Nanomedicines to Treat Skin Pathologies with Natural Molecules

Page: [2323 - 2337] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

The skin and mucous membranes are subjected to many disorders and pathological conditions. Nature offers a wide range of molecules with antioxidant activity able to neutralize, at least in part, the formation of free radicals and therefore to counteract the phenomena of cellular aging. Since synthetic drugs for the treatment of skin diseases can induce resistance, it is particularly interesting to use compounds of plant origin, transporting them in pharmaceutical forms capable of controlling their release and absorption. This review provides an overview of new findings about the use of lipid-based nanosystems for the delivery of natural molecules useful on the topical treatment of skin disorders. Several natural molecules encapsulated in lipid nanosystems have been considered in the treatment of some skin pathologies or diseases. Particularly, the use of rosemary and eucalyptus essential oil, saffron derivatives, curcumin, eugenol, capsaicin, thymol and lycopene has been reported. The molecules have been alternatively encapsulated in viscous systems, such as the organogels, or in liquid systems, such as ethosomes, transferosomes, solid lipid nanoparticles and monoolein based dispersions thickened by inclusion in carbomer gels. The nanostructured forms have been in vitro and in vivo investigated for the treatment of skin disorders due to dehydration, inflammation, melanoma, wound healing, fungal infections or psoriasis. The data reported in the different studies have suggested that the cutaneous application of lipid nanosystems allows a deep interaction between lipid matrix and skin strata, promoting a prolonged release and efficacy of the loaded natural molecules. This review suggests that the application of natural molecules onto the skin by lipid-based nanosystems can provide numerous clinician benefits in dermatology and cosmetics.

Keywords: Skin, cutaneous application, cubic phase, cubosome, ethosome, solid lipid nanoparticle, natural molecules, nanotechnology.

[1]
Richardson M. Understanding the structure and function of the skin. Nurs Times 2003; 99(31): 46-8.
[PMID: 13677123]
[2]
Bouwstra JA, Ponec M. The skin barrier in healthy and diseased state. Biochim Biophys Acta 2006; 1758(12): 2080-95.
[http://dx.doi.org/10.1016/j.bbamem.2006.06.021] [PMID: 16945325]
[3]
Fore J. A review of skin and the effects of aging on skin structure and function. Ostomy Wound Manage 2006; 52(9): 24-35.
[PMID: 16980727]
[4]
Bouwstra JA, Honeywell-Nguyen PL, Gooris GS, Ponec M. Structure of the skin barrier and its modulation by vesicular formulations. Prog Lipid Res 2003; 42(1): 1-36.
[http://dx.doi.org/10.1016/S0163-7827(02)00028-0] [PMID: 12467638]
[5]
Korting HC, Schäfer-Korting M. Carriers in the Topical Treatment of Skin Disease.Drug Delivery Handbook of Experimental PharmacologyBerlin. Heidelberg: Springer 2010; 197: pp. 435-68 .
[http://dx.doi.org/10.1007/978-3-642-00477-3_15]
[6]
Nguyen T, Zuniga R. Skin conditions: new drugs for managing skin disorders. FP Essent 2013; 407: 11-6.
[PMID: 23600334]
[7]
Kulkarni VS, Shaw C. Formulating creams, gels, lotions, and suspensions. In: Kulkarni VS, Shaw C Eds Essential chemistry for formulators of semisolid and liquid dosages Academic Press. San Die-go, USA 2016; pp. 29-41.
[http://dx.doi.org/ 10.1016/B978-0-12-801024-2.00004-2]
[8]
Saraceno R, Chiricozzi A, Gabellini M, Chimenti S. Emerging applications of nanomedicine in dermatology. Skin Res Technol 2013; 19(1): e13-9.
[http://dx.doi.org/10.1111/j.1600-0846.2011.00601.x] [PMID: 22175818]
[9]
Friedman A, Nasir A. Nanotechnology and dermatology education in the United States: data from a pilot survey. J Drugs Dermatol 2011; 10(9): 1037-41.
[PMID: 22052274]
[10]
Papakostas D, Rancan F, Sterry W, Blume-Peytavi U, Vogt A. Nanoparticles in dermatology. Arch Dermatol Res 2011; 303(8): 533-50.
[http://dx.doi.org/10.1007/s00403-011-1163-7] [PMID: 21837474]
[11]
DeLouise LA. Applications of nanotechnology in dermatology. J Invest Dermatol 2012; 132(3 Pt 2): 964-75.
[http://dx.doi.org/10.1038/jid.2011.425] [PMID: 22217738]
[12]
Misra SK, Mohn D, Brunner TJ, et al. Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass composites. Biomaterials 2008; 29(12): 1750-61.
[http://dx.doi.org/10.1016/j.biomaterials.2007.12.040] [PMID: 18255139]
[13]
Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science 2006; 311(5761): 622-7.
[http://dx.doi.org/10.1126/science.1114397] [PMID: 16456071]
[14]
Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 2008; 83(5): 761-9.
[http://dx.doi.org/10.1038/sj.clpt.6100400] [PMID: 17957183]
[15]
Baetke SC, Lammers T, Kiessling F. Applications of nanoparticles for diagnosis and therapy of cancer. Br J Radiol 2015; 88(1054)20150207
[http://dx.doi.org/10.1259/bjr.20150207] [PMID: 25969868]
[16]
Al-Jamal WT, Al-Jamal KT, Tian B, Cakebread A, Halket JM, Kostarelos K. Tumor targeting of functionalized quantum dot-liposome hybrids by intravenous administration. Mol Pharm 2009; 6(2): 520-30.
[http://dx.doi.org/10.1021/mp800187d] [PMID: 19718803]
[17]
Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 2009; 38(6): 1759-82.
[http://dx.doi.org/10.1039/b806051g] [PMID: 19587967]
[18]
Debbage P. Targeted drugs and nanomedicine: present and future. Curr Pharm Des 2009; 15(2): 153-72.
[http://dx.doi.org/10.2174/138161209787002870] [PMID: 19149610]
[19]
Gao X, Cui Y, Levenson RM, Chung LWK, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004; 22(8): 969-76.
[http://dx.doi.org/10.1038/nbt994] [PMID: 15258594]
[20]
Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Nanomedicine--challenge and perspectives. Angew Chem Int Ed Engl 2009; 48(5): 872-97.
[http://dx.doi.org/10.1002/anie.200802585] [PMID: 19142939]
[21]
Huang Y, Yu F, Park YS, et al. Co-administration of protein drugs with gold nanoparticles to enable percutaneous delivery. Biomaterials 2010; 31(34): 9086-91.
[http://dx.doi.org/10.1016/j.biomaterials.2010.08.046] [PMID: 20828812]
[22]
Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 2006; 11(17-18): 812-8.
[http://dx.doi.org/10.1016/j.drudis.2006.07.005] [PMID: 16935749]
[23]
Reubi JC. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev 2003; 24(4): 389-427.
[http://dx.doi.org/10.1210/er.2002-0007] [PMID: 12920149]
[24]
Schottelius M, Wester H-J. Molecular imaging targeting peptide receptors. Methods 2009; 48(2): 161-77.
[http://dx.doi.org/10.1016/j.ymeth.2009.03.012] [PMID: 19324088]
[25]
Hama Y, Koyama Y, Urano Y, Choyke PL, Kobayashi H. Two-color lymphatic mapping using Ig-conjugated near infrared optical probes. J Invest Dermatol 2007; 127(10): 2351-6.
[http://dx.doi.org/10.1038/sj.jid.5700892] [PMID: 17522707]
[26]
Frangioni JV. New technologies for human cancer imaging. J Clin Oncol 2008; 26(24): 4012-21.
[http://dx.doi.org/10.1200/JCO.2007.14.3065] [PMID: 18711192]
[27]
Lim SW, Kim HW, Jun HY, et al. TCL-SPION-enhanced MRI for the detection of lymph node metastasis in murine experimental model. Acad Radiol 2011; 18(4): 504-11.
[http://dx.doi.org/10.1016/j.acra.2010.10.017] [PMID: 21216633]
[28]
Huang HC, Barua S, Sharma G, Dey SK, Rege K. Inorganic nanoparticles for cancer imaging and therapy. J Control Release 2011; 155(3): 344-57.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.004] [PMID: 21723891]
[29]
Kirjavainen M, Urtti A, Valjakka-Koskela R, Kiesvaara J, Mönkkönen J. Liposome-skin interactions and their effects on the skin permeation of drugs. Eur J Pharm Sci 1999; 7(4): 279-86.
[http://dx.doi.org/10.1016/S0928-0987(98)00037-2] [PMID: 9971910]
[30]
Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 2006; 1(3): 297-315.
[PMID: 17717971]
[31]
Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 2000; 50(1): 161-77.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[32]
Schäfer-Korting M, Mehnert W, Korting HC. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev 2007; 59(6): 427-43.
[http://dx.doi.org/10.1016/j.addr.2007.04.006] [PMID: 17544165]
[33]
Jores K, Mehnert W, Drechsler M, Bunjes H, Johann C, Mäder K. Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. J Control Release 2004; 95(2): 217-27.
[http://dx.doi.org/10.1016/j.jconrel.2003.11.012] [PMID: 14980770]
[34]
Siekmann B, Bunjes H, Koch MHJ, Westesen K. Preparation and structural investigations of colloidal dispersions prepared from cubic monoglyceride-water phases. Int J Pharm 2002; 244(1-2): 33-43.
[http://dx.doi.org/10.1016/S0378-5173(02)00298-3] [PMID: 12204563]
[35]
Touitou E, Alkabes M, Dayan N, Eliaz M. Ethosomes: novel vesicular carriers for enhanced skin delivery. Pharm Res 1997; 14: S305-6.
[36]
Zhang Z, Wo Y, Zhang Y, et al. In vitro study of ethosome penetration in human skin and hypertrophic scar tissue. Nanomedicine (Lond) 2012; 8(6): 1026-33.
[http://dx.doi.org/10.1016/j.nano.2011.10.006] [PMID: 22033085]
[37]
Shchipunov YA. Lecithin organogel: a micellar system with unique properties. Colloids Surf A Physicochem Eng Asp 2001; 185: 541-54.
[http://dx.doi.org/10.1016/S0927-7757(01)00511-8]
[38]
Capitani D, Segre AL, Dreher F, Walde P, Luisi PL. Multinuclear NMR investigation of phospha-tidylcholine organogels. J Phys Chem 1996; 100: 15211-7.
[http://dx.doi.org/10.1021/jp960811i]
[39]
Battaglia L, Gallarate M. Lipid nanoparticles: state of the art, new preparation methods and challenges in drug delivery. Expert Opin Drug Deliv 2012; 9(5): 497-508.
[http://dx.doi.org/10.1517/17425247.2012.673278] [PMID: 22439808]
[40]
Nyström AM, Fadeel B. Safety assessment of nanomaterials: implications for nanomedicine. J Control Release 2012; 161(2): 403-8.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.027] [PMID: 22306428]
[41]
Schneider M, Stracke F, Hansen S, Schaefer UF. Nanoparticles and their interactions with the dermal barrier. Dermatoendocrinol 2009; 1(4): 197-206.
[http://dx.doi.org/10.4161/derm.1.4.9501] [PMID: 20592791]
[42]
Neubert RHH. Potentials of new nanocarriers for dermal and transdermal drug delivery. Eur J Pharm Biopharm 2011; 77(1): 1-2.
[http://dx.doi.org/10.1016/j.ejpb.2010.11.003] [PMID: 21111043]
[43]
Lademann J, Richter H, Schanzer S, et al. Penetration and storage of particles in human skin: perspectives and safety aspects. Eur J Pharm Biopharm 2011; 77(3): 465-8.
[http://dx.doi.org/10.1016/j.ejpb.2010.10.015] [PMID: 21056659]
[44]
Prow TW, Grice JE, Lin LL, et al. Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev 2011; 63(6): 470-91.
[http://dx.doi.org/10.1016/j.addr.2011.01.012] [PMID: 21315122]
[45]
Bolzinger M-A, Briançon S, Chevalier Y. Nanoparticles through the skin: managing conflicting results of inorganic and organic particles in cosmetics and pharmaceutics. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2011; 3(5): 463-78.
[http://dx.doi.org/10.1002/wnan.146] [PMID: 21618448]
[46]
Karimi A, Majlesi M, Rafieian-Kopaei M. Herbal versus synthetic drugs; beliefs and facts. J Nephropharmacol 2015; 4(1): 27-30.
[PMID: 28197471]
[47]
Harrison RA, Holt D, Pattison DJ, Elton PJ. Who and how many people are taking herbal supplements? A survey of 21,923 adults. Int J Vitam Nutr Res 2004; 74(3): 183-6.
[http://dx.doi.org/10.1024/0300-9831.74.3.183] [PMID: 15296076]
[48]
Hartmann T. From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 2007; 68(22-24): 2831-46.
[http://dx.doi.org/10.1016/j.phytochem.2007.09.017] [PMID: 17980895]
[49]
Strohl WR. The role of natural products in a modern drug discovery program. Drug Discov Today 2000; 5(2): 39-41.
[http://dx.doi.org/10.1016/S1359-6446(99)01443-9] [PMID: 10652450]
[50]
Manly SP, Padmanabha R, Lowe SE. Natural products or not? How to screen for natural products in the emerging HTS paradigm. Methods Mol Biol 2002; 190: 153-68.
[http://dx.doi.org/10.1385/1-59259-180-9:153] [PMID: 12029820]
[51]
Ali J, Rafiq QA, Ratcliffe E. Antimicrobial resistance mechanisms and potential synthetic treat-ments. Future Sci OA 2018; 4, 4: FSO290.
[52]
Tabassum N, Hamdani M. Plants used to treat skin diseases. Pharmacogn Rev 2014; 8(15): 52-60.
[http://dx.doi.org/10.4103/0973-7847.125531] [PMID: 24600196]
[53]
Renu S. Treatment of skin diseases through medicinal plants in different regions of the world. Int J Compr Pharm 2010; 4: 1-4.
[54]
Proksch E, Brandner JM, Jensen JM. The skin: an indispensable barrier. Exp Dermatol 2008; 17(12): 1063-72.
[http://dx.doi.org/10.1111/j.1600-0625.2008.00786.x] [PMID: 19043850]
[55]
Agache P. Metrology of the stratum corneumMeasuring the skin. Berlin: Springer‐Verlag 2004; pp. 101-11.
[http://dx.doi.org/10.1007/978-3-662-08585-1_12]
[56]
Fluhr JW, Elias PM. Stratum corneum pH: formation and function of the ‘acid mantle’. Exogenous Dermatol 2002; 1: 163-75.
[http://dx.doi.org/10.1159/000066140]
[57]
Boelsma E, Hendriks HFJ, Roza L. Nutritional skin care: health effects of micronutrients and fatty acids. Am J Clin Nutr 2001; 73(5): 853-64.
[http://dx.doi.org/10.1093/ajcn/73.5.853] [PMID: 11333837]
[58]
Drake DR, Brogden KA, Dawson DV, Wertz PW. Thematic review series: skin lipids. Antimicrobial lipids at the skin surface. J Lipid Res 2008; 49(1): 4-11.
[http://dx.doi.org/10.1194/jlr.R700016-JLR200] [PMID: 17906220]
[59]
Yamamura T, Tezuka T. The water-holding capacity of the stratum corneum measured by 1H-NMR. J Invest Dermatol 1989; 93(1): 160-4.
[http://dx.doi.org/10.1111/1523-1747.ep12277392] [PMID: 2746000]
[60]
Ziboh VA, Miller CC, Cho Y. Metabolism of polyunsaturated fatty acids by skin epidermal enzymes: generation of antiinflammatory and antiproliferative metabolites. Am J Clin Nutr 2000; 71(1)(Suppl.): 361S-6S.
[http://dx.doi.org/10.1093/ajcn/71.1.361s] [PMID: 10617998]
[61]
Rather IA, Bajpai VK, Kumar S, Lim J, Paek WK, Park YH. Probiotics and atopic dermatitis: an overview. Front Microbiol 2016; 7: 507.
[http://dx.doi.org/10.3389/fmicb.2016.00507] [PMID: 27148196]
[62]
Li Y, Lei D, Swindell WR, et al. Age-associated increase in skin fibroblast–derived prostaglandin E2 contributes to reduced collagen levels in elderly human skin. J Invest Dermatol 2015; 135(9): 2181-8.
[http://dx.doi.org/10.1038/jid.2015.157] [PMID: 25905589]
[63]
Aly R. Microbial Infections of Skin and NailsMedical Microbiology. 4th ed. Galveston, TX: University of Texas Medical Branch at Galveston 1996.
[64]
Maibach HI, Aly R. Bacterial infections of the skinDermatol-ogy. 3rd ed. Philadelphia, PA: WB Saunders Company 1992; Vol. 1: pp. 869-912.
[65]
Nenoff P, Paasch U, Handrick W. [Infections of finger and toe nails due to fungi and bacteria Hautarzt 2014; 65(4): 337-48.
[http://dx.doi.org/ [http://10.1007/s00105-013-2704-0] [PMID: 24718510]
[66]
Sangaré AK, Doumbo OK, Raoult D. Management and treatment of human lice. Biomed Res Int 2016; 2016: ID 8962685..
[http://dx.doi.org/ 10.1155/2016/8962685]
[67]
Engelman D, Steer AC. Control Strategies for Scabies. Trop Med Infect Dis 2018; 3(3): 98.
[http://dx.doi.org/10.3390/tropicalmed3030098] [PMID: 30274494]
[68]
Long F-Q, Zhao L-S, Qian Y-H. Vitiligo or vitiligo-like hypopigmentation associated with imiquimod treatment of condyloma acuminatum: not a casual event. Chin Med J (Engl) 2017; 130(4): 503-4.
[http://dx.doi.org/10.4103/0366-6999.199846] [PMID: 28218231]
[69]
Pérez-Bernal A, Muñoz-Pérez MA, Camacho F. Management of facial hyperpigmentation. Am J Clin Dermatol 2000; 1(5): 261-8.
[http://dx.doi.org/10.2165/00128071-200001050-00001] [PMID: 11702317]
[70]
Marzuka AG, Book SE. Basal cell carcinoma: pathogenesis, epidemiology, clinical features, diagnosis, histopathology, and management. Yale J Biol Med 2015; 88(2): 167-79.
[PMID: 26029015]
[71]
Stone Ii R, Natesan S, Kowalczewski CJ, et al. Advance-ments in regenerative strategies through the continuum of burn care. Front Pharmacol 2018; 9: 672.
[http://dx.doi.org/10.3389/fphar.2018.00672] [PMID: 30038569]
[72]
Sugibayashi K. Skin Morphology and Permeation Pathway Through the SkinSkin permeation and disposition of therapeutic and cosmeceutical compounds. Springer Japan KK 2017; pp. 3-11.
[http://dx.doi.org/10.1007/978-4-431-56526-0_1]
[73]
Bos JD, Meinardi MM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol 2000; 9(3): 165-9.
[http://dx.doi.org/10.1034/j.1600-0625.2000.009003165.x] [PMID: 10839713]
[74]
Alkilani AZ, McCrudden MT, Donnelly RF. Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics 2015; 7(4): 438-70.
[http://dx.doi.org/10.3390/pharmaceutics7040438] [PMID: 26506371]
[75]
Lauterbach A, Müller-Goymann CC. Applications and limitations of lipid nanoparticles in dermal and transdermal drug delivery via the follicular route. Eur J Pharm Biopharm 2015; 97(Pt A): 152-63.
[http://dx.doi.org/10.1016/j.ejpb.2015.06.020] [PMID: 26144664]
[76]
Lademann J, Jacobi U, Surber C, Weigmann H-J, Fluhr JW. The tape stripping procedure--evaluation of some critical parameters. Eur J Pharm Biopharm 2009; 72(2): 317-23.
[http://dx.doi.org/10.1016/j.ejpb.2008.08.008] [PMID: 18775778]
[77]
Schneider M, Stracke F, Hansen S, Schaefer UF. Nanoparticles and their interactions with the dermal barrier. Dermatoendocrinol 2009; 1(4): 197-206.
[http://dx.doi.org/10.4161/derm.1.4.9501] [PMID: 20592791]
[78]
Jackson JE, Kopecki Z, Cowin AJ. Nanotechnological advances in cutaneous medicine. J Nano-mater 2013. ID 808234: 1-8.
[79]
Watkinson AC, Bunge AL, Hadgraft J, Lane ME. Nanoparticles do not penetrate human skin--a theoretical perspective. Pharm Res 2013; 30(8): 1943-6.
[http://dx.doi.org/10.1007/s11095-013-1073-9] [PMID: 23722409]
[80]
Patzelt A, Lademann J. Drug delivery to hair follicles. Expert Opin Drug Deliv 2013; 10(6): 787-97.
[http://dx.doi.org/10.1517/17425247.2013.776038] [PMID: 23530745]
[81]
Shah JC, Sadhale Y, Chilukuri DM. Cubic phase gels as drug delivery systems. Adv Drug Deliv Rev 2001; 47(2-3): 229-50.
[http://dx.doi.org/10.1016/S0169-409X(01)00108-9] [PMID: 11311994]
[82]
Vanić Z, Holæter AM, Skalko-Basnet N. (Phospho)lipid-based nanosystems for skin administra-tion. Curr Pharm Des 2015; 21(29): 4174-92.
[http://dx.doi.org/10.2174/1381612821666150901095838] [PMID: 26323431]
[83]
Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005; 4(2): 145-60.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[84]
Kumar L, Verma S, Kumar S, Prasad DN, Jain AK. Fatty acid vesicles acting as expanding hori-zon for transdermal delivery. Artif Cells Nanomed Biotechnol 2016; 18: 1-10.
[85]
Barenholz Y. Liposome application: problems and prospects. Curr Opin Coll Int Sci 2001; 6: 66-77.
[http://dx.doi.org/10.1016/S1359-0294(00)00090-X]
[86]
Baroli B. Penetration of nanoparticles and nanomaterials in the skin: fiction or reality? J Pharm Sci 2010; 99(1): 21-50.
[http://dx.doi.org/10.1002/jps.21817] [PMID: 19670463]
[87]
Dreier J, Sørensen JA, Brewer JR. Superresolution and fluorescence dynamics evidence reveal that intact liposomes do not cross the human skin barrier. PLoS One 2016; 11(1)e0146514
[http://dx.doi.org/10.1371/journal.pone.0146514] [PMID: 26751684]
[88]
Rajan R, Jose S, Mukund VPB, Vasudevan DT. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation. J Adv Pharm Technol Res 2011; 2(3): 138-43.
[http://dx.doi.org/10.4103/2231-4040.85524] [PMID: 22171309]
[89]
Touitou E, Godin B. Dermal drug delivery with ethosomes: therapeutic potential. Therapy 2007; 4: 465-72.
[http://dx.doi.org/10.2217/14750708.4.4.465]
[90]
Cortesi R, Ravani L, Zaid AN, et al. Ethosomes for the delivery of anti-HSV-1 molecules: preparation, characterization and in vitro activity. Pharmazie 2010; 65(10): 743-9.
[PMID: 21105576]
[91]
Esposito E, Menegatti E, Cortesi R. Ethosomes and liposomes as topical vehicles for azelaic acid: a preformulation study. J Cosmet Sci 2004; 55(3): 253-64.
[http://dx.doi.org/10.1111/j.1467-2494.2004.00233_2.x] [PMID: 15264053]
[92]
Rattanapak T, Young K, Rades T, Hook S. Comparative study of liposomes, transfersomes, ethosomes and cubosomes for transcutaneous immunisation: characterisation and in vitro skin penetration. J Pharm Pharmacol 2012; 64(11): 1560-9.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01535.x] [PMID: 23058043]
[93]
Elsayed MMA, Abdallah OY, Naggar VF, Khalafallah NM. Deformable liposomes and ethosomes: mechanism of enhanced skin delivery. Int J Pharm 2006; 322(1-2): 60-6.
[http://dx.doi.org/10.1016/j.ijpharm.2006.05.027] [PMID: 16806755]
[94]
Fang Y-P, Tsai Y-H, Wu P-C, Huang YB. Comparison of 5-aminolevulinic acid-encapsulated liposome versus ethosome for skin delivery for photodynamic therapy. Int J Pharm 2008; 356(1-2): 144-52.
[http://dx.doi.org/10.1016/j.ijpharm.2008.01.020] [PMID: 18325699]
[95]
Dayan N, Touitou E. Carriers for skin delivery of trihexyphenidyl HCl: ethosomes vs. liposomes. Biomaterials 2000; 21(18): 1879-85.
[http://dx.doi.org/10.1016/S0142-9612(00)00063-6] [PMID: 10919691]
[96]
Peng X, Zhou Y, Han K, et al. Characterization of cubosomes as a targeted and sustained transdermal delivery system for capsaicin. Drug Des Devel Ther 2015; 9: 4209-18.
[http://dx.doi.org/10.2147/DDDT.S86370] [PMID: 26345516]
[97]
Lee JH, Kim J-C. Effect of cubic phase nanoparticle on obesity-suppressing efficacy of herbal extracts. Biotechnol Bioprocess Eng; BBE 2015; 20: 1005-15.
[http://dx.doi.org/10.1007/s12257-015-0417-1]
[98]
Barauskas J, Johnsson M, Joabsson F, Tiberg F. Cubic phase nanoparticles (Cubosome): principles for controlling size, structure, and stability. Langmuir 2005; 21(6): 2569-77.
[http://dx.doi.org/10.1021/la047590p] [PMID: 15752054]
[99]
Esposito E, Cortesi R, Drechsler M, et al. Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharm Res 2005; 22(12): 2163-73.
[http://dx.doi.org/10.1007/s11095-005-8176-x] [PMID: 16267633]
[100]
Spicer PT. Cubosome processing industrial nanoparticle technology development. Chem Eng Res Des 2005; 83: 1283-6.
[http://dx.doi.org/10.1205/cherd.05087]
[101]
Esposito E, Ravani L, Mariani P, et al. Effect of nanostructured lipid vehicles on percutaneous absorption of curcumin. Eur J Pharm Biopharm 2014; 86(2): 121-32.
[102]
Dasgupta S, Mazumder B, Ghosh SK, Kaurav SS. Solid lipid nanoparticles (SLNs) for topical delivery of aceclofenac by using xanthan gum: Ex vivo and in vivo evaluation. Curr Drug Deliv 2012.
[http://dx.doi.org/[Epub ahead of print]
[103]
Liu M, Chen M, Xu P, Yang Z. Nanostructured cubosomes as a platform for oral drug delivery. Curr Pharm Biotechnol 2015; 16(4): 313-21.
[http://dx.doi.org/10.2174/1389201016666150118134805] [PMID: 25601599]
[104]
Argimón M, Romero M, Miranda P, Mombrú AW, Miraballes I, Zimeta P, et al. Development and characterization of vitamin a-loaded solid lipid nanoparticles for topical application. J Braz Chem Soc 2017; 28(7): 1177-84.
[105]
Jenning V, Gysler A, Schäfer-Korting M, Gohla SH. Vitamin A loaded solid lipid nanoparticles for topical use: occlusive properties and drug targeting to the upper skin. Eur J Pharm Biopharm 2000; 49(3): 211-8.
[http://dx.doi.org/10.1016/S0939-6411(99)00075-2] [PMID: 10799811]
[106]
Farboud ES, Nasrollahi SA, Tabbakhi Z. Novel formulation and evaluation of a Q10-loaded solid lipid nanoparticle cream: in vitro and in vivo studies. Int J Nanomedicine 2011; 6: 611-7.
[http://dx.doi.org/10.2147/IJN.S16815] [PMID: 21674018]
[107]
Üner M, Karaman EF, Aydoğmuş Z. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers of loratadine for topical application: physicochemical stability and drug penetration through rat skin. Trop J Pharm Res 2014; 13(5): 653-60.
[http://dx.doi.org/10.4314/tjpr.v13i5.1]
[108]
Bhaskar K, Anbu J, Ravichandiran V, Venkateswarlu V, Rao YM. Lipid nanoparticles for transdermal delivery of flurbiprofen: formulation, in vitro, ex vivo and in vivo studies. Lipids Health Dis 2009; 8: 6.
[http://dx.doi.org/10.1186/1476-511X-8-6] [PMID: 19243632]
[109]
Lademann J, Richter H, Teichmann A, et al. Nanoparticles--an efficient carrier for drug delivery into the hair follicles. Eur J Pharm Biopharm 2007; 66(2): 159-64.
[http://dx.doi.org/10.1016/j.ejpb.2006.10.019] [PMID: 17169540]
[110]
Knorr F, Lademann J, Patzelt A, Sterry W, Blume-Peytavi U, Vogt A. Follicular transport route--research progress and future perspectives. Eur J Pharm Biopharm 2009; 71(2): 173-80.
[http://dx.doi.org/10.1016/j.ejpb.2008.11.001] [PMID: 19041720]
[111]
Bhaskar K, Krishna Mohan C, Lingam M, et al. Development of SLN and NLC enriched hydrogels for transdermal delivery of nitrendipine: in vitro and in vivo characteristics. Drug Dev Ind Pharm 2009; 35(1): 98-113.
[http://dx.doi.org/10.1080/03639040802192822] [PMID: 18665979]
[112]
Esposito E, Ravani L, Contado C, et al. Clotrimazole nanoparticle gel for mucosal administration. Mater Sci Eng C 2013; 33(1): 411-8.
[http://dx.doi.org/10.1016/j.msec.2012.09.007] [PMID: 25428089]
[113]
Kumar R, Katare OP. Lecithin organogels as a potential phospholipid-structured system for topical drug delivery: a review. AAPS PharmSciTech 2005; 6(2): E298-310.
[http://dx.doi.org/10.1208/pt060240] [PMID: 16353989]
[114]
Raut S, Bhadoriya SS, Uplanchiwar V, Mishra V, Gahane A, Jain SK. Lecithin organogel: a unique micellar system for the delivery of bioactive agents in the treatment of skin aging. Acta Pharm Sin B 2012; 2(1): 8-15.
[http://dx.doi.org/10.1016/j.apsb.2011.12.005]
[115]
Esposito E, Ravani L, Mariani P, Puglia C, Mazzitelli S, Huang N, et al. Gelified reverse micellar dispersions as percutaneous formulations. J Drug Deliv Sci Technol 2016; 32: 270-82.
[http://dx.doi.org/10.1016/j.jddst.2015.06.007]
[116]
Bhatia A, Singh B, Raza K, Wadhwa S, Katare OP. Tamoxifen-loaded lecithin organogel (LO) for topical application: Development, optimization and characterization. Int J Pharm 2013; 444(1-2): 47-59.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.029] [PMID: 23353077]
[117]
Esposito E, Menegatti E, Cortesi R. Design and characterization of fenretinide containing organogels. Mater Sci Eng C 2013; 33(1): 383-9.
[http://dx.doi.org/10.1016/j.msec.2012.09.002] [PMID: 25428085]
[118]
Bonifácio BV, Silva PB, Ramos MA, Negri KM, Bauab TM, Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine 2014; 9: 1-15.
[PMID: 24363556]
[119]
Antônio JR, Antônio CR, Cardeal ILS, Ballavenuto JMA, Oliveira JR. Nanotechnology in dermatology. An Bras Dermatol 2014; 89(1): 126-36.
[http://dx.doi.org/10.1590/abd1806-4841.20142228] [PMID: 24626657]
[120]
Esposito E, Drechsler M, Menegatti E, Cortesi R. Lipid based dispersions for drug delivery. In: Ravi Kumar MNV, Ed Handbook of Particulate Drug Delivery, Vol 1: Materials and technologies. American Scientific Publishers, Stevenson Ranch, CA 2008; pp. 235-43.
[121]
Paliwal R, Babu RJ, Palakurthi S. Nanomedicine scale-up technologies: feasibilities and challenges. AAPS PharmSciTech 2014; 15(6): 1527-34.
[http://dx.doi.org/10.1208/s12249-014-0177-9] [PMID: 25047256]
[122]
Montenegro L, Pasquinucci L, Zappalà A, Chiechio S, Turnaturi R, Parenti C. Rosemary essential oil-loaded lipid nanoparticles: in vivo topical activity from gel vehicles. Pharmaceutics 2017; 9(4): 48-60.
[http://dx.doi.org/10.3390/pharmaceutics9040048] [PMID: 29065483]
[123]
Ascenso A, Pinho S, Eleutério C, et al. Lycopene from tomatoes: vesicular nanocarrier formulations for dermal delivery. J Agric Food Chem 2013; 61(30): 7284-93.
[http://dx.doi.org/10.1021/jf401368w] [PMID: 23826819]
[124]
Puglia C, Cardile V, Panico AM, et al. Evaluation of monooleine aqueous dispersions as tools for topical administration of curcumin: characterization, in vitro and ex-vivo studies. J Pharm Sci 2013; 102(7): 2349-61.
[http://dx.doi.org/10.1002/jps.23605] [PMID: 23686742]
[125]
Esposito E, Ravani L, Mariani P, et al. Effect of nanostructured lipid vehicles on percutaneous absorption of curcumin. Eur J Pharm Biopharm 2014; 86(2): 121-32.
[http://dx.doi.org/10.1016/j.ejpb.2013.12.011] [PMID: 24361485]
[126]
Esposito E, Carducci F, Mariani P, et al. Monoolein liquid crystalline phases for topical delivery of crocetin. Colloids Surf B Biointerfaces 2018; 171: 67-74.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.011] [PMID: 30015140]
[127]
Pivetta TP, Simões S, Araújo MM, Carvalho T, Arruda C, Marcato PD. Development of nanoparticles from natural lipids for topical delivery of thymol: Investigation of its anti-inflammatory properties. Colloids Surf B Biointerfaces 2018; 164: 281-90.
[http://dx.doi.org/10.1016/j.colsurfb.2018.01.053] [PMID: 29413607]
[128]
Lin CH, Al-Suwayeh SA, Hung CF, Chen CC, Fang JY. Camptothecin-loaded liposomes with α-melanocyte-stimulating hormone enhance cytotoxicity toward and cellular uptake by melanomas: an application of nanomedicine on natural product. J Tradit Complement Med 2013; 3(2): 102-9.
[http://dx.doi.org/10.4103/2225-4110.110423] [PMID: 24716164]
[129]
Esposito E, Drechsler M, Huang N, et al. Ethosomes and organogels for cutaneous administration of crocin. Biomed Microdevices 2016; 18(6): 108-20.
[http://dx.doi.org/10.1007/s10544-016-0134-3] [PMID: 27830454]
[130]
Esposito E, Drechsler M, Mariani P, et al. Nanostructured lipid dispersions for topical administration of crocin, a potent antioxidant from saffron (Crocus sativus L.). Mater Sci Eng C 2017; 71: 669-77.
[http://dx.doi.org/10.1016/j.msec.2016.10.045] [PMID: 27987758]
[131]
Saporito F, Sandri G, Bonferoni MC, et al. Essential oil-loaded lipid nanoparticles for wound healing. Int J Nanomedicine 2017; 13: 175-86.
[http://dx.doi.org/10.2147/IJN.S152529] [PMID: 29343956]
[132]
Esposito E, Sticozzi C, Ravani L, et al. Effect of new curcumin-containing nanostructured lipid dispersions on human keratinocytes proliferative responses. Exp Dermatol 2015; 24(6): 449-54.
[http://dx.doi.org/10.1111/exd.12696] [PMID: 25808217]
[133]
Garg A, Singh S. Targeting of eugenol-loaded solid lipid nanoparticles to the epidermal layer of human skin. Nanomedicine (Lond) 2014; 9(8): 1223-38.
[http://dx.doi.org/10.2217/nnm.13.33] [PMID: 23987096]
[134]
Agrawal U, Gupta M, Vyas SP. Capsaicin delivery into the skin with lipidic nanoparticles for the treatment of psoriasis. Artif Cells Nanomed Biotechnol 2015; 43(1): 33-9.
[http://dx.doi.org/10.3109/21691401.2013.832683] [PMID: 24040836]
[135]
Ye L, Lv C, Man G, Song S, Elias PM, Man M-Q. Abnormal epidermal barrier recovery in uninvolved skin supports the notion of an epidermal pathogenesis of psoriasis. J Invest Dermatol 2014; 134(11): 2843-6.
[http://dx.doi.org/10.1038/jid.2014.205] [PMID: 24780930]
[136]
Elias PM, Wakefield JS. Mechanisms of abnormal lamellar body secretion and the dysfunctional skin barrier in patients with atopic dermatitis. J Allergy Clin Immunol 2014; 134(4): 781-91.e1.
[http://dx.doi.org/10.1016/j.jaci.2014.05.048] [PMID: 25131691]
[137]
Patzelt A, Lademann J, Richter H, et al. In vivo investigations on the penetration of various oils and their influence on the skin barrier. Skin Res Technol 2012; 18(3): 364-9.
[http://dx.doi.org/10.1111/j.1600-0846.2011.00578.x] [PMID: 22092829]
[138]
Fisher GJ, Kang S, Varani J, et al. Mechanisms of photoaging and chronological skin aging. Arch Dermatol 2002; 138(11): 1462-70.
[http://dx.doi.org/10.1001/archderm.138.11.1462] [PMID: 12437452]
[139]
Nishigori C, Hattori Y, Toyokuni S. Role of reactive oxygen species in skin carcinogenesis. Antioxid Redox Signal 2004; 6(3): 561-70.
[http://dx.doi.org/10.1089/152308604773934314] [PMID: 15130282]
[140]
Jiang Y, Wu N, Fu YJ, et al. Chemical composition and antimicrobial activity of the essential oil of Rosemary. Environ Toxicol Pharmacol 2011; 32(1): 63-8.
[http://dx.doi.org/10.1016/j.etap.2011.03.011] [PMID: 21787731]
[141]
Calabrese V, Scapagnini G, Catalano C, Dinotta F, Geraci D, Morganti P. Biochemical studies of a natural antioxidant isolated from rosemary and its application in cosmetic dermatology. Int J Tissue React 2000; 22(1): 5-13.
[PMID: 10937349]
[142]
Gad AS, Sayd AF. Antioxidant Properties of Rosemary and Its Potential Uses as Natural Antioxidant in Dairy Products—A Review. Food Nutr Sci 2015; 6: 179-93.
[http://dx.doi.org/10.4236/fns.2015.61019]
[143]
Ngo SN, Williams DB, Head RJ. Rosemary and cancer prevention: preclinical perspectives. Crit Rev Food Sci Nutr 2011; 51(10): 946-54.
[http://dx.doi.org/10.1080/10408398.2010.490883] [PMID: 21955093]
[144]
Koh TJ, DiPietro LA. Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med 2011; 13e23
[http://dx.doi.org/10.1017/S1462399411001943] [PMID: 21740602]
[145]
Lin T-K, Zhong L, Santiago JL. Anti-inflammatory and skin barrier repair effects of topical application of some plant oils. Int J Mol Sci 2017; 19(1): 70-91.
[http://dx.doi.org/10.3390/ijms19010070] [PMID: 29280987]
[146]
Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature 2008; 453(7193): 314-21.
[http://dx.doi.org/10.1038/nature07039] [PMID: 18480812]
[147]
Clydesdale GJ, Dandie GW, Muller HK. Ultraviolet light induced injury: immunological and inflammatory effects. Immunol Cell Biol 2001; 79(6): 547-68.
[http://dx.doi.org/10.1046/j.1440-1711.2001.01047.x] [PMID: 11903614]
[148]
Bignotto L, Rocha J, Sepodes B, et al. Anti-inflammatory effect of lycopene on carrageenan-induced paw oedema and hepatic ischaemia-reperfusion in the rat. Br J Nutr 2009; 102(1): 126-33.
[http://dx.doi.org/10.1017/S0007114508137886] [PMID: 19203414]
[149]
Gajowik A, Dobrzyńska MM. The evaluation of protective effect of lycopene against genotoxic influence of X-irradiation in human blood lymphocytes. Radiat Environ Biophys 2017; 56(4): 413-22.
[http://dx.doi.org/10.1007/s00411-017-0713-6] [PMID: 28913689]
[150]
Li Y, Kakkar R, Wang J. In vivo and in vitro approach to anti-arthritic and anti-inflammatory effect of crocetin by alteration of nuclear factor-E2-related factor 2/hem oxygenase (HO)-1 and NF-κB expression. Front Pharmacol 2018; 9: 1341.
[http://dx.doi.org/10.3389/fphar.2018.01341] [PMID: 30618728]
[151]
Chinembiri TN, du Plessis LH, Gerber M, Hamman JH, du Plessis J. Review of natural compounds for potential skin cancer treatment. Molecules 2014; 19(8): 11679-721.
[http://dx.doi.org/10.3390/molecules190811679] [PMID: 25102117]
[152]
Raasch BA, Buettner PG. Multiple nonmelanoma skin cancer in an exposed Australian population. Int J Dermatol 2002; 41(10): 652-8.
[http://dx.doi.org/10.1046/j.1365-4362.2002.01573.x] [PMID: 12390187]
[153]
Black HS. Reassessment of a free radical theory of cancer with emphasis on ultraviolet carcinogenesis. Integr Cancer Ther 2004; 3(4): 279-93.
[http://dx.doi.org/10.1177/1534735404270612] [PMID: 15523099]
[154]
Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev 2010; 4(8): 118-26.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[155]
Fagot D, Pham DM, Laboureau J, et al. Crocin, a natural molecule with potentially beneficial effects against skin ageing. Int J Cosmet Sci 2018; 40(4): 388-400.
[http://dx.doi.org/10.1111/ics.12472] [PMID: 29893408]
[156]
O’Meara S, Cullum N, Majid M, Sheldon T. Systematic reviews of wound care management: (3) antimicrobial agents for chronic wounds; (4) diabetic foot ulceration. Health Technol Assess 2000; 4(21): 1-237.
[PMID: 11074391]
[157]
Monaco JL, Lawrence WT. Acute wound healing an overview. Clin Plast Surg 2003; 30(1): 1-12.
[http://dx.doi.org/10.1016/S0094-1298(02)00070-6] [PMID: 12636211]
[158]
Midwood KS, Williams LV, Schwarzbauer JE. Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol 2004; 36(6): 1031-7.
[http://dx.doi.org/10.1016/j.biocel.2003.12.003] [PMID: 15094118]
[159]
Umasankar K, Nambikkairaj B, Backyavathi MD. Wound healing activity of topical Mentha piperita and Cymbopogan citratus essential oil on streptozotocin induced rats. Asian J Pharm Clin Res 2013; 6: 180-3.
[160]
Dwivedi V, Tripathi S. Review study on potential activity of Piper betle. J Pharmacog Phytochem 2014; 3: 93-8.
[161]
Wong CM, Ling JJ. In vitro study of wound healing potential in black pepper (Piper nigrum L.). UK J Pharm Biosci 2014; 2: 5-9.
[162]
Mohanty C, Sahoo SK. Curcumin and its topical formulations for wound healing applications. Drug Discov Today 2017; 22(10): 1582-92.
[http://dx.doi.org/10.1016/j.drudis.2017.07.001] [PMID: 28711364]
[163]
Martin KW, Ernst E. Herbal medicines for treatment of fungal infections: a systematic review of controlled clinical trials. Mycoses 2004; 47(3-4): 87-92.
[http://dx.doi.org/10.1046/j.1439-0507.2003.00951.x] [PMID: 15078424]
[164]
Nejad SM, Ozgüneş H, Başaran N. Pharmacological and Toxicological Properties of Eugenol. Turk J Pharm Sci 2017; 14(2): 201-6.
[http://dx.doi.org/10.4274/tjps.62207]
[165]
Kim WB, Jerome D, Yeung J. Diagnosis and management of psoriasis. Can Fam Physician 2017; 63(4): 278-85.
[PMID: 28404701]
[166]
Fattori V, Hohmann MS, Rossaneis AC, Pinho-Ribeiro FA, Verri WA. Capsaicin: current of its mechanisms and therapy of pain and other pre-clinical and clinical uses. Molecules 2016; 21(7): 844-77.
[http://dx.doi.org/10.3390/molecules21070844] [PMID: 27367653]