Adenoidal Immune Response in the Context of Inflammation and Allergy

Page: [231 - 237] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

The mucosal-associated lymphoid tissues of the upper respiratory tract, including adenoids and palatine tonsils, are considered as the first line of defense against respiratory infections, being important effector organs in both mucosal-type and systemic-type adaptive immunity. They are strategically located for mediating both local and regional immune functions, as they are exposed to antigens from both the inhaled air (allergens and pathogens) and the alimentary tract. Adenoids play a major role in the early and effective immune responses against viral and bacterial upper airway infections, as well as in the development of allergic reactions to respiratory allergens, being influenced by several environmental antigens and pollutants, such as tobacco smoke. In addition, recent studies have focused on new immune-modulating strategies for adenoidal cells as a preventive and therapeutic approach for chronic upper airways inflammation.

Herein, we aimed to summarize what is known about the cellular and molecular mechanisms regulating adenoidal immune responses in the context of inflammation and allergy, with particular reference to scientific literature published within the last five years.

Keywords: Adenoidal tissue, atopy, immune response, recurrent respiratory infections, inflammation, allergy.

Graphical Abstract

[1]
Perry M, Whyte A. Immunology of the tonsils. Immunol Today 1998; 19(9): 414-21.
[http://dx.doi.org/10.1016/S0167-5699(98)01307-3] [PMID: 9745205]
[2]
Brandtzaeg P. Potential of nasopharynx-associated lymphoid tissue for vaccine responses in the airways. Am J Respir Crit Care Med 2011; 183(12): 1595-604.
[http://dx.doi.org/10.1164/rccm.201011-1783OC] [PMID: 21471092]
[3]
Licari A, Castagnoli R, Denicolò CF, Rossini L, Marseglia A, Marseglia GL. The nose and the lung: United airway disease? Front Pediatr 2017; 5: 44.
[http://dx.doi.org/10.3389/fped.2017.00044] [PMID: 28316969]
[4]
Brambilla I, Pusateri A, Pagella F, et al. Adenoids in children: Advances in immunology, diagnosis, and surgery. Clin Anat 2014; 27(3): 346-52.
[http://dx.doi.org/10.1002/ca.22373] [PMID: 24535951]
[5]
Marseglia GL, Caimmi D, Pagella F, et al. Adenoids during childhood: the facts. Int J Immunopathol Pharmacol 2011; 24(4)(Suppl.): 1-5.
[http://dx.doi.org/10.1177/03946320110240S401] [PMID: 22032778]
[6]
Brandtzaeg P. Immunology of tonsils and adenoids: everything the ENT surgeon needs to know. Int J Pediatr Otorhinolaryngol 2003; 67(Suppl. 1): S69-76.
[http://dx.doi.org/10.1016/j.ijporl.2003.08.018] [PMID: 14662171]
[7]
Brandtzaeg P. Immune functions of nasopharyngeal lymphoid tissue. Adv Otorhinolaryngol 2011; 72: 20-4.
[http://dx.doi.org/10.1159/000324588] [PMID: 21865681]
[8]
Marseglia GL, Poddighe D, Caimmi D, et al. Role of adenoids and adenoiditis in children with allergy and otitis media. Curr Allergy Asthma Rep 2009; 9(6): 460-4.
[http://dx.doi.org/10.1007/s11882-009-0068-4] [PMID: 19814919]
[9]
Pagella F, De Amici M, Pusateri A, et al. Adenoids and clinical symptoms: Epidemiology of a cohort of 795 pediatric patients. Int J Pediatr Otorhinolaryngol 2015; 79(12): 2137-41.
[http://dx.doi.org/10.1016/j.ijporl.2015.09.035] [PMID: 26478108]
[10]
Marseglia GL, Pagella F, Licari A, et al. Acute isolated sphenoid sinusitis in children. Int J Pediatr Otorhinolaryngol 2006; 70(12): 2027-31.
[http://dx.doi.org/10.1016/j.ijporl.2006.07.011] [PMID: 16930730]
[11]
Marseglia GL, Pagella F, Klersy C, Barberi S, Licari A, Ciprandi G. The 10-day mark is a good way to diagnose not only acute rhinosinusitis but also adenoiditis, as confirmed by endoscopy. Int J Pediatr Otorhinolaryngol 2007; 71(4): 581-3.
[http://dx.doi.org/10.1016/j.ijporl.2006.12.003] [PMID: 17239449]
[12]
De Amici M, Ciprandi G, Marseglia A, et al. Adenoid hypetrophy: definition of some risk factors. J Biol Regul Homeost Agents 2012; 26(1)(Suppl.): S1-7.
[PMID: 22691244]
[13]
Pereira L, Monyror J, Almeida FT, et al. Prevalence of adenoid hypertrophy: A systematic review and meta-analysis. Sleep Med Rev 2018; 38: 101-12.
[http://dx.doi.org/10.1016/j.smrv.2017.06.001] [PMID: 29153763]
[14]
Marseglia L, Manti S, D’Angelo G, et al. Gastroesophageal reflux and congenital gastrointestinal malformations. World J Gastroenterol 2015; 21(28): 8508-15.
[http://dx.doi.org/10.3748/wjg.v21.i28.8508] [PMID: 26229394]
[15]
Pagella F, Pusateri A, Chu F, et al. Adenoid assessment in paediatric patients: the role of flexible nasal endoscopy. Int J Immunopathol Pharmacol 2011; 24(4)(Suppl.): 49-54.
[http://dx.doi.org/10.1177/03946320110240S410] [PMID: 22032787]
[16]
Brandtzaeg P. Function of mucosa-associated lymphoid tissue in antibody formation. Immunol Invest 2010; 39(4-5): 303-55.
[http://dx.doi.org/10.3109/08820131003680369] [PMID: 20450282]
[17]
Shikina T, Hiroi T, Iwatani K, et al. IgA class switch occurs in the organized nasopharynx- and gut-associated lymphoid tissue, but not in the diffuse lamina propria of airways and gut. J Immunol 2004; 172(10): 6259-64.
[http://dx.doi.org/10.4049/jimmunol.172.10.6259] [PMID: 15128814]
[18]
Palomares O, Akdis M, Martín-Fontecha M, Akdis CA. Mechanisms of immune regulation in allergic diseases: The role of regulatory T and B cells. Immunol Rev 2017; 278(1): 219-36.
[http://dx.doi.org/10.1111/imr.12555] [PMID: 28658547]
[19]
Claeys S, de Belder T, Holtappels G, et al. Human beta-defensins and toll-like receptors in the upper airway. Allergy 2003; 58(8): 748-53.
[http://dx.doi.org/10.1034/j.1398-9995.2003.00180.x] [PMID: 12859553]
[20]
Lesmeister MJ, Bothwell MR, Misfeldt ML. Toll-like receptor expression in the human nasopharyngeal tonsil (adenoid) and palantine tonsils: a preliminary report. Int J Pediatr Otorhinolaryngol 2006; 70(6): 987-92.
[http://dx.doi.org/10.1016/j.ijporl.2005.10.009] [PMID: 16325925]
[21]
Gankovskaya LV, Bykova VP, Namasova-Baranova LS, et al. Innate immunity gene expression by epithelial cells of upper respiratory tract in children with adenoid hypertrophy. Auris Nasus Larynx 2018; 45(4): 753-9.
[http://dx.doi.org/10.1016/j.anl.2017.11.011] [PMID: 29500040]
[22]
Zielnik-Jurkiewicz B, Stankiewicz-Szymczak W. Pro-inflammatory interleukins in middle ear effusions from atopic and non-atopic children with chronic otitis media with effusion. Eur Arch Otorhinolaryngol 2016; 273(6): 1369-78.
[http://dx.doi.org/10.1007/s00405-015-3683-9] [PMID: 26078091]
[23]
Ricci A, Avanzini MA, Scaramuzza C, Castellazzi AM, Marconi M, Marseglia GL. Toll-like receptor 2-positive and Toll-like receptor 4-positive cells in adenoids of children exposed to passive smoking. J Allergy Clin Immunol 2005; 115(3): 631-2.
[http://dx.doi.org/10.1016/j.jaci.2004.11.044] [PMID: 15753915]
[24]
Wang H, Geng J, Wen X, et al. The transcription factor Foxp1 is a critical negative regulator of the differentiation of follicular helper T cells. Nat Immunol 2014; 15(7): 667-75.
[http://dx.doi.org/10.1038/ni.2890] [PMID: 24859450]
[25]
Crotty S. Follicular helper CD4 T cells (TFH). Annu Rev Immunol 2011; 29: 621-63.
[http://dx.doi.org/10.1146/annurev-immunol-031210-101400] [PMID: 21314428]
[26]
Ciprandi G, Varricchio A, Capasso M, et al. Intranasal flunisolide treatment in children with adenoidal hypertrophy. Int J Immunopathol Pharmacol 2007; 20(4): 833-6.
[http://dx.doi.org/10.1177/039463200702000420] [PMID: 18179756]
[27]
Berglund LJ, Avery DT, Ma CS, et al. IL-21 signalling via STAT3 primes human naive B cells to respond to IL-2 to enhance their differentiation into plasmablasts. Blood 2013; 122(24): 3940-50.
[http://dx.doi.org/10.1182/blood-2013-06-506865] [PMID: 24159173]
[28]
Morris MC, Kozara K, Salamone F, Benoit M, Pichichero ME. Adenoidal follicular T helper cells provide stronger B-cell help than those from tonsils. Laryngoscope 2016; 126(2): E80-5.
[http://dx.doi.org/10.1002/lary.25536] [PMID: 26511445]
[29]
Michea P, Vargas P, Donnadieu MH, et al. Epithelial control of the human pDC response to extracellular bacteria. Eur J Immunol 2013; 43(5): 1264-73.
[http://dx.doi.org/10.1002/eji.201242990] [PMID: 23436642]
[30]
Rescigno M. Plasmacytoid DCs are gentle guardians of tonsillar epithelium. Eur J Immunol 2013; 43(5): 1142-6.
[http://dx.doi.org/10.1002/eji.201343533] [PMID: 23616114]
[31]
Qu XP, Huang ZX, Sun Y, et al. Expression of innate immunity genes in epithelial cells of hypertrophic adenoids with and without pediatric chronic rhinosinusitis: A preliminary report. Chin Med J (Engl) 2015; 128(21): 2913-8.
[http://dx.doi.org/10.4103/0366-6999.168056] [PMID: 26521790]
[32]
Abiko Y, Saitoh M. Salivary defensins and their importance in oral health and disease. Curr Pharm Des 2007; 13(30): 3065-72.
[http://dx.doi.org/10.2174/138161207782110417] [PMID: 17979749]
[33]
Zupin L, Celsi F, Bresciani M, et al. Human beta defensin-1 is involved in the susceptibility to adeno-tonsillar hypertrophy. In: J Pediatr Otorhinolaryngol. 2018; 107: pp. 135-9.
[http://dx.doi.org/10.1016/j.ijporl.2018.01.041]
[34]
Mauri C, Bosma A. Immune regulatory function of B cells. Annu Rev Immunol 2012; 30: 221-41.
[http://dx.doi.org/10.1146/annurev-immunol-020711-074934] [PMID: 22224776]
[35]
Kalampokis I, Yoshizaki A, Tedder TF. IL-10-producing regulatory B cells (B10 cells) in autoimmune disease. Arthritis Res Ther 2013; 15(Suppl. 1): S1.
[http://dx.doi.org/10.1186/ar3907] [PMID: 23566714]
[36]
Valsecchi C, Tagliacarne SC, Brambilla I, et al. Detection of IL10-producing B cell (B10) in adenoids of atopic children with adenoidal hypertrophy. Ital J Pediatr 2018; 44(1): 30.
[http://dx.doi.org/10.1186/s13052-018-0471-3] [PMID: 29486786]
[37]
Alexopoulos EI, Bizakis J, Gourgoulianis K, Kaditis AG. Atopy does not affect the frequency of adenotonsillar hypertrophy and sleep apnoea in children who snore. Acta Paediatr 2014; 103(12): 1239-43.
[http://dx.doi.org/10.1111/apa.12774] [PMID: 25130904]
[38]
Atan Sahin O, Kececioglu N, Serdar M, Ozpinar A. The association of residential mold exposure and adenotonsillar hypertrophy in children living in damp environments. Int J Pediatr Otorhinolaryngol 2016; 88: 233-8.
[http://dx.doi.org/10.1016/j.ijporl.2016.07.018] [PMID: 27497421]
[39]
Cirillo I, Marseglia G, Klersy C, Ciprandi G. Allergic patients have more numerous and prolonged respiratory infections than nonallergic subjects. Allergy 007(62): 1087-90.
[40]
Dogru M, Evcimik MF, Calim OF. Does adenoid hypertrophy affect disease severity in children with allergic rhinitis? Eur Arch Otorhinolaryngol 2017; 274(1): 209-13.
[http://dx.doi.org/10.1007/s00405-016-4196-x] [PMID: 27405740]
[41]
Pawankar R, Yamagishi S, Yagi T. Revisiting the roles of mast cells in allergic rhinitis and its relation to local IgE synthesis. Am J Rhinol 2000; 14(5): 309-17.
[http://dx.doi.org/10.2500/105065800781329582] [PMID: 11068656]
[42]
Dykewicz MS, Hamilos DL. Rhinitis and sinusitis. J Allergy Clin Immunol 2010; 125(2)(Suppl. 2): S103-15.
[http://dx.doi.org/10.1016/j.jaci.2009.12.989] [PMID: 20176255]
[43]
Ekici NY, Görgülü O, Yucel G, Külahcı Ö, Arıkan OK, Durmaz C. Can the number of eosinophils in adenoid and tonsil tissue determine the allergy in children? Int J Pediatr Otorhinolaryngol 2018; 108: 35-9.
[http://dx.doi.org/10.1016/j.ijporl.2018.02.008] [PMID: 29605362]
[44]
Manti S, Brown P, Perez MK, Piedimonte G. The role of neurotrophins in inflammation and allergy. Vitam Horm 2017; 104: 313-41.
[http://dx.doi.org/10.1016/bs.vh.2016.10.010] [PMID: 28215300]
[45]
Cavone L, Cuppari C, Manti S, et al. Increase in the Level of Proinflammatory Cytokine HMGB1 in Nasal Fluids of Patients With Rhinitis and its Sequestration by Glycyrrhizin Induces Eosinophil Cell Death. Clin Exp Otorhinolaryngol 2015; 8(2): 123-8.
[http://dx.doi.org/10.3342/ceo.2015.8.2.123] [PMID: 26045910]
[46]
Ameli F, Castelnuovo P, Pagella F, et al. Nasal endoscopy in asthmatic children: clinical role in the diagnosis of rhinosinusitis. Rhinology 2004; 42(1): 15-8.
[PMID: 15072028]
[47]
Tosca MA, Riccio AM, Marseglia GL, et al. Nasal endoscopy in asthmatic children: assessment of rhinosinusitis and adenoiditis incidence, correlations with cytology and microbiology. Clin Exp Allergy 2001; 31(4): 609-15.
[http://dx.doi.org/10.1046/j.1365-2222.2001.01057.x] [PMID: 11359430]
[48]
Yu M, Zheng X, Peake J, Joad JP, Pinkerton KE. Perinatal environmental tobacco smoke exposure alters the immune response and airway innervation in infant primates. J Allergy Clin Immunol 2008; 122(3): 640-7.e1.
[http://dx.doi.org/10.1016/j.jaci.2008.04.038] [PMID: 18571708]
[49]
Mian MF, Lauzon NM, Stämpfli MR, Mossman KL, Ashkar AA. Impairment of human NK cell cytotoxic activity and cytokine release by cigarette smoke. J Leukoc Biol 2008; 83(3): 774-84.
[http://dx.doi.org/10.1189/jlb.0707481] [PMID: 18055568]
[50]
Linnamaa P, Nieminen K, Koulu L, et al. Pro-inflammatory and Th2-type cytokine responses in PBMC in infants are associated with parental smoking. Clin Exp Allergy 2012; 42(10): 1472-8.
[http://dx.doi.org/10.1111/j.1365-2222.2012.04066.x] [PMID: 22994344]
[51]
Avanzini MA, Ricci A, Scaramuzza C, et al. Deficiency of INFgamma producing cells in adenoids of children exposed to passive smoke. Int J Immunopathol Pharmacol 2006; 19(3): 609-16.
[http://dx.doi.org/10.1177/039463200601900317] [PMID: 17026846]
[52]
Avanzini AM, Castellazzi AM, Marconi M, et al. Children with recurrent otitis show defective IFN gamma-producing cells in adenoids. Pediatr Allergy Immunol 2008; 19(6): 523-6.
[http://dx.doi.org/10.1111/j.1399-3038.2007.00682.x] [PMID: 18266836]
[53]
Marseglia GL, Avanzini MA, Caimmi S, et al. Passive exposure to smoke results in defective interferon-gamma production by adenoids in children with recurrent respiratory infections. J Interferon Cytokine Res 2009; 29(8): 427-32.
[http://dx.doi.org/10.1089/jir.2008.0108] [PMID: 19514840]
[54]
Tagliacarne SC, Valsecchi C, Castellazzi AM, et al. Impact of passive smoke and/or atopy on adenoid immunoglobulin production in children. Immunol Lett 2015; 165(2): 70-7.
[http://dx.doi.org/10.1016/j.imlet.2015.04.002] [PMID: 25929805]
[55]
Holt PG, Keast D. Environmentally induced changes in immunological function: acute and chronic effects of inhalation of tobacco smoke and other atmospheric contaminants in man and experimental animals. Bacteriol Rev 1977; 41(1): 205-16.
[PMID: 405003]
[56]
Koinis-Mitchell D, Craig T, Esteban CA, Klein RB. Sleep and allergic disease: a summary of the literature and future directions for research. J Allergy Clin Immunol 2012; 130(6): 1275-81.
[http://dx.doi.org/10.1016/j.jaci.2012.06.026] [PMID: 22867694]
[57]
Tsaoussoglou M, Lianou L, Maragozidis P, et al. Cysteinyl leukotriene receptors in tonsillar B- and T-lymphocytes from children with obstructive sleep apnea. Sleep Med 2012; 13(7): 879-85.
[http://dx.doi.org/10.1016/j.sleep.2012.03.010] [PMID: 22647498]
[58]
Paulucci BP, Pereira J, Picciarelli P, Levy D, Di Francesco RC. Expression of cysteinyl leukotriene receptor 1 and 2 (CysLTR1 and CysLTR2) in the lymphocytes of hyperplastic tonsils: comparison between allergic and nonallergic snoring children. Int Forum Allergy Rhinol 2016; 6(11): 1151-8.
[http://dx.doi.org/10.1002/alr.21798] [PMID: 27221082]
[59]
Ganz FD. Sleep and immune function. Crit Care Nurse 2012; 32(2): e19-25.
[http://dx.doi.org/10.4037/ccn2012689] [PMID: 22467620]
[60]
Chimenz R, Manti S, Fede C, et al. Primary nocturnal enuresis in children with allergic rhinitis and severe adenotonsillar hypertrophy: a single center pilot study. J Biol Regul Homeost Agents 2015; 29(2)(Suppl. 1): 73-9.
[PMID: 26634591]
[61]
Ni K, Zhao L, Wu J, Chen W. HongyaYang, Li X. Th17/Treg balance in children with obstructive sleep apnea syndrome and the relationship with allergic rhinitis. Int J Pediatr Otorhinolaryngol 2015; 79(9): 1448-54.
[http://dx.doi.org/10.1016/j.ijporl.2015.06.026] [PMID: 26166452]
[62]
Dejima K, Hama T, Miyazaki M, et al. A clinical study of endoscopic sinus surgery for sinusitis in patients with bronchial asthma. Int Arch Allergy Immunol 2005; 138(2): 97-104.
[http://dx.doi.org/10.1159/000088430] [PMID: 16174986]
[63]
Anfuso A, Ramadan H, Terrell A, et al. Sinus and adenoid inflammation in children with chronic rhinosinusitis and asthma. Ann Allergy Asthma Immunol 2015; 114(2): 103-10.
[http://dx.doi.org/10.1016/j.anai.2014.10.024] [PMID: 25624129]
[64]
Bielicka A, Zielnik-Jurkiewicz B, Podsiadły E, Prochorec-Sobieszek M, Rogulska J, Demkow U. Role of Chlamydia pneumoniae in the pathogenesis of hypertrophy and adenoid tissue inflammation in children. Otolaryngol Pol 2016; 70(5): 7-12.
[http://dx.doi.org/10.5604/00306657.1209437] [PMID: 27935539]
[65]
González C, Droguett K, Rios M, Cohen NA, Villalón M. TNFα Affects Ciliary Beat Response to Increased Viscosity in Human Pediatric Airway Epithelium. BioMed Res Int 2016. 20163628501
[http://dx.doi.org/10.1155/2016/3628501] [PMID: 28025644]
[66]
Knisbacher BA, Gerber D, Levanon EY. DNA editing by APOBECs: a genomic preserver and transformer. Trends Genet 2016; 32(1): 16-28.
[http://dx.doi.org/10.1016/j.tig.2015.10.005] [PMID: 26608778]
[67]
Seishima N, Kondo S, Wakae K, et al. Expression and subcellular localisation of AID and APOBEC3 in adenoid and palatine tonsils. Sci Rep 2018; 8(1): 918.
[http://dx.doi.org/10.1038/s41598-017-18732-w] [PMID: 29343743]
[68]
Tagliacarne SC, Valsecchi C, Benazzo M, et al. Low-dose multicomponent medication modulates humoral and cellular immune response in an ex-vivo study on children subjected to adenoid surgery. Immunol Lett 2018; 203: 95-101.
[http://dx.doi.org/10.1016/j.imlet.2018.09.014] [PMID: 30261195]