. Rep., 2017, 7, 40826.
[http://dx.doi.org/10.1038/srep40826] [PMID: 28094305]
[109]
Andriessen, E.M.; Wilson, A.M.; Mawambo, G.; Dejda, A.; Miloudi, K.; Sennlaub, F.; Sapieha, P. Gut microbiota influences pathological angiogenesis in obesity-driven choroidal neovascularization. EMBO Mol. Med., 2016, 8(12), 1366-1379.
[http://dx.doi.org/10.15252/emmm.201606531] [PMID: 27861126]
[110]
Saltzman, E.T.; Palacios, T.; Thomsen, M.; Vitetta, L. Intestinal microbiome shifts, dysbiosis, inflammation, and non-alcoholic fatty liver disease. Front. Microbiol., 2018, 9, 61.
[http://dx.doi.org/10.3389/fmicb.2018.00061] [PMID: 29441049]
[111]
Rowan, S.; Taylor, A. The role of microbiota in retinal disease. Adv. Exp. Med. Biol., 2018, 1074, 429-435.
[http://dx.doi.org/10.1007/978-3-319-75402-4_53] [PMID: 29721973]
[112]
Rinninella, E.; Mele, M.C.; Merendino, N.; Cintoni, M.; Anselmi, G.; Caporossi, A.; Gasbarrini, A.; Minnella, A.M. The role of diet, micronutrients and the gut microbiota in age-related macular degeneration: new perspectives from the gutretina axis. Nutrients, 2018, 10(11)E1677
[http://dx.doi.org/10.3390/nu10111677] [PMID: 30400586]
[113]
Lim, L.P.; Lau, N.C.; Garrett-Engele, P.; Grimson, A.; Schelter, J.M.; Castle, J.; Bartel, D.P.; Linsley, P.S.; Johnson, J.M. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 2005, 433(7027), 769-773.
[http://dx.doi.org/10.1038/nature03315] [PMID: 15685193]
[114]
Villarreal, G., Jr; Oh, D-J.; Kang, M.H.; Rhee, D.J. Coordinated regulation of extracellular matrix synthesis by the microRNA-29 family in the trabecular meshwork. Invest. Ophthalmol. Vis. Sci., 2011, 52(6), 3391-3397.
[http://dx.doi.org/10.1167/iovs.10-6165] [PMID: 21330653]
[115]
Wang, C.; Wang, L.; Ding, Y.; Lu, X.; Zhang, G.; Yang, J.; Zheng, H.; Wang, H.; Jiang, Y.; Xu, L. LncRNA Structural characteristics in epigenetic regulation. Int. J. Mol. Sci., 2017, 18(12)E2659
[http://dx.doi.org/10.3390/ijms18122659] [PMID: 29292750]
[116]
Lee, J.T. Lessons from X-chromosome inactivation: long ncRNA as guides and tethers to the epigenome. Genes Dev., 2009, 23(16), 1831-1842.
[http://dx.doi.org/10.1101/gad.1811209] [PMID: 19684108]
[117]
Wan, P.; Su, W.; Zhuo, Y. Precise long non-coding RNA modulation in visual maintenance and impairment. J. Med. Genet., 2017, 54(7), 450-459.
[http://dx.doi.org/10.1136/jmedgenet-2016-104266] [PMID: 28003323]
[118]
Li, F.; Wen, X.; Zhang, H.; Fan, X. Novel insights into the role of long noncoding RNA in ocular diseases. Int. J. Mol. Sci., 2016, 17(4), 478.
[http://dx.doi.org/10.3390/ijms17040478] [PMID: 27043545]
[119]
Mustafi, D.; Kevany, B.M.; Bai, X.; Maeda, T.; Sears, J.E.; Khalil, A.M.; Palczewski, K. Evolutionarily conserved long intergenic non-coding RNAs in the eye. Hum. Mol. Genet., 2013, 22(15), 2992-3002.
[http://dx.doi.org/10.1093/hmg/ddt156] [PMID: 23562822]
[120]
Xu, X-D.; Li, K-R.; Li, X-M.; Yao, J.; Qin, J.; Yan, B. Long non-coding RNAs: new players in ocular neovascularization. Mol. Biol. Rep., 2014, 41(7), 4493-4505.
[http://dx.doi.org/10.1007/s11033-014-3320-5] [PMID: 24623407]
[121]
Zhu, W.; Meng, Y.F.; Xing, Q.; Tao, J.J.; Lu, J.; Wu, Y. Identification of lncRNAs involved in biological regulation in early age-related macular degeneration. Int. J. Nanomedicine, 2017, 12, 7589-7602.
[http://dx.doi.org/10.2147/IJN.S140275] [PMID: 29089757]
[122]
Bentwich, I.; Avniel, A.; Karov, Y.; Aharonov, R.; Gilad, S.; Barad, O.; Barzilai, A.; Einat, P.; Einav, U.; Meiri, E.; Sharon, E.; Spector, Y.; Bentwich, Z. Identification of hundreds of conserved and nonconserved human microRNAs. Nat. Genet., 2005, 37(7), 766-770.
[http://dx.doi.org/10.1038/ng1590] [PMID: 15965474]
[123]
Lewis, B.P.; Burge, C.B.; Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005, 120(1), 15-20.
[http://dx.doi.org/10.1016/j.cell.2004.12.035] [PMID: 15652477]
[124]
Ertekin, S.; Yıldırım, O.; Dinç, E.; Ayaz, L.; Fidancı, S.B.; Tamer, L. Evaluation of circulating miRNAs in wet age-related macular degeneration. Mol. Vis., 2014, 20, 1057-1066.
[PMID: 25221421]
[125]
Szemraj, M.; Bielecka-Kowalska, A.; Oszajca, K.; Krajewska, M.; Goś, R.; Jurowski, P.; Kowalski, M.; Szemraj, J. Serum MicroRNAs as potential biomarkers of AMD. Med. Sci. Monit., 2015, 21, 2734-2742.
[http://dx.doi.org/10.12659/MSM.893697] [PMID: 26366973]
[126]
Romano, G.L.; Platania, C.B.M.; Drago, F.; Salomone, S.; Ragusa, M.; Barbagallo, C.; Di Pietro, C.; Purrello, M.; Reibaldi, M.; Avitabile, T.; Longo, A.; Bucolo, C. Retinal and circulating miRNAs in age-related macular degeneration: an In vivo animal and human study. Front. Pharmacol., 2017, 8, 168.
[http://dx.doi.org/10.3389/fphar.2017.00168] [PMID: 28424619]
[127]
De Guire, V.; Caron, M.; Scott, N.; Ménard, C.; Gaumont-Leclerc, M.F.; Chartrand, P.; Major, F.; Ferbeyre, G. Designing small multiple-target artificial RNAs. Nucleic Acids Res., 2010, 38(13)e140
[http://dx.doi.org/10.1093/nar/gkq354] [PMID: 20453028]
[128]
Ménard, C.; Rezende, F.A.; Miloudi, K.; Wilson, A.; Tétreault, N.; Hardy, P.; SanGiovanni, J.P.; De Guire, V.; Sapieha, P. MicroRNA signatures in vitreous humour and plasma of patients with exudative AMD. Oncotarget, 2016, 7(15), 19171-19184.
[http://dx.doi.org/10.18632/oncotarget.8280] [PMID: 27015561]
[129]
Finger, R.P.; Wickremasinghe, S.S.; Baird, P.N.; Guymer, R.H. Predictors of anti-VEGF treatment response in neovascular age-related macular degeneration. Surv. Ophthalmol., 2014, 59(1), 1-18.
[http://dx.doi.org/10.1016/j.survophthal.2013.03.009] [PMID: 24332379]
[130]
Bakri, S.J.; Snyder, M.R.; Reid, J.M.; Pulido, J.S.; Ezzat, M.K.; Singh, R.J. Pharmacokinetics of intravitreal ranibizumab (Lucentis). Ophthalmology, 2007, 114(12), 2179-2182.
[http://dx.doi.org/10.1016/j.ophtha.2007.09.012] [PMID: 18054637]
[131]
Bakri, S.J.; Snyder, M.R.; Reid, J.M.; Pulido, J.S.; Singh, R.J. Pharmacokinetics of intravitreal bevacizumab (Avastin). Ophthalmology, 2007, 114(5), 855-859.
[http://dx.doi.org/10.1016/j.ophtha.2007.01.017] [PMID: 17467524]
[132]
Gaudreault, J.; Fei, D.; Rusit, J.; Suboc, P.; Shiu, V. Preclinical pharmacokinetics of Ranibizumab (rhuFabV2) after a single intravitreal administration. Invest. Ophthalmol. Vis. Sci., 2005, 46(2), 726-733.
[http://dx.doi.org/10.1167/iovs.04-0601] [PMID: 15671306]
[133]
Avery, R.L.; Gordon, G.M. Systemic safety of prolonged monthly anti-vascular endothelial growth factor therapy for diabetic macular edema: a systematic review and meta-analysis. JAMA Ophthalmol., 2016, 134(1), 21-29.
[http://dx.doi.org/10.1001/jamaophthalmol.2015.4070] [PMID: 26513684]
[134]
Zarbin, M.A. Anti-VEGF agents and the risk of arteriothrombotic events. Asia Pac. J. Ophthalmol. (Phila.), 2018, 7(1), 63-67.
[http://dx.doi.org/10.22608/APO.2017495] [PMID: 29405046]
[135]
Heiduschka, P.; Fietz, H.; Hofmeister, S.; Schultheiss, S.; Mack, A.F.; Peters, S.; Ziemssen, F.; Niggemann, B.; Julien, S.; Bartz-Schmidt, K.U.; Schraermeyer, U. Tübingen Bevacizumab Study Group. Penetration of bevacizumab through the retina after intravitreal injection in the monkey. Invest. Ophthalmol. Vis. Sci., 2007, 48(6), 2814-2823.
[http://dx.doi.org/10.1167/iovs.06-1171] [PMID: 17525217]