QSAR by Minimal Topological Difference[s]: Post-Modern Perspectives

Page: [42 - 53] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

In the context of reconsidering the Quantitative Structure-Activity Relationship (QSAR) methods at the economical level, namely the optimization rules of OECD, the present review unfolds the key features of Minimal Sterical, Monte-Carlo and Minimal Topological Difference (MTD) methods, developed for quantitative treatment of the relations between biological activity of organic chemical compounds (drugs, pesticides, and so on) and their structures. The initial Minimal Steric Difference (MSD) is completed by the three-dimensional variant of the MTD method, being the last one referred to here, while the main principles of validating and guiding a viable QSAR method verified by the analytical-automated MTD, thus enlarging the perspectives of understanding the chemical-biological interaction at the level of ligand-receptor sites, cavity, and walls, with a true service to the future adaptive molecular design.

Keywords: Minimal Topological Difference (MTD), Minimal Steric Difference (MSD), Monte Carlo Difference – (MCD), Quantitative Structure-Activity Relationship (QSAR), drug design, quantitative treatments, Organization of Economical Cooperation and Development (OECD).

[1]
Fischer, E. Einfluss der Configuration auf die Wirkung der Enzyme. Chem. Ber., 1894, 27, 2985-2993.
[http://dx.doi.org/10.1002/cber.18940270364]
[2]
Simon, Z.; Chiriac, A.; Holban, Ş.; Ciubotariu, D. Mihalas, G.I.; Minimum steric difference. The MTD meth-od for QSAR studies. Letchworth, Hertfordshire, England: Research Studies Press; New York: Wiley, 1984.
[3]
Ciubotariu, D. Structure - Reactivity Relations within the class of Carbonic Acid Derivatives. PhD Thesis, Polytechnic Institute: Bucharest.1987.
[4]
Van de Waterbeemd, H. Quantitative approaches to structure-activity relationships in: The practice of medicinal chemistry; Wermuth, C.G., Ed.; Academic Press: London, 1996, pp. 367-386.
[5]
Ciubotariu, D.; Medeleanu, M.; Gogonea, V. Molecular Descriptors for QSPR/QSAR Studies; Diudea, M., Ed.; Nova Science, New York, 2000, pp. 281-388.
[6]
Niculescu-Duvăz, I.; Ciubotariu, D.; Simon, Z.; Voiculetz, N. QSAR (SAR) models and their use for carcinogenic potency prediction in: Modeling of Cancer Genesis and Prevention; Voiculetz, N.; Balaban, A.T.; Niculescu-Duvăz, I; Simon, Z., Ed.; CRC Press, 1991, pp. 157-214.
[7]
Comprehensive Medicinal Chemistry. Eds.; Pergamon Press: New York,, 1990, Vol. 4, pp. 1-31.
[8]
Hansch, C. The physicochemical approach to drug design and discovery (QSAR). Drug Dev. Res., 1981, 1, 267-309.
[http://dx.doi.org/10.1002/ddr.430010403]
[9]
Hansch, C. On the state of QSAR. Drug Inf. J., 1984, 18, 115-122.
[http://dx.doi.org/10.1177/009286158401800202]
[10]
Craig, P.N. QSAR - origins and present status: a historical perspective. Drug Inf. J., 1984, 18, 123-130.
[http://dx.doi.org/10.1177/009286158401800203]
[11]
Hansch, C. Quantitative structure - activity relationships and the unnamed science. Acc. Chem. Res., 1993, 26, 147-153.
[http://dx.doi.org/10.1021/ar00028a003]
[12]
Oprea, T.I.; Ciubotariu, D.; Sulea, T. şi Simon, Z. Comparison of the minimal steric difference (MTD) and comparative molecular field analysis (CoMFA) methods of binding of steroids to carrier proteins, Quant. Struct.-. Act. Relat., 1993, 12, 21-26.
[http://dx.doi.org/10.1002/qsar.19930120104]
[13]
Ciubotariu, D.; Derertey, E.; Oprea, T.I.; Sulea, T.; Simon, Z.; Kurunczi, L.; Chiriac, A. Multiconformational minimal steric difference. structure-acetylcholinesterase hydrolysis rates relations for acetic acid esters, Quant. Struct.-. Act. Relat., 1993, 12, 367-372.
[http://dx.doi.org/10.1002/qsar.19930120404]
[14]
Balaban, A.; Chiriac, A.; Moţoc, I.; Simon, Z. Steric fit in quantitative structure-activity relationships; Springer Verlag: New York, 1980.
[http://dx.doi.org/10.1007/978-3-642-48316-5]
[15]
Goldstein, A.; Aronov, L.; Kalman, S.M. Principle of drug action; John Wiley: New York, 1994, p. 25.
[16]
Jeong, H.; Tombor, B.; Albert, R.; Oltvai, Z.N.; Barabási, A-L. The large-scale organization of metabolic networks. Nature, 2000, 407(6804), 651-654.
[http://dx.doi.org/10.1038/35036627] [PMID: 11034217]
[17]
Albert, R.; Jeong, H.; Barabasi, A-L. Error and attack tolerance of complex networks. Nature, 2000, 406(6794), 378-382.
[http://dx.doi.org/10.1038/35019019] [PMID: 10935628]
[18]
Jeong, H.; Mason, S.P.; Barabási, A-L.; Oltvai, Z.N. Lethality and centrality in protein networks. Nature, 2001, 411(6833), 41-42.
[http://dx.doi.org/10.1038/35075138] [PMID: 11333967]
[19]
Barabási, A-L.; Oltvai, Z.N. Network biology: understanding the cell’s functional organization. Nat. Rev. Genet., 2004, 5(2), 101-113.
[http://dx.doi.org/10.1038/nrg1272] [PMID: 14735121]
[20]
Ravasz, E.; Somera, A.L.; Mongru, D.A.; Oltvai, Z.N.; Barabási, A-L. Hierarchical organization of modularity in metabolic networks. Science, 2002, 297(5586), 1551-1555.
[http://dx.doi.org/10.1126/science.1073374] [PMID: 12202830]
[21]
Kovács, I.A.; Barabási, A-L. Network science: Destruction perfected. Nature, 2015, 524(7563), 38-39.
[http://dx.doi.org/10.1038/524038a] [PMID: 26245576]
[22]
Guidance document on the validation of (Quantitative) structure-activity relationship [(Q)SAR] models, series on testing and assessment. 69, OECD, Paris, 2007, pp. 154. Available At: . https://www.oecd.org/chemicalsafety/risk-assessment/validationofqsarmodels.htm (Accessed Date: 2 June,2019)
[23]
Putz, M.V.; Lacrămă, A-M. Introducing spectral structure activity relationship (S-SAR) Analysis. Application to Ecotoxicology. Int. J. Mol. Sci., 2007, 8(5), 363-391.
[http://dx.doi.org/10.3390/i8050363]
[24]
Putz, M.V.; Putz, A.M.; Lazea, M.; Ienciu, L.; Chiriac, A. Quantum-SAR extension of the spectral-SAR algorithm: application to polyphenolic anticancer bioactivity. Int. J. Mol. Sci., 2009, 10(3), 1193-1214.
[http://dx.doi.org/10.3390/ijms10031193] [PMID: 19399244]
[25]
Putz, M.V. Residual-QSAR. Implications for genotoxic carcinogenesis. Chem. Cent. J., 2011, 5(29), 29.
[http://dx.doi.org/10.1186/1752-153X-5-29] [PMID: 21668999]
[26]
Putz, M.V.; Ionaşcu, C.; Putz, A.M.; Ostafe, V. Alert-QSAR. Implications for electrophilic theory of chemical carcinogenesis. Int. J. Mol. Sci., 2011, 12(8), 5098-5134.
[http://dx.doi.org/10.3390/ijms12085098] [PMID: 21954348]
[27]
Putz, M.V.; Lazea, M.; Putz, A.M.; Duda-Seiman, C. Introducing catastrophe-QSAR. Application on modeling molecular mechanisms of pyridinone derivative-type HIV non-nucleoside reverse transcriptase inhibitors. Int. J. Mol. Sci., 2011, 12(12), 9533-9569.
[http://dx.doi.org/10.3390/ijms12129533] [PMID: 22272148]
[28]
Putz, M.V.; Dudaș, N.A. Variational principles for mechanistic quantitative structure–activity relationship (QSAR) studies: application on uracil derivatives’ anti-HIV action. Struct. Chem., 2013, 24(6), 1873-1893.
[http://dx.doi.org/10.1007/s11224-013-0249-6]
[29]
Putz, M.V.; Dudaş, N.A. Determining chemical reactivity driving biological activity from SMILES transformations: the bonding mechanism of anti-HIV pyrimidines. Molecules, 2013, 18(8), 9061-9116.
[http://dx.doi.org/10.3390/molecules18089061] [PMID: 23903183]
[30]
Putz, M.V.; Ori, O.; Cataldo, F.; Putz, A.M. Parabolic reactivity “coloring” molecular topology: Application to carcinogenic PAHs. Curr. Org. Chem., 2013, 17(23), 2816-2830.
[http://dx.doi.org/10.2174/13852728113179990128]
[31]
Tudoran, M.A.; Putz, M.V. Molecular graph theory: from adjacency information to colored topology by chemical reactivity. Curr. Org. Chem., 2015, 19(4), 359-386.
[http://dx.doi.org/10.2174/1385272819666141216232941]
[32]
Putz, M.V.; Duda-Seiman, C.; Duda-Seiman, D.; Putz, A.M.; Alexandrescu, I.; Mernea, M.; Avram, S. Chemical structure-biological activity models for pharmacophores’ 3D-Interactions. Int. J. Mol. Sci., 2016, 17(7), 1087.
[http://dx.doi.org/10.3390/ijms17071087] [PMID: 27399692]
[33]
Putz, M.V. A Fully Integrated Approach: Vol V. Quantum Structure-Activity Relationship (Qu-SAR) In: Apple Academic; Press & CRC Press, 2016; Vol. 5, p. 622.