Recent Advances in Extracellular Matrix for Engineering Stem Cell Responses

Page: [6321 - 6338] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Stem cell transplantation is an advanced medical technology, which brings hope for the treatment of some difficult diseases in the clinic. Attributed to its self-renewal and differential ability, stem cell research has been pushed to the forefront of regenerative medicine and has become a hot topic in tissue engineering. The surrounding extracellular matrix has physical functions and important biological significance in regulating the life activities of cells, which may play crucial roles for in situ inducing specific differentiation of stem cells. In this review, we discuss the stem cells and their engineering application, and highlight the control of the fate of stem cells, we offer our perspectives on the various challenges and opportunities facing the use of the components of extracellular matrix for stem cell attachment, growth, proliferation, migration and differentiation.

Keywords: Extracellular matrix, stem cell, interaction, proliferation, differentiation, engineering.

[1]
Langer, R.; Vacanti, J. Advances in tissue engineering. J. Pediatr. Surg., 2016, 51(1), 8-12.
[http://dx.doi.org/10.1016/j.jpedsurg.2015.10.022] [PMID: 26711689]
[2]
Lanza, R. Regenerative medicine: the last 10 years. Regen. Med., 2016, 11(8), 745-746.
[http://dx.doi.org/10.2217/rme-2016-0500] [PMID: 27911242]
[3]
Weissman, I. Stem cell therapies could change medicine... if they get the chance. Cell Stem Cell, 2012, 10(6), 663-665.
[http://dx.doi.org/10.1016/j.stem.2012.05.014] [PMID: 22704505]
[4]
Trounson, A.; McDonald, C. Stem cell therapies in clinical trials: Progress and challenges. Cell Stem Cell, 2015, 17(1), 11-22.
[http://dx.doi.org/10.1016/j.stem.2015.06.007] [PMID: 26140604]
[5]
Tewary, M.; Shakiba, N.; Zandstra, P.W. Stem cell bioengineering: building from stem cell biology. Nat. Rev. Genet., 2018, 19(10), 595-614.
[http://dx.doi.org/10.1038/s41576-018-0040-z] [PMID: 30089805]
[6]
Wu, K.; Liu, Y.L.; Cui, B.; Han, Z. Application of stem cells for cardiovascular grafts tissue engineering. Transpl. Immunol., 2006, 16(1), 1-7.
[http://dx.doi.org/10.1016/j.trim.2006.03.004] [PMID: 16701169]
[7]
Watt, F.M.; Hogan, B.L. Out of Eden: stem cells and their niches. Science, 2000, 287(5457), 1427-1430.
[http://dx.doi.org/10.1126/science.287.5457.1427] [PMID: 10688781]
[8]
Niklason, L.E. Understanding the extracellular matrix to enhance stem cell-based tissue regeneration. Cell Stem Cell, 2018, 22(3), 302-305.
[http://dx.doi.org/10.1016/j.stem.2018.02.001] [PMID: 29499149]
[9]
Frantz, C.; Stewart, K.M.; Weaver, V.M. The extracellular matrix at a glance. J. Cell Sci., 2010, 123(Pt 24), 4195-4200.
[http://dx.doi.org/10.1242/jcs.023820] [PMID: 21123617]
[10]
Wang, Y.K.; Chen, C.S. Cell adhesion and mechanical stimulation in the regulation of mesenchymal stem cell differentiation. J. Cell. Mol. Med., 2013, 17(7), 823-832.
[http://dx.doi.org/10.1111/jcmm.12061] [PMID: 23672518]
[11]
Roll, L.; Faissner, A. Influence of the extracellular matrix on endogenous and transplanted stem cells after brain damage. Front. Cell. Neurosci., 2014, 8, 219.
[http://dx.doi.org/10.3389/fncel.2014.00219] [PMID: 25191223]
[12]
Langer, R.; Vacanti, J.P. Tissue engineering. Science, 1993, 260(5110), 920-926.
[http://dx.doi.org/10.1126/science.8493529] [PMID: 8493529]
[13]
Bacakova, L.; Zarubova, J.; Travnickova, M.; Musilkova, J.; Pajorova, J.; Slepicka, P.; Kasalkova, N.S.; Svorcik, V.; Kolska, Z.; Motarjemi, H.; Molitor, M. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells - a review. Biotechnol. Adv., 2018, 36(4), 1111-1126.
[http://dx.doi.org/10.1016/j.biotechadv.2018.03.011] [PMID: 29563048]
[14]
Nery, A.A.; Nascimento, I.C.; Glaser, T.; Bassaneze, V.; Krieger, J.E.; Ulrich, H. Human mesenchymal stem cells: from immunophenotyping by flow cytometry to clinical applications. Cytometry A, 2013, 83(1), 48-61.
[http://dx.doi.org/10.1002/cyto.a.22205] [PMID: 23027703]
[15]
Odorico, J.S.; Kaufman, D.S.; Thomson, J.A. Multilineage differentiation from human embryonic stem cell lines. Stem Cells, 2001, 19(3), 193-204.
[http://dx.doi.org/10.1634/stemcells.19-3-193] [PMID: 11359944]
[16]
Lutolf, M.P.; Gilbert, P.M.; Blau, H.M. Designing materials to direct stem-cell fate. Nature, 2009, 462(7272), 433-441.
[http://dx.doi.org/10.1038/nature08602] [PMID: 19940913]
[17]
Li, L.; Xie, T. Stem cell niche: structure and function. Annu. Rev. Cell Dev. Biol., 2005, 21, 605-631.
[http://dx.doi.org/10.1146/annurev.cellbio.21.012704.131525] [PMID: 16212509]
[18]
Jaenisch, R.; Young, R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell, 2008, 132(4), 567-582.
[http://dx.doi.org/10.1016/j.cell.2008.01.015] [PMID: 18295576]
[19]
De Los Angeles, A.; Daley, G.Q. Stem cells: Reprogramming in situ. Nature, 2013, 502(7471), 309-310.
[http://dx.doi.org/10.1038/nature12559] [PMID: 24025771]
[20]
Jozefczuk, J.; Prigione, A.; Chavez, L.; Adjaye, J. Comparative analysis of human embryonic stem cell and induced pluripotent stem cell-derived hepatocyte-like cells reveals current drawbacks and possible strategies for improved differentiation. Stem Cells Dev., 2011, 20(7), 1259-1275.
[http://dx.doi.org/10.1089/scd.2010.0361] [PMID: 21162674]
[21]
Ilic, D.; Devito, L.; Miere, C.; Codognotto, S. Human embryonic and induced pluripotent stem cells in clinical trials. Br. Med. Bull., 2015, 116, 19-27.
[http://dx.doi.org/10.1093/bmb/ldv045] [PMID: 26582538]
[22]
Ratajczak, M.Z.; Jadczyk, T.; Pędziwiatr, D.; Wojakowski, W. New advances in stem cell research: practical implications for regenerative medicine. Pol. Arch. Med. Wewn., 2014, 124(7-8), 417-426.
[http://dx.doi.org/10.20452/pamw.2355] [PMID: 24956404]
[23]
Sato, N.; Meijer, L.; Skaltsounis, L.; Greengard, P.; Brivanlou, A.H. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med., 2004, 10(1), 55-63.
[http://dx.doi.org/10.1038/nm979] [PMID: 14702635]
[24]
Surani, M.A.; Hayashi, K.; Hajkova, P. Genetic and epigenetic regulators of pluripotency. Cell, 2007, 128(4), 747-762.
[http://dx.doi.org/10.1016/j.cell.2007.02.010] [PMID: 17320511]
[25]
Surani, A.; Tischler, J. Stem cells: a sporadic super state. Nature, 2012, 487(7405), 43-45.
[http://dx.doi.org/10.1038/487043a] [PMID: 22763548]
[26]
Evans, M.J.; Kaufman, M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981, 292(5819), 154-156.
[http://dx.doi.org/10.1038/292154a0] [PMID: 7242681]
[27]
Bradley, A.; Evans, M.; Kaufman, M.H.; Robertson, E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature, 1984, 309(5965), 255-256.
[http://dx.doi.org/10.1038/309255a0] [PMID: 6717601]
[28]
Przybyla, L.; Lakins, J.N.; Weaver, V.M. Tissue mechanics orchestrate wnt-dependent human embryonic stem cell differentiation. Cell Stem Cell, 2016, 19(4), 462-475.
[http://dx.doi.org/10.1016/j.stem.2016.06.018] [PMID: 27452175]
[29]
Singh, D.; Wang, S.B.; Xia, T.; Tainsh, L.; Ghiassi-Nejad, M.; Xu, T.; Peng, S.; Adelman, R.A.; Rizzolo, L.J. A biodegradable scaffold enhances differentiation of embryonic stem cells into a thick sheet of retinal cells. Biomaterials, 2018, 154, 158-168.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.052] [PMID: 29128844]
[30]
Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4), 663-676.
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]
[31]
Amini Mahabadi, J.; Sabzalipoor, H.; Kehtari, M.; Enderami, S.E.; Soleimani, M.; Nikzad, H. Derivation of male germ cells from induced pluripotent stem cells by inducers: A review. Cytotherapy, 2018, 20(3), 279-290.
[http://dx.doi.org/10.1016/j.jcyt.2018.01.002] [PMID: 29397308]
[32]
Wu, S.M.; Hochedlinger, K. Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat. Cell Biol., 2011, 13(5), 497-505.
[http://dx.doi.org/10.1038/ncb0511-497] [PMID: 21540845]
[33]
Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007, 131(5), 861-872.
[http://dx.doi.org/10.1016/j.cell.2007.11.019] [PMID: 18035408]
[34]
Blanchard, J.W.; Xie, J.; El-Mecharrafie, N.; Gross, S.; Lee, S.; Lerner, R.A.; Baldwin, K.K. Replacing reprogramming factors with antibodies selected from combinatorial antibody libraries. Nat. Biotechnol., 2017, 35(10), 960-968.
[http://dx.doi.org/10.1038/nbt.3963] [PMID: 28892074]
[35]
Madl, C.M.; Heilshorn, S.C.; Blau, H.M. Bioengineering strategies to accelerate stem cell therapeutics. Nature, 2018, 557(7705), 335-342.
[http://dx.doi.org/10.1038/s41586-018-0089-z] [PMID: 29769665]
[36]
Kikuchi, T.; Morizane, A.; Doi, D.; Magotani, H.; Onoe, H.; Hayashi, T.; Mizuma, H.; Takara, S.; Takahashi, R.; Inoue, H.; Morita, S.; Yamamoto, M.; Okita, K.; Nakagawa, M.; Parmar, M.; Takahashi, J. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature, 2017, 548(7669), 592-596.
[http://dx.doi.org/10.1038/nature23664] [PMID: 28858313]
[37]
Tesar, P.J.; Chenoweth, J.G.; Brook, F.A.; Davies, T.J.; Evans, E.P.; Mack, D.L.; Gardner, R.L.; McKay, R.D. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature, 2007, 448(7150), 196-199.
[http://dx.doi.org/10.1038/nature05972] [PMID: 17597760]
[38]
Sobhani, A.; Khanlarkhani, N.; Baazm, M.; Mohammadzadeh, F.; Najafi, A.; Mehdinejadiani, S.; Sargolzaei Aval, F. Sargolzaei, Aval, F. Multipotent stem cell and current application. Acta Med. Iran., 2017, 55(1), 6-23.
[PMID: 28188938]
[39]
Chen, F.M.; Wu, L.A.; Zhang, M.; Zhang, R.; Sun, H.H. Homing of endogenous stem/progenitor cells for in situ tissue regeneration: Promises, strategies, and translational perspectives. Biomaterials, 2011, 32(12), 3189-3209.
[http://dx.doi.org/10.1016/j.biomaterials.2010.12.032] [PMID: 21300401]
[40]
Rodda, D.J.; Chew, J.L.; Lim, L.H.; Loh, Y.H.; Wang, B.; Ng, H.H.; Robson, P. Transcriptional regulation of nanog by OCT4 and SOX2. J. Biol. Chem., 2005, 280(26), 24731-24737.
[http://dx.doi.org/10.1074/jbc.M502573200] [PMID: 15860457]
[41]
Pei, M. Environmental preconditioning rejuvenates adult stem cells’ proliferation and chondrogenic potential. Biomaterials, 2017, 117, 10-23.
[http://dx.doi.org/10.1016/j.biomaterials.2016.11.049] [PMID: 27923196]
[42]
Theocharidis, U.; Long, K. ffrench-Constant, C.; Faissner, A. Regulation of the neural stem cell compartment by extracellular matrix constituents. Prog. Brain Res., 2014, 214, 3-28.
[http://dx.doi.org/10.1016/B978-0-444-63486-3.00001-3] [PMID: 25410351]
[43]
Li, J.; Tang, Y.; Cai, D. IKKβ/NF-κB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nat. Cell Biol., 2012, 14(10), 999-1012.
[http://dx.doi.org/10.1038/ncb2562] [PMID: 22940906]
[44]
Merkle, F.T.; Fuentealba, L.C.; Sanders, T.A.; Magno, L.; Kessaris, N.; Alvarez-Buylla, A. Adult neural stem cells in distinct microdomains generate previously unknown interneuron types. Nat. Neurosci., 2014, 17(2), 207-214.
[http://dx.doi.org/10.1038/nn.3610] [PMID: 24362763]
[45]
Durak, O.; Gao, F.; Kaeser-Woo, Y.J.; Rueda, R.; Martorell, A.J.; Nott, A.; Liu, C.Y.; Watson, L.A.; Tsai, L.H. Chd8 mediates cortical neurogenesis via transcriptional regulation of cell cycle and Wnt signaling. Nat. Neurosci., 2016, 19(11), 1477-1488.
[http://dx.doi.org/10.1038/nn.4400] [PMID: 27694995]
[46]
Arulmoli, J.; Wright, H.J.; Phan, D.T.T.; Sheth, U.; Que, R.A.; Botten, G.A.; Keating, M.; Botvinick, E.L.; Pathak, M.M.; Zarembinski, T.I.; Yanni, D.S.; Razorenova, O.V.; Hughes, C.C.W.; Flanagan, L.A. Combination scaffolds of salmon fibrin, hyaluronic acid, and laminin for human neural stem cell and vascular tissue engineering. Acta Biomater., 2016, 43, 122-138.
[http://dx.doi.org/10.1016/j.actbio.2016.07.043] [PMID: 27475528]
[47]
Wang, T.Y.; Forsythe, J.S.; Nisbet, D.R.; Parish, C.L. Promoting engraftment of transplanted neural stem cells/progenitors using biofunctionalised electrospun scaffolds. Biomaterials, 2012, 33(36), 9188-9197.
[http://dx.doi.org/10.1016/j.biomaterials.2012.09.013] [PMID: 23022345]
[48]
Shao, H.; Li, T.; Zhu, R.; Xu, X.; Yu, J.; Chen, S.; Song, L.; Ramakrishna, S.; Lei, Z.; Ruan, Y.; He, L. Carbon nanotube multilayered nanocomposites as multifunctional substrates for actuating neuronal differentiation and functions of neural stem cells. Biomaterials, 2018, 175, 93-109.
[http://dx.doi.org/10.1016/j.biomaterials.2018.05.028] [PMID: 29804001]
[49]
Baksh, D.; Song, L.; Tuan, R.S. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J. Cell. Mol. Med., 2004, 8(3), 301-316.
[http://dx.doi.org/10.1111/j.1582-4934.2004.tb00320.x] [PMID: 15491506]
[50]
Glenn, J.D.; Whartenby, K.A. Mesenchymal stem cells: Emerging mechanisms of immunomodulation and therapy. World J. Stem Cells, 2014, 6(5), 526-539.
[http://dx.doi.org/10.4252/wjsc.v6.i5.526] [PMID: 25426250]
[51]
Nowbar, A.N.; Mielewczik, M.; Karavassilis, M.; Dehbi, H.M.; Shun-Shin, M.J.; Jones, S.; Howard, J.P.; Cole, G.D.; Francis, D.P. Discrepancies in autologous bone marrow stem cell trials and enhancement of ejection fraction (DAMASCENE): weighted regression and meta-analysis. BMJ, 2014, 348, g2688.
[http://dx.doi.org/10.1136/bmj.g2688] [PMID: 24778175]
[52]
Chaudhuri, O.; Gu, L.; Klumpers, D.; Darnell, M.; Bencherif, S.A.; Weaver, J.C.; Huebsch, N.; Lee, H.P.; Lippens, E.; Duda, G.N.; Mooney, D.J. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater., 2016, 15(3), 326-334.
[http://dx.doi.org/10.1038/nmat4489] [PMID: 26618884]
[53]
Choi, J.S.; Harley, B.A. Marrow-inspired matrix cues rapidly affect early fate decisions of hematopoietic stem and progenitor cells. Sci. Adv., 2017, 3(1)e1600455
[http://dx.doi.org/10.1126/sciadv.1600455] [PMID: 28070554]
[54]
Morrison, S.J.; Scadden, D.T. The bone marrow niche for haematopoietic stem cells. Nature, 2014, 505(7483), 327-334.
[http://dx.doi.org/10.1038/nature12984] [PMID: 24429631]
[55]
Hirsch, T.; Rothoeft, T.; Teig, N.; Bauer, J.W.; Pellegrini, G.; De Rosa, L.; Scaglione, D.; Reichelt, J.; Klausegger, A.; Kneisz, D.; Romano, O.; Secone Seconetti, A.; Contin, R.; Enzo, E.; Jurman, I.; Carulli, S.; Jacobsen, F.; Luecke, T.; Lehnhardt, M.; Fischer, M.; Kueckelhaus, M.; Quaglino, D.; Morgante, M.; Bicciato, S.; Bondanza, S.; De Luca, M. Regeneration of the entire human epidermis using transgenic stem cells. Nature, 2017, 551(7680), 327-332.
[http://dx.doi.org/10.1038/nature24487] [PMID: 29144448]
[56]
Wang, X.; Young, D.J.; Wu, Y.L.; Loh, X.J. Thermogelling 3D systems towards stem cell-based tissue regeneration therapies. Molecules, 2018, 23(3), 553.
[http://dx.doi.org/10.3390/molecules23030553] [PMID: 29498651]
[57]
Coyle, R.; Jia, J.; Mei, Y. Polymer microarray technology for stem cell engineering. Acta Biomater., 2016, 34, 60-72.
[http://dx.doi.org/10.1016/j.actbio.2015.10.030] [PMID: 26497624]
[58]
Daley, G.Q. The promise and perils of stem cell therapeutics. Cell Stem Cell, 2012, 10(6), 740-749.
[http://dx.doi.org/10.1016/j.stem.2012.05.010] [PMID: 22704514]
[59]
Hou, L.; Coller, J.; Natu, V.; Hastie, T.J.; Huang, N.F. Combinatorial extracellular matrix microenvironments promote survival and phenotype of human induced pluripotent stem cell-derived endothelial cells in hypoxia. Acta Biomater., 2016, 44, 188-199.
[http://dx.doi.org/10.1016/j.actbio.2016.08.003] [PMID: 27498178]
[60]
Jing, G.; Wang, Z.; Zhuang, X.; He, X.; Wu, H.; Wang, Q.; Cheng, L.; Liu, Z.; Wang, S.; Zhu, R. Suspended graphene oxide nanosheets maintain the self-renewal of mouse embryonic stem cells via down-regulating the expression of Vinculin. Biomaterials, 2018, 171, 1-11.
[http://dx.doi.org/10.1016/j.biomaterials.2018.04.017] [PMID: 29677519]
[61]
Qiao, Y.; Wang, X.; Wang, R.; Li, Y.; Yu, F.; Yang, X.; Song, L.; Xu, G.; Chin, Y.E.; Jing, N. AF9 promotes hESC neural differentiation through recruiting TET2 to neurodevelopmental gene loci for methylcytosine hydroxylation. Cell Discov., 2015, 1, 15017.
[http://dx.doi.org/10.1038/celldisc.2015.17] [PMID: 27462416]
[62]
Du, V.; Luciani, N.; Richard, S.; Mary, G.; Gay, C.; Mazuel, F.; Reffay, M.; Menasché, P.; Agbulut, O.; Wilhelm, C. A 3D magnetic tissue stretcher for remote mechanical control of embryonic stem cell differentiation. Nat. Commun., 2017, 8(1), 400.
[http://dx.doi.org/10.1038/s41467-017-00543-2] [PMID: 28900152]
[63]
Gazina, E.V.; Morrisroe, E.; Mendis, G.D.C.; Michalska, A.E.; Chen, J.; Nefzger, C.M.; Rollo, B.N.; Reid, C.A.; Pera, M.F.; Petrou, S. Method of derivation and differentiation of mouse embryonic stem cells generating synchronous neuronal networks. J. Neurosci. Methods, 2018, 293, 53-58.
[http://dx.doi.org/10.1016/j.jneumeth.2017.08.018] [PMID: 28827162]
[64]
Chen, G.; Xu, X.; Zhang, L.; Fu, Y.; Wang, M.; Gu, H.; Xie, X. Blocking autocrine VEGF signaling by sunitinib, an anti-cancer drug, promotes embryonic stem cell self-renewal and somatic cell reprogramming. Cell Res., 2014, 24(9), 1121-1136.
[http://dx.doi.org/10.1038/cr.2014.112] [PMID: 25145356]
[65]
Mu, S.; Wang, J.; Zhou, G.; Peng, W.; He, Z.; Zhao, Z.; Mo, C.; Qu, J.; Zhang, J. Transplantation of induced pluripotent stem cells improves functional recovery in Huntington’s disease rat model. PLoS One, 2014, 9(7)e101185
[http://dx.doi.org/10.1371/journal.pone.0101185] [PMID: 25054283]
[66]
Shu, T.; Liu, C.; Pang, M.; Wang, J.; Liu, B.; Zhou, W.; Wang, X.; Wu, T.; Wang, Q.; Rong, L. Effects and mechanisms of matrix metalloproteinase2 on neural differentiation of induced pluripotent stem cells. Brain Res., 2018, 1678, 407-418.
[http://dx.doi.org/10.1016/j.brainres.2017.11.006] [PMID: 29137974]
[67]
Kusumoto, D.; Lachmann, M.; Kunihiro, T.; Yuasa, S.; Kishino, Y.; Kimura, M.; Katsuki, T.; Itoh, S.; Seki, T.; Fukuda, K. Automated deep learning-based system to identify endothelial cells derived from induced pluripotent stem cells. Stem Cell Reports, 2018, 10(6), 1687-1695.
[http://dx.doi.org/10.1016/j.stemcr.2018.04.007] [PMID: 29754958]
[68]
Wen, Y.; Jin, S. Production of neural stem cells from human pluripotent stem cells. J. Biotechnol., 2014, 188, 122-129.
[http://dx.doi.org/10.1016/j.jbiotec.2014.07.453] [PMID: 25150215]
[69]
Kim, T.H.; Sung, S.E.; Cheal Yoo, J.; Park, J.Y.; Yi, G.S.; Heo, J.Y.; Lee, J.R.; Kim, N.S.; Lee, D.Y. Copine1 regulates neural stem cell functions during brain development. Biochem. Biophys. Res. Commun., 2018, 495(1), 168-173.
[http://dx.doi.org/10.1016/j.bbrc.2017.10.167] [PMID: 29101038]
[70]
Nizamudeen, Z.A.; Chakrabarti, L.; Sottile, V. Exposure to the ROCK inhibitor fasudil promotes gliogenesis of neural stem cells in vitro. Stem Cell Res. (Amst.), 2018, 28, 75-86.
[http://dx.doi.org/10.1016/j.scr.2018.02.001] [PMID: 29448133]
[71]
Storer, M.A.; Gallagher, D.; Fatt, M.P.; Simonetta, J.V.; Kaplan, D.R.; Miller, F.D. Interleukin-6 regulates adult neural stem cell numbers during normal and abnormal post-natal development. Stem Cell Reports, 2018, 10(5), 1464-1480.
[http://dx.doi.org/10.1016/j.stemcr.2018.03.008] [PMID: 29628394]
[72]
Zhang, H.; Xue, F.; Jun , Xiao H. Ilizarov method in combination with autologous mesenchymal stem cells from iliac crest shows improved outcome in tibial non-union. Saudi J. Biol. Sci., 2018, 25(4), 819-825.
[http://dx.doi.org/10.1016/j.sjbs.2016.11.001] [PMID: 29740250]
[73]
Parveen, S. Establishment and characterization of induced pluripotent stem cells from placental mesenchymal stromal cells. Stem Cell Res. (Amst.), 2018, 27, 15-20.
[http://dx.doi.org/10.1016/j.scr.2017.12.008] [PMID: 29291511]
[74]
Moattari, M.; Kouchesfehani, H.M.; Kaka, G.; Sadraie, S.H.; Naghdi, M.; Mansouri, K. Chitosan-film associated with mesenchymal stem cells enhanced regeneration of peripheral nerves: A rat sciatic nerve model. J. Chem. Neuroanat., 2018, 88, 46-54.
[http://dx.doi.org/10.1016/j.jchemneu.2017.10.003] [PMID: 29107096]
[75]
Shen, Y.; Wu, L.; Wang, J.; Wu, X.; Zhang, X. The Role of Mitochondria in Methamphetamine-induced inhibitory effects on osteogenesis of Mesenchymal Stem Cells. Eur. J. Pharmacol., 2018, 826, 56-65.
[http://dx.doi.org/10.1016/j.ejphar.2018.02.049] [PMID: 29501866]
[76]
Hosseini, S.M.; Sani, M.; Haider, K.H.; Dorvash, M.; Ziaee, S.M.; Karimi, A.; Namavar, M.R. Concomitant use of mesenchymal stem cells and neural stem cells for treatment of spinal cord injury: A combo cell therapy approach. Neurosci. Lett., 2018, 668, 138-146.
[http://dx.doi.org/10.1016/j.neulet.2018.01.008] [PMID: 29317311]
[77]
Moraleda, J.M.; Blanquer, M.; Bleda, P.; Iniesta, P.; Ruiz, F.; Bonilla, S.; Cabanes, C.; Tabares, L.; Martinez, S. Adult stem cell therapy: dream or reality? Transpl. Immunol., 2006, 17(1), 74-77.
[http://dx.doi.org/10.1016/j.trim.2006.09.030] [PMID: 17157222]
[78]
Ren, Y.; Wu, H.; Wang, X.; Xue, N.; Liang, H.; Liu, D. Analysis of the stem cell characteristics of adult stem cells from Arbas white Cashmere goat. Biochem. Biophys. Res. Commun., 2014, 448(2), 121-128.
[http://dx.doi.org/10.1016/j.bbrc.2013.12.044] [PMID: 24333446]
[79]
Zhang, Y.; Kim, M.S.; Jia, B.; Yan, J.; Zuniga-Hertz, J.P.; Han, C.; Cai, D. Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature, 2017, 548(7665), 52-57.
[http://dx.doi.org/10.1038/nature23282] [PMID: 28746310]
[80]
Amini, A.R.; Laurencin, C.T.; Nukavarapu, S.P. Bone tissue engineering: recent advances and challenges. Crit. Rev. Biomed. Eng., 2012, 40(5), 363-408.
[http://dx.doi.org/10.1615/CritRevBiomedEng.v40.i5.10] [PMID: 23339648]
[81]
Hussey.; George, S.; Dziki.; Jenna, L.; Badylak; Stephen, F. Extracellular matrix-based materials for regenerative medicine. Nat. Rev. Mater., 2018, 3, 159-173.
[http://dx.doi.org/10.1038/s41578-018-0023-x]
[82]
Lien, S.M.; Ko, L.Y.; Huang, T.J. Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomater., 2009, 5(2), 670-679.
[http://dx.doi.org/10.1016/j.actbio.2008.09.020] [PMID: 18951858]
[83]
Naahidi, S.; Jafari, M.; Logan, M.; Wang, Y.; Yuan, Y.; Bae, H.; Dixon, B.; Chen, P. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol. Adv., 2017, 35(5), 530-544.
[http://dx.doi.org/10.1016/j.biotechadv.2017.05.006] [PMID: 28558979]
[84]
Dvir, T.; Timko, B.P.; Brigham, M.D.; Naik, S.R.; Karajanagi, S.S.; Levy, O.; Jin, H.; Parker, K.K.; Langer, R.; Kohane, D.S. Nanowired three-dimensional cardiac patches. Nat. Nanotechnol., 2011, 6(11), 720-725.
[http://dx.doi.org/10.1038/nnano.2011.160] [PMID: 21946708]
[85]
Park, J.H.; Rutledge, G.C. 50th anniversary perspective: Advanced polymer fibers: High performance and ultrafine. Macromolecules, 2017, 50(15), 5627-5642.
[http://dx.doi.org/10.1021/acs.macromol.7b00864]
[86]
Ardeshirylajimi, A.; Farhadian, S.; Adegani, F.J.; Mirzaei, S.; Zomorrod, M.S.; Langroudi, L.; Doostmohammadi, A.; Seyedjafari, E.; Soleimani, M. Enhanced osteoconductivity of polyethersulphone nanofibres loaded with bioactive glass nanoparticles in in vitro and in vivo models. Cell Prolif., 2015, 48(4), 455-464.
[http://dx.doi.org/10.1111/cpr.12198] [PMID: 26121911]
[87]
Jamshidi Adegani, F.; Langroudi, L.; Ardeshirylajimi, A.; Dinarvand, P.; Dodel, M.; Doostmohammadi, A.; Rahimian, A.; Zohrabi, P.; Seyedjafari, E.; Soleimani, M. Coating of electrospun poly(lactic-co-glycolic acid) nanofibers with willemite bioceramic: improvement of bone reconstruction in rat model. Cell Biol. Int., 2014, 38(11), 1271-1279.
[http://dx.doi.org/10.1002/cbin.10318] [PMID: 24905891]
[88]
Cui, W.; Zhou, Y.; Chang, J. Electrospun nanofibrous materials for tissue engineering and drug delivery. Sci. Technol. Adv. Mater., 2010, 11(1)014108
[http://dx.doi.org/10.1088/1468-6996/11/1/014108] [PMID: 27877323]
[89]
Rothrauff, B.B.; Lauro, B.B.; Yang, G.; Debski, R.E.; Musahl, V.; Tuan, R.S. Braided and stacked electrospun nanofibrous scaffolds for tendon and ligament tissue engineering. Tissue Eng. Part A, 2017, 23(9-10), 378-389.
[http://dx.doi.org/10.1089/ten.tea.2016.0319] [PMID: 28071988]
[90]
Dorozhkin, S.V. Calcium or thophosphate-based bioceramics. Materials (Basel), 2013, 6(9), 3840-3942.
[http://dx.doi.org/10.3390/ma6093840] [PMID: 28788309]
[91]
Kazemi, S.Y.; Biparva, P.; Ashtiani, E. Cerastoderma lamarcki shell as a natural, low cost and new adsorbent to removal of dye pollutant from aqueous solutions: equilibrium and kinetic studies. Ecol. Eng., 2016, 88, 82-89.
[http://dx.doi.org/10.1016/j.ecoleng.2015.12.020]
[92]
Didekhani, R.; Sohrabi, M.R.; Seyedjafari, E.; Soleimani, M.; Hanaee-Ahvaz, H. Electrospun composite PLLA/Oyster shell scaffold enhances proliferation and osteogenic differentiation of stem cells. Biologicals, 2018, 54, 33-38.
[http://dx.doi.org/10.1016/j.biologicals.2018.04.006] [PMID: 29871790]
[93]
Carlberg, B.; Axell, M.Z.; Nannmark, U.; Liu, J.; Kuhn, H.G. Electrospun polyurethane scaffolds for proliferation and neuronal differentiation of human embryonic stem cells. Biomed. Mater., 2009, 4(4)045004
[http://dx.doi.org/10.1088/1748-6041/4/4/045004] [PMID: 19567936]
[94]
Cai, P.; Zhang, X.; Wang, M.; Wu, Y.L.; Chen, X. Combinatorial nano-bio Interfaces. ACS Nano, 2018, 12(6), 5078-5084.
[http://dx.doi.org/10.1021/acsnano.8b03285] [PMID: 29883094]
[95]
Cai, P.; Leow, W.R.; Wang, X.; Wu, Y.L.; Chen, X. Programmable nano-bio interfaces for functional biointegrated devices. Adv. Mater., 2017, 29(26)
[http://dx.doi.org/10.1002/adma.201605529] [PMID: 28397302]
[96]
Yang, L.; Chueng, S.D.; Li, Y.; Patel, M.; Rathnam, C.; Dey, G.; Wang, L.; Cai, L.; Lee, K.B. A biodegradable hybrid inorganic nanoscaffold for advanced stem cell therapy. Nat. Commun., 2018, 9(1), 3147.
[http://dx.doi.org/10.1038/s41467-018-05599-2] [PMID: 30089775]
[97]
Subramanian, K.; Owens, D.J.; Raju, R.; Firpo, M.; O’Brien, T.D.; Verfaillie, C.M.; Hu, W.S. Spheroid culture for enhanced differentiation of human embryonic stem cells to hepatocyte-like cells. Stem Cells Dev., 2014, 23(2), 124-131.
[http://dx.doi.org/10.1089/scd.2013.0097] [PMID: 24020366]
[98]
Jeon, O.; Bouhadir, K.H.; Mansour, J.M.; Alsberg, E. Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials, 2009, 30(14), 2724-2734.
[http://dx.doi.org/10.1016/j.biomaterials.2009.01.034] [PMID: 19201462]
[99]
Patel, S.; Tsang, J.; Harbers, G.M.; Healy, K.E.; Li, S. Regulation of endothelial cell function by GRGDSP peptide grafted on interpenetrating polymers. J. Biomed. Mater. Res. A, 2007, 83(2), 423-433.
[http://dx.doi.org/10.1002/jbm.a.31320] [PMID: 17455217]
[100]
Oryan, A.; Kamali, A.; Moshiri, A.; Baharvand, H.; Daemi, H. Chemical crosslinking of biopolymeric scaffolds: Current knowledge and future directions of crosslinked engineered bone scaffolds. Int. J. Biol. Macromol, 2018, 107(PtA), 678-688.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.184] [PMID: 28919526]
[101]
Esfandiari, F.; Ashtiani, M.K.; Sharifi-Tabar, M.; Saber, M.; Daemi, H.; Ghanian, M.H.; Shahverdi, A.; Baharvand, H. Microparticle-mediated delivery of BMP4 for generation of meiosis-competent germ cells from embryonic stem cells. Macromol. Biosci., 2017, 17(3)
[http://dx.doi.org/10.1002/mabi.201600284] [PMID: 27748553]
[102]
Xue, J.; He, M.; Liu, H.; Niu, Y.; Crawford, A.; Coates, P.D.; Chen, D.; Shi, R.; Zhang, L. Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti-infective tissue regeneration membranes. Biomaterials, 2014, 35(34), 9395-9405.
[http://dx.doi.org/10.1016/j.biomaterials.2014.07.060] [PMID: 25134855]
[103]
Zarekhalili, Z.; Bahrami, S.H.; Ranjbar-Mohammadi, M.; Milan, P.B. Fabrication and characterization of PVA/Gum tragacanth/PCL hybrid nanofibrous scaffolds for skin substitutes. Int. J. Biol. Macromol., 2017, 94(Pt A), 679-690.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.10.042] [PMID: 27777080]
[104]
Tan, H.; Marra, K.G. Injectable, biodegradable hydrogels for tissue engineering applications. Materials (Basel), 2010, 3(3), 1746-1767.
[http://dx.doi.org/10.3390/ma3031746]
[105]
Toh, W.S.; Lee, E.H.; Guo, X.M.; Chan, J.K.; Yeow, C.H.; Choo, A.B.; Cao, T. Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials, 2010, 31(27), 6968-6980.
[http://dx.doi.org/10.1016/j.biomaterials.2010.05.064] [PMID: 20619789]
[106]
Eslahi, N.; Abdorahim, M.; Simchi, A. Smart polymeric hydrogels for cartilage tissue engineering: A review on the chemistry and biological functions. Biomacromolecules, 2016, 17(11), 3441-3463.
[http://dx.doi.org/10.1021/acs.biomac.6b01235] [PMID: 27775329]
[107]
Skandalis, S.S.; Dobra, K.; Götte, M.; Karousou, E.; Misra, S. Impact of extracellular matrix on cellular behavior: A source of molecular targets in disease. BioMed Res. Int.,, 2015, 2015(2015), 482879.
[http://dx.doi.org/10.1155/2015/482879] [PMID: 26618170]
[108]
Lawson, J.H.; Glickman, M.H.; Ilzecki, M.; Jakimowicz, T.; Jaroszynski, A.; Peden, E.K.; Pilgrim, A.J.; Prichard, H.L.; Guziewicz, M.; Przywara, S.; Szmidt, J.; Turek, J.; Witkiewicz, W.; Zapotoczny, N.; Zubilewicz, T.; Niklason, L.E. Bioengineered human acellular vessels for dialysis access in patients with end-stage renal disease: two phase 2 single-arm trials. Lancet, 2016, 387(10032), 2026-2034.
[http://dx.doi.org/10.1016/S0140-6736(16)00557-2] [PMID: 27203778]
[109]
Bissell, M.J.; Hines, W.C. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat. Med., 2011, 17(3), 320-329.
[http://dx.doi.org/10.1038/nm.2328] [PMID: 21383745]
[110]
Eweida, A.M.; Marei, M.K. Naturally occurring extracellular matrix scaffolds for dermal regeneration: Do they really need cells? BioMed Res. Int., 2015.2015839694
[http://dx.doi.org/10.1155/2015/839694] [PMID: 26509165]
[111]
Badylak, S.F.; Freytes, D.O.; Gilbert, T.W. Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater., 2009, 5(1), 1-13.
[http://dx.doi.org/10.1016/j.actbio.2008.09.013] [PMID: 18938117]
[112]
Papalamprou, A.; Griffiths, L.G. Cardiac extracellular matrix scaffold generated using sarcomeric disassembly and antigen removal. Ann. Biomed. Eng., 2016, 44(4), 1047-1060.
[http://dx.doi.org/10.1007/s10439-015-1404-6] [PMID: 26215309]
[113]
Badylak, S.F.; Weiss, D.J.; Caplan, A.; Macchiarini, P. Engineered whole organs and complex tissues. Lancet, 2012, 379(9819), 943-952.
[http://dx.doi.org/10.1016/S0140-6736(12)60073-7] [PMID: 22405797]
[114]
Watt, F.M.; Huck, W.T. Role of the extracellular matrix in regulating stem cell fate. Nat. Rev. Mol. Cell Biol., 2013, 14(8), 467-473.
[http://dx.doi.org/10.1038/nrm3620] [PMID: 23839578]
[115]
Hynes, R.O. The extracellular matrix: not just pretty fibrils. Science, 2009, 326(5957), 1216-1219.
[http://dx.doi.org/10.1126/science.1176009] [PMID: 19965464]
[116]
Discher, D.E.; Mooney, D.J.; Zandstra, P.W. Growth factors, matrices, and forces combine and control stem cells. Science, 2009, 324(5935), 1673-1677.
[http://dx.doi.org/10.1126/science.1171643] [PMID: 19556500]
[117]
Gattazzo, F.; Urciuolo, A.; Bonaldo, P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim. Biophys. Acta, 2014, 1840(8), 2506-2519.
[http://dx.doi.org/10.1016/j.bbagen.2014.01.010] [PMID: 24418517]
[118]
Zhang, J.; Klos, M.; Wilson, G.F.; Herman, A.M.; Lian, X.; Raval, K.K.; Barron, M.R.; Hou, L.; Soerens, A.G.; Yu, J.; Palecek, S.P.; Lyons, G.E.; Thomson, J.A.; Herron, T.J.; Jalife, J.; Kamp, T.J. Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method. Circ. Res., 2012, 111(9), 1125-1136.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.273144] [PMID: 22912385]
[119]
Törrönen, K.; Nikunen, K.; Kärnä, R.; Tammi, M.; Tammi, R.; Rilla, K. Tissue distribution and subcellular localization of hyaluronan synthase isoenzymes. Histochem. Cell Biol., 2014, 141(1), 17-31.
[http://dx.doi.org/10.1007/s00418-013-1143-4] [PMID: 24057227]
[120]
Arasu, U.T.; Kärnä, R.; Härkönen, K.; Oikari, S.; Koistinen, A.; Kröger, H.; Qu, C.; Lammi, M.J.; Rilla, K. Human mesenchymal stem cells secrete hyaluronan-coated extracellular vesicles. Matrix Biol., 2017, 64, 54-68.
[http://dx.doi.org/10.1016/j.matbio.2017.05.001] [PMID: 28483644]
[121]
Chanmee, T.; Ontong, P.; Itano, N. Hyaluronan: A modulator of the tumor microenvironment. Cancer Lett., 2016, 375(1), 20-30.
[http://dx.doi.org/10.1016/j.canlet.2016.02.031] [PMID: 26921785]
[122]
Geiger, M.; Li, R.H.; Friess, W. Collagen sponges for bone regeneration with rhBMP-2. Adv. Drug Deliv. Rev., 2003, 55(12), 1613-1629.
[http://dx.doi.org/10.1016/j.addr.2003.08.010] [PMID: 14623404]
[123]
Lutolf, M.P.; Weber, F.E.; Schmoekel, H.G.; Schense, J.C.; Kohler, T.; Müller, R.; Hubbell, J.A. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat. Biotechnol., 2003, 21(5), 513-518.
[http://dx.doi.org/10.1038/nbt818] [PMID: 12704396]
[124]
Ignatius, A.; Blessing, H.; Liedert, A.; Schmidt, C.; Neidlinger-Wilke, C.; Kaspar, D.; Friemert, B.; Claes, L. Tissue engineering of bone: effects of mechanical strain on osteoblastic cells in type I collagen matrices. Biomaterials, 2005, 26(3), 311-318.
[http://dx.doi.org/10.1016/j.biomaterials.2004.02.045] [PMID: 15262473]
[125]
Long, T.; Yang, J.; Shi, S.S.; Guo, Y.P.; Ke, Q.F.; Zhu, Z.A. Fabrication of three-dimensional porous scaffold based on collagen fiber and bioglass for bone tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater., 2015, 103(7), 1455-1464.
[http://dx.doi.org/10.1002/jbm.b.33328] [PMID: 25430707]
[126]
Deng, M.; Luo, K.; Hou, T.; Luo, F.; Xie, Z.; Zhang, Z.; Yang, A.; Yu, B.; Yi, S.; Tan, J.; Dong, S.; Xu, J. IGFBP3 deposited in the human umbilical cord mesenchymal stem cell-secreted extracellular matrix promotes bone formation. J. Cell. Physiol., 2018, 233(8), 5792-5804.
[http://dx.doi.org/10.1002/jcp.26342] [PMID: 29219174]
[127]
Hashemi, S.M.; Soudi, S.; Shabani, I.; Naderi, M.; Soleimani, M. The promotion of stemness and pluripotency following feeder-free culture of embryonic stem cells on collagen-grafted 3-dimensional nanofibrous scaffold. Biomaterials, 2011, 32(30), 7363-7374.
[http://dx.doi.org/10.1016/j.biomaterials.2011.06.048] [PMID: 21762983]
[128]
Kazanis, I.; Lathia, J.D.; Vadakkan, T.J.; Raborn, E.; Wan, R.; Mughal, M.R.; Eckley, D.M.; Sasaki, T.; Patton, B.; Mattson, M.P.; Hirschi, K.K.; Dickinson, M.E. ffrench-Constant, C. Quiescence and activation of stem and precursor cell populations in the subependymal zone of the mammalian brain are associated with distinct cellular and extracellular matrix signals. J. Neurosci., 2010, 30(29), 9771-9781.
[http://dx.doi.org/10.1523/JNEUROSCI.0700-10.2010] [PMID: 20660259]
[129]
He, Y.; Lu, F. Development of synthetic and natural materials for tissue engineering applications using adipose stem cells. Stem Cells Int., 2016, 20165786257
[http://dx.doi.org/10.1155/2016/5786257] [PMID: 26977158]
[130]
Zhu, Y.; Kruglikov, I.L.; Akgul, Y.; Scherer, P.E. Hyaluronan in adipogenesis, adipose tissue physiology and systemic metabolism. Matrix Biol., 2019, 78-79, 284-291.
[http://dx.doi.org/10.1016/j.matbio.2018.02.012] [PMID: 29458140]
[131]
Su, W.; Matsumoto, S.; Sorg, B.; Sherman, L.S. Distinct roles for hyaluronan in neural stem cell niches and perineuronal nets. Matrix Biol., 2019, 78-79, 272-283.
[http://dx.doi.org/10.1016/j.matbio.2018.01.022] [PMID: 29408010]
[132]
Zhang, K.; Shi, Z.Q.; Zhou, J.K.; Xing, Q.; Ma, S.S.; Li, Q.H.; Zhang, Y.T.; Yao, M.H.; Wang, X.F.; Li, Q.; Li, J.A.; Guan, F.X. Potential application of an injectable hydrogel scaffold loaded with mesenchymal stem cells for treating traumatic brain injury. J. Mater. Chem. B Mater. Biol. Med., 2018, 6, 2982.
[http://dx.doi.org/10.1039/C7TB03213G]
[133]
Wu, S.C.; Huang, P.Y.; Chen, C.H.; Teong, B.; Chen, J.W.; Wu, C.W.; Chang, J.K.; Ho, M.L. Hyaluronan microenvironment enhances cartilage regeneration of human adipose-derived stem cells in a chondral defect model. Int. J. Biol. Macromol., 2018, 119, 726-740.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.054] [PMID: 30031078]
[134]
Wang, Y.; Wei, Y.T.; Zu, Z.H.; Ju, R.K.; Guo, M.Y.; Wang, X.M.; Xu, Q.Y.; Cui, F.Z. Combination of hyaluronic acid hydrogel scaffold and PLGA microspheres for supporting survival of neural stem cells. Pharm. Res., 2011, 28(6), 1406-1414.
[http://dx.doi.org/10.1007/s11095-011-0452-3] [PMID: 21537876]
[135]
Sweeney, S.M.; Orgel, J.P.; Fertala, A.; McAuliffe, J.D.; Turner, K.R.; Di Lullo, G.A.; Chen, S.; Antipova, O.; Perumal, S.; Ala-Kokko, L.; Forlino, A.; Cabral, W.A.; Barnes, A.M.; Marini, J.C.; San Antonio, J.D. Candidate cell and matrix interaction domains on the collagen fibril, the predominant protein of vertebrates. J. Biol. Chem., 2008, 283(30), 21187-21197.
[http://dx.doi.org/10.1074/jbc.M709319200] [PMID: 18487200]
[136]
Pati, F.; Adhikari, B.; Dhara, S. Isolation and characterization of fish scale collagen of higher thermal stability. Bioresour. Technol., 2010, 101(10), 3737-3742.
[http://dx.doi.org/10.1016/j.biortech.2009.12.133] [PMID: 20116238]
[137]
Prashant, K. Bhagwat, Padma, B.; Dandge. Collagen and collagenolytic proteases: A review. ISBAB, 2018, 15, 43-55.
[138]
Chan, B.P.; Leong, K.W. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur. Spine J., 2008, 17(Suppl. 4), 467-479.
[http://dx.doi.org/10.1007/s00586-008-0745-3] [PMID: 19005702]
[139]
Hsu, H.H.; Uemura, T.; Yamaguchi, I.; Ikoma, T.; Tanaka, J. Chondrogenic differentiation of human mesenchymal stem cells on fish scale collagen. J. Biosci. Bioeng., 2016, 122(2), 219-225.
[http://dx.doi.org/10.1016/j.jbiosc.2016.01.001] [PMID: 26829997]
[140]
Longo, A.; Tobiasch, E.; Luparello, C. Type V collagen counteracts osteo-differentiation of human mesenchymal stem cells. Biologicals, 2014, 42(5), 294-297.
[http://dx.doi.org/10.1016/j.biologicals.2014.07.002] [PMID: 25132375]
[141]
Murphy, C.M.; Matsiko, A.; Haugh, M.G.; Gleeson, J.P.; O’Brien, F.J. Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen-glycosaminoglycan scaffolds. J. Mech. Behav. Biomed. Mater., 2012, 11, 53-62.
[http://dx.doi.org/10.1016/j.jmbbm.2011.11.009] [PMID: 22658154]
[142]
Singh, P.; Carraher, C.; Schwarzbauer, J.E. Assembly of fibronectin extracellular matrix. Annu. Rev. Cell Dev. Biol., 2010, 26, 397-419.
[http://dx.doi.org/10.1146/annurev-cellbio-100109-104020] [PMID: 20690820]
[143]
Morla, A.; Zhang, Z.; Ruoslahti, E. Superfibronectin is a functionally distinct form of fibronectin. Nature, 1994, 367(6459), 193-196.
[http://dx.doi.org/10.1038/367193a0] [PMID: 8114919]
[144]
Zollinger, A.J.; Smith, M.L. Fibronectin, the extracellular glue. Matrix Biol., 2017, 60-61, 27-37.
[http://dx.doi.org/10.1016/j.matbio.2016.07.011] [PMID: 27496349]
[145]
Bager, C.L.; Gudmann, N.; Willumsen, N.; Leeming, D.J.; Karsdal, M.A.; Bay-Jensen, A.C.; Høgdall, E.; Balslev, I.; He, Y. Quantification of fibronectin as a method to assess ex vivo extracellular matrix remodeling. Biochem. Biophys. Res. Commun., 2016, 478(2), 586-591.
[http://dx.doi.org/10.1016/j.bbrc.2016.07.108] [PMID: 27475500]
[146]
Purushothaman, A.; Bandari, S.K.; Liu, J.; Mobley, J.A.; Brown, E.E.; Sanderson, R.D. Fibronectin on the surface of myeloma cellderived exosomes mediates exosome-cell interactions. J. Biol. Chem., 2016, 291(4), 1652-1663.
[http://dx.doi.org/10.1074/jbc.M115.686295] [PMID: 26601950]
[147]
Rajaraman, G.; White, J.; Tan, K.S.; Ulrich, D.; Rosamilia, A.; Werkmeister, J.; Gargett, C.E. Optimization and scale-up culture of human endometrial multipotent mesenchymal stromal cells: potential for clinical application. Tissue Eng. Part C Methods, 2013, 19(1), 80-92.
[http://dx.doi.org/10.1089/ten.tec.2011.0718] [PMID: 22738377]
[148]
Simon, T.; Bromberg, J.S. Regulation of the immune system by laminins. Trends Immunol., 2017, 38(11), 858-871.
[http://dx.doi.org/10.1016/j.it.2017.06.002] [PMID: 28684207]
[149]
Kligys, K.; Wu, Y.; Hamill, K.J.; Lewandowski, K.T.; Hopkinson, S.B.; Budinger, G.R.; Jones, J.C. Laminin-332 and α3β1 integrin-supported migration of bronchial epithelial cells is modulated by fibronectin. Am. J. Respir. Cell Mol. Biol., 2013, 49(5), 731-740.
[http://dx.doi.org/10.1165/rcmb.2012-0509OC] [PMID: 23590307]
[150]
Sato-Nishiuchi, R.; Li, S.; Ebisu, F.; Sekiguchi, K. Recombinant laminin fragments endowed with collagen-binding activity: A tool for conferring laminin-like cell-adhesive activity to collagen matrices. Matrix Biol., 2018, 65, 75-90.
[http://dx.doi.org/10.1016/j.matbio.2017.08.001] [PMID: 28801205]
[151]
Lee, D.Y.; Lee, J.H.; Ahn, H.J.; Oh, S.H.; Kim, T.H.; Kim, H.B.; Park, S.W.; Kwon, S.K. Synergistic effect of laminin and mesenchymal stem cells on tracheal mucosal regeneration. Biomaterials, 2015, 44, 134-142.
[http://dx.doi.org/10.1016/j.biomaterials.2014.12.029] [PMID: 25617133]
[152]
Legate, K.R.; Wickström, S.A.; Fässler, R. Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev., 2009, 23(4), 397-418.
[http://dx.doi.org/10.1101/gad.1758709] [PMID: 19240129]
[153]
Chen, S.S.; Fitzgerald, W.; Zimmerberg, J.; Kleinman, H.K.; Margolis, L. Cell-cell and cell-extracellular matrix interactions regulate embryonic stem cell differentiation. Stem Cells, 2007, 25(3), 553-561.
[http://dx.doi.org/10.1634/stemcells.2006-0419] [PMID: 17332514]
[154]
Jones, R.G.; Li, X.; Gray, P.D.; Kuang, J.; Clayton, F.; Samowitz, W.S.; Madison, B.B.; Gumucio, D.L.; Kuwada, S.K. Conditional deletion of beta1 integrins in the intestinal epithelium causes a loss of Hedgehog expression, intestinal hyperplasia, and early postnatal lethality. J. Cell Biol., 2006, 175(3), 505-514.
[http://dx.doi.org/10.1083/jcb.200602160] [PMID: 17088430]
[155]
Caswell, P.T.; Vadrevu, S.; Norman, J.C. Integrins: masters and slaves of endocytic transport. Nat. Rev. Mol. Cell Biol., 2009, 10(12), 843-853.
[http://dx.doi.org/10.1038/nrm2799] [PMID: 19904298]
[156]
Volloch, V.; Olsen, B.R. Why cellular stress suppresses adipogenesis in skeletal tissue, but is ineffective in adipose tissue: control of mesenchymal cell differentiation via integrin binding sites in extracellular matrices. Matrix Biol., 2013, 32(7-8), 365-371.
[http://dx.doi.org/10.1016/j.matbio.2013.06.001] [PMID: 23792045]
[157]
Teo, B.K.; Wong, S.T.; Lim, C.K.; Kung, T.Y.; Yap, C.H.; Ramagopal, Y.; Romer, L.H.; Yim, E.K. Nanotopography modulates mechanotransduction of stem cells and induces differentiation through focal adhesion kinase. ACS Nano, 2013, 7(6), 4785-4798.
[http://dx.doi.org/10.1021/nn304966z] [PMID: 23672596]
[158]
Tan, S.L.; Ahmad, T.S.; Ng, W.M.; Azlina, A.A.; Azhar, M.M.; Selvaratnam, L.; Kamarul, T. Identification of pathways mediating growth differentiation factor5-induced tenogenic differentiation in human bone marrow stromal cells. PLoS One, 2015, 10(11)e0140869
[http://dx.doi.org/10.1371/journal.pone.0140869] [PMID: 26528540]
[159]
Li, B.; Liu, W.; Zhuang, M.; Li, N.; Wu, S.; Pan, S.; Hua, J. Overexpression of CD61 promotes hUC-MSC differentiation into male germ-like cells. Cell Prolif., 2016, 49(1), 36-47.
[http://dx.doi.org/10.1111/cpr.12236] [PMID: 26840189]
[160]
Zhang, S.; Wan, H.; Wang, P.; Liu, M.; Li, G.; Zhang, C.; Sun, Y. Extracellular matrix protein DMP1 suppresses osteogenic differentiation of Mesenchymal Stem Cells. Biochem. Biophys. Res. Commun., 2018, 501(4), 968-973.
[http://dx.doi.org/10.1016/j.bbrc.2018.05.092] [PMID: 29775615]
[161]
Mammadov, B.; Guler, M.O.; Tekinay, A.B. Extracellular matrix mimetic peptide scaffolds for neural stem cell culture and differentiation. Methods Mol. Biol., 2014, 1202, 131-148.
[http://dx.doi.org/10.1007/7651_2013_35] [PMID: 24519002]
[162]
Halder, G.; Dupont, S.; Piccolo, S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat. Rev. Mol. Cell Biol., 2012, 13(9), 591-600.
[http://dx.doi.org/10.1038/nrm3416] [PMID: 22895435]
[163]
Tay, C.Y.; Wu, Y.L.; Cai, P.Q.; Tan, N.S.; Venkatraman, S.S.; Chen, X.D.; Tan, L.P. Bio-inspired micropatterned hydrogel to direct and deconstruct hierarchical processing of geometry-force signals by human mesenchymal stem cells during smooth muscle cell differentiation. NPG Asia Mater.,, 2015, 7e199.
[164]
Yang, C.; Tibbitt, M.W.; Basta, L.; Anseth, K.S. Mechanical memory and dosing influence stem cell fate. Nat. Mater., 2014, 13(6), 645-652.
[http://dx.doi.org/10.1038/nmat3889] [PMID: 24633344]