Recent Progress in Nano-electronic Devices Based on EBL and IBL

Page: [157 - 169] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Electron beam lithography (EBL) and ion beam lithography (IBL) are extremely promising nanofabrication techniques for building nano-electronic devices due to their outstanding physical and electronic properties. In this review, an overview of EBL and IBL and a comparison of nanoelectronics fabricated based on four types of materials, namely graphene, ZnO, TiO2 and Ge, are presented. In each type of material, numerous practical examples are also provided in the illustration. Later, the strengths and weaknesses of EBL and IBL are presented in details. Finally, the similarities and differences between the two techniques are discussed and concluded.

Keywords: Nano-electronic devices, electron beam lithography, ion beam lithography, nanofabrication techniques, ZnO, TiO2.

Graphical Abstract

[1]
Patolsky, F.; Timko, B.P.; Zheng, G.; Lieber, C.M. Nanowire-based nanoelectronic devices in the life sciences. MRS Bull., 2007, 32, 142-149.
[http://dx.doi.org/10.1557/mrs2007.47]
[2]
Goldhaber-Gordon, D.; Montemerlo, M.S.; Love, J.C.; Opiteck, G.J.; Ellenbogen, J.C. Overview of nanoelectronic devices. Proc. IEEE, 1997, 85(4), 521-540.
[http://dx.doi.org/10.1109/5.573739]
[3]
Lin, Y.M.; Yau, J.B. Fabrication of graphene nanoelectronic devices on SOI structures. U.S. Patent 8,673,703, March 18, 2014.
[4]
Turkyilmazoglu, M. Condensation of laminar film over curved vertical walls using single and two-phase nanofluid models. Eur. J. Mech. BFluids, 2017, 65, 184-191.
[http://dx.doi.org/10.1016/j.euromechflu.2017.04.007]
[5]
Lim, K.W.; Peddigari, M.; Park, C.H.; Lee, H.Y.; Min, Y.; Kim, J.W.; Park, D.S. A high output magneto-mechano-triboelectric generator enabled by accelerated water-soluble nano-bullets for powering a wireless indoor positioning system. Energy Environ. Sci., 2019, 12, 666-674.
[http://dx.doi.org/10.1039/C8EE03008A]
[6]
Ibberson, D.J.; Ibberson, L.A.; Smithson, G.; Haigh, J.A.; Barraud, S.; Gonzalez-Zalba, M.F. Low-temperature tunable radio-frequency resonator for sensitive dispersive readout of nanoelectronic devices. Appl. Phys. Lett., 2019, 114, 123501
[http://dx.doi.org/10.1063/1.5082894]
[7]
Happy, H.; Haddadi, K.; Theron, D.; Lasri, T.; Dambrine, G. Measurement techniques for RF nanoelectronic devices: New equipment to overcome the problems of impedance and scale mismatch. IEEE Microw. Mag., 2014, 15, 30-39.
[http://dx.doi.org/10.1109/MMM.2013.2288710]
[8]
Jeong, H.; Ahn, Y.H.; Lee, S.; Park, J.Y. Quantitative non-contact voltage profiling of quasi one-dimensional nanoelectronic devices. Appl. Phys. Lett., 2014, 104, 213102
[http://dx.doi.org/10.1063/1.4880733]
[9]
Šiškins, M.; Mullan, C.; Son, S.K.; Yin, J.; Watanabe, K.; Taniguchi, T.; Mishchenko, A. High-temperature electronic devices enabled by hBN-encapsulated graphene. Appl. Phys. Lett., 2019, 114, 123104
[http://dx.doi.org/10.1063/1.5088587]
[10]
Lee, W.K.; Whitener, K.E., Jr; Robinson, J.T.; O’Shaughnessy, T.J.; Sheehan, P.E. Transferring electronic devices with hydrogenated graphene. Adv. Mater. Interfaces, 2019, 6(10), 1801974
[http://dx.doi.org/10.1002/admi.201801974]
[11]
Farzanehnia, A.; Khatibi, M.; Sardarabadi, M.; Passandideh-Fard, M. Experimental investigation of multiwall carbon nanotube/paraffin based heat sink for electronic device thermal management. Energy Convers. Manage., 2019, 179, 314-325.
[http://dx.doi.org/10.1016/j.enconman.2018.10.037]
[12]
Lin, Y.; Zhang, H.; Liao, H.; Zhao, Y.; Li, K. A physically crosslinked, self-healing hydrogel electrolyte for nano-wire PANI flexible supercapacitors. Chem. Eng. J., 2019, 367, 139-148.
[http://dx.doi.org/10.1016/j.cej.2019.02.064]
[13]
Yamada, K.; Narita, C.; Kumaresan, R.; Shinohara, T.; Terakawa, M.; Tsuboi, Y. Nanofabrication of high throughput 30 nm hole 2D arrays by a simple visible laser ablation technique. Appl. Surf. Sci., 2017, 420, 868-872.
[http://dx.doi.org/10.1016/j.apsusc.2017.05.243]
[14]
Gu, H.; Zhang, H.; Ma, C.; Sun, H.; Liu, C.; Dai, K.; Guo, Z. Smart strain sensing organic–inorganic hybrid hydrogels with nano barium ferrite as the cross-linker. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2019, 7, 2353-2360.
[http://dx.doi.org/10.1039/C8TC05448G]
[15]
Wicaksono, Y.; Teranishi, S.; Nishiguchi, K.; Kusakabe, K. Tunable induced magnetic moment and in-plane conductance of graphene in Ni/graphene/Ni nano-spin-valve-like structure: A first principles study. Carbon, 2019, 143, 828-836.
[http://dx.doi.org/10.1016/j.carbon.2018.11.075]
[16]
Sharma, A.; Yu, H.; Cho, I.S.; Seo, H.; Ahn, B. ZrO2 nanoparticle embedded low silver lead free solder alloy for modern electronic devices. Electron. Mater. Lett., 2019, 15, 27-35.
[http://dx.doi.org/10.1007/s13391-018-0089-z]
[17]
Alizadeh, M.; Hosseinzadeh, K.; Mehrzadi, H.; Ganji, D.D. Investigation of LHTESS filled by hybrid nano-enhanced PCM with Koch snowflake fractal cross section in the presence of thermal radiation. J. Mol. Liq., 2019, 273, 414-424.
[http://dx.doi.org/10.1016/j.molliq.2018.10.049]
[18]
Shi, Z.; Wu, X.; Zhang, H.; Chai, H.; Li, C.M.; Lu, Z.; Yu, L. Flexible electronic skin with nanostructured interfaces via flipping over electroless deposited metal electrodes. J. Colloid Interface Sci., 2019, 534, 618-624.
[http://dx.doi.org/10.1016/j.jcis.2018.09.069] [PMID: 30265989]
[19]
Huang, W.; Ling, S.; Li, C.; Omenetto, F.G.; Kaplan, D.L. Silkworm silk-based materials and devices generated using bio-nanotechnology. Chem. Soc. Rev., 2018, 47(17), 6486-6504.
[http://dx.doi.org/10.1039/C8CS00187A] [PMID: 29938722]
[20]
Seniutinas, G.; Balčytis, A.; Reklaitis, I.; Chen, F.; Davis, J.; David, C.; Juodkazis, S. Tipping solutions: Emerging 3D nano-fabrication/-imaging technologies. Nanophotonics, 2017, 6, 923-941.
[http://dx.doi.org/10.1515/nanoph-2017-0008]
[21]
Yun, J.; Lee, H.; Mun, C.; Jahng, J.; Morrison, W.A.; Nowak, D.B.; Kim, N.H. Fabrication and near-field visualization of a wafer-scale dense plasmonic nanostructured array. RSC Advances, 2018, 8, 6444-6451.
[http://dx.doi.org/10.1039/C7RA13322G]
[22]
Turkyilmazoglu, M. Performance of direct absorption solar collector with nanofluid mixture. Energy Convers. Manage., 2016, 114, 1-10.
[http://dx.doi.org/10.1016/j.enconman.2016.02.003]
[23]
Kwak, J.; Mishra, A.K.; Lee, J.; Lee, K.S.; Choi, C.; Maiti, S.; Kim, J.K. Fabrication of sub-3 nm feature size based on block copolymer self-asscanning electron microscopybly for next-generation nanolithography. Macromolecules, 2017, 50, 6813-6818.
[http://dx.doi.org/10.1021/acs.macromol.7b00945]
[24]
Karthikeyan, B.; Hariharan, S.; Sasidharan, A.; Gayathri, V.; Arun, T.; Akbari-Fakhrabadi, A.; Madhumitha, C. Optical, vibrational and fluorescence recombination pathway properties of nano SiO2-PVA composite films. Opt. Mater., 2019, 90, 139-144.
[http://dx.doi.org/10.1016/j.optmat.2019.01.063]
[25]
Bhaumik, A.; Narayan, J. Formation and characterization of nano- and microstructures of twinned cubic boron nitride. Phys. Chem. Chem. Phys., 2019, 21(4), 1700-1710.
[http://dx.doi.org/10.1039/C8CP04592E] [PMID: 30306977]
[26]
Dushaq, G.; Nayfeh, A.; Rasras, M. Hexagonal germanium formation at room temperature using controlled penetration depth nano-indentation. Sci. Rep., 2019, 9(1), 1593.
[http://dx.doi.org/10.1038/s41598-018-38440-3] [PMID: 30733519]
[27]
Shi, Q.; He, T.; Lee, C. More than energy harvesting–Combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems. Nano Energy, 2019, 57, 851-871.
[http://dx.doi.org/10.1016/j.nanoen.2019.01.002]
[28]
Chen, H.; Song, Y.; Cheng, X.; Zhang, H. Self-powered electronic skin based on the triboelectric generator. Nano Energy, 2019, 56, 252-268.
[http://dx.doi.org/10.1016/j.nanoen.2018.11.061]
[29]
Hosseinzadeh, K.; Alizadeh, M.; Ganji, D.D. Solidification process of hybrid nano-enhanced phase change material in a LHTESS with tree-like branching fin in the presence of thermal radiation. J. Mol. Liq., 2019, 275, 909-925.
[http://dx.doi.org/10.1016/j.molliq.2018.11.109]
[30]
Saifullah, M.S.M.; Asbahi, M.; Binti-Kamran Kiyani, M.; Tripathy, S.; Ong, E.A.H.; Ibn Saifullah, A.; Tan, H.R.; Dutta, T.; Ganesan, R.; Valiyaveettil, S.; Chong, K.S.L. Direct patterning of zinc sulfide on a sub-10 nanometer scale via electron beam lithography. ACS Nano, 2017, 11(10), 9920-9929.
[http://dx.doi.org/10.1021/acsnano.7b03951] [PMID: 28938068]
[31]
Shao, J.; Deng, J.; Lu, W.; Chen, Y. Nanofabrication of 10-nm T-shaped gates using a double patterning process with electron beam lithography and dry etch. J. Micro. Nanolithogr. MEMS MOEMS, 2017, 16, 033508
[http://dx.doi.org/10.1117/1.JMM.16.3.033508]
[32]
Turkyilmazoglu, M. Flow of nanofluid plane wall jet and heat transfer. Eur. J. Mech. BFluids, 2016, 59, 18-24.
[http://dx.doi.org/10.1016/j.euromechflu.2016.04.007]
[33]
Picollo, F.; Battiato, A.; Boarino, L.; Tchernij, S.D.; Enrico, E.; Forneris, J.; Tengattini, A. Fabrication of monolithic microfluidic channels in diamond with ion beam lithography. Nucl. Instrum. Methods Phys. Res. B, 2017, 404, 193-197.
[http://dx.doi.org/10.1016/j.nimb.2017.01.062]
[34]
Desbiolles, B.X.E.; Bertsch, A.; Renaud, P. Ion beam etching redeposition for 3D multimaterial nanostructure manufacturing. Microsyst. Nanoeng., 2019, 5, 11.
[http://dx.doi.org/10.1038/s41378-019-0052-7] [PMID: 31057938]
[35]
Gloss, J.; Horký, M.; Křižáková, V.; Flajšman, L.; Schmid, M.; Urbánek, M.; Varga, P. The growth of metastable fcc Fe78Ni22 thin films on H-Si (1 0 0) substrates suitable for focused ion beam direct magnetic patterning. Appl. Surf. Sci., 2019, 469, 747-752.
[http://dx.doi.org/10.1016/j.apsusc.2018.10.263]
[36]
Kwon, D.S.; Choi, H.Y.; Lee, B.M.; Jeong, Y.G.; Yang, D.; Kim, S.T.; Choi, J.H. Electrothermal application of novolac-derived carbon micropatterns prepared by proton beam lithography and carbonization. Appl. Surf. Sci., 2019, 471, 328-334.
[http://dx.doi.org/10.1016/j.apsusc.2018.11.236]
[37]
Laible, F.; Dreser, C.; Kern, D.P.; Fleischer, M. Time-effective strategies for the fabrication of poly- and single-crystalline gold nano-structures by focused helium ion beam milling. Nanotechnology, 2019, 30(23), 235302
[http://dx.doi.org/10.1088/1361-6528/ab0506] [PMID: 30907377]
[38]
Muñoz, P.; Yong, Y.S.; Dijkstra, M.; Segerink, F.B.; García-Blanco, S.M. Double metal layer lift-off process for the robust fabrication of plasmonic nano-antenna arrays on dielectric substrates using e-beam lithography. Opt. Mater. Express, 2019, 9, 2046-2056.
[http://dx.doi.org/10.1364/OME.9.002046]
[39]
Modrić-Šahbazović, A.; Novaković, M.; Schmidt, E.; Gazdić, I.; Đokić, V.; Peruško, D. Rakočević, Z. Silicon nanostructuring by Ag ions implantation through nanosphere lithography mask. Opt. Mater., 2019, 88, 508-515.
[http://dx.doi.org/10.1016/j.optmat.2018.12.022]
[40]
Schröder, T.; Trusheim, M.E.; Walsh, M.; Li, L.; Zheng, J.; Schukraft, M.; Sipahigil, A.; Evans, R.E.; Sukachev, D.D.; Nguyen, C.T.; Pacheco, J.L.; Camacho, R.M.; Bielejec, E.S.; Lukin, M.D.; Englund, D. Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures. Nat. Commun., 2017, 8, 15376.
[http://dx.doi.org/10.1038/ncomms15376] [PMID: 28548097]
[41]
Liu, Z.; Shah, A.; Alasaarela, T.; Chekurov, N.; Savin, H.; Tittonen, I. Silicon dioxide mask by plasma enhanced atomic layer deposition in focused ion beam lithography. Nanotechnology, 2017, 28(8), 085303
[http://dx.doi.org/10.1088/1361-6528/aa5650] [PMID: 28045005]
[42]
Wang, X.; Pang, Z.; Tong, H.; Wu, X.; Bai, X.; Yang, H.; Qi, Y. Theoretical investigation of subwavelength structure fabrication based on multi-exposure surface plasmon interference lithography. Results Phys., 2019, 12, 732-737.
[http://dx.doi.org/10.1016/j.rinp.2018.12.029]
[43]
Jenni, L.V.; Kumar, L.; Hierold, C. Hybrid lithography based fabrication of 3D patterns by deep reactive ion etching. Microelectron. Eng., 2019, 209, 10-15.
[http://dx.doi.org/10.1016/j.mee.2019.02.009]
[44]
Xia, D.; McVey, S.; Huynh, C.; Kuehn, W. Defect localization and nanofabrication for conductive structures with voltage contrast in helium ion microscopy. ACS Appl. Mater. Interfaces, 2019, 11(5), 5509-5516.
[http://dx.doi.org/10.1021/acsami.8b18083] [PMID: 30644713]
[45]
Wu, Q.; Xia, H.; Jia, H.; Wang, H.; Jiang, C.; Wang, L.; Zhao, J.; Tai, R.; Xiao, S.; Zhang, D.; Yang, S.; Jiang, J. Fast and large-area fabrication of plasmonic reflection color filters by achromatic Talbot lithography. Opt. Lett., 2019, 44(4), 1031-1034.
[http://dx.doi.org/10.1364/OL.44.001031] [PMID: 30768048]
[46]
Santoro, F.; Zhao, W.; Joubert, L.M.; Duan, L.; Schnitker, J.; van de Burgt, Y.; Lou, H.Y.; Liu, B.; Salleo, A.; Cui, L.; Cui, Y.; Cui, B. Revealing the cell–material interface with nanometer resolution by focused ion beam/scanning electron microscopy. ACS Nano, 2017, 11(8), 8320-8328.
[http://dx.doi.org/10.1021/acsnano.7b03494] [PMID: 28682058]
[47]
Sharma, A.; Suma, B.N.; Bhat, K.N.; Naik, A.K. Gallium-doped piezoresistive sensor with optimized focused ion beam implantation. J. Microelectromech. Syst., 2017, 26, 127-134.
[http://dx.doi.org/10.1109/JMEMS.2016.2620801]
[48]
Berckmans, G.; Messagie, M.; Smekens, J.; Omar, N.; Vanhaverbeke, L.; van Mierlo, J. Cost projection of state of the art lithium-ion batteries for electric vehicles up to 2030. Energies, 2017, 10, 1314.
[http://dx.doi.org/10.3390/en10091314]
[49]
Nilsen, M.; Port, F.; Roos, M.; Gottschalk, K.E.; Strehle, S. Facile modification of freestanding silicon nitride microcantilever beams by dry film photoresist lithography. J. Micromech. Microeng., 2019, 29, 025014
[http://dx.doi.org/10.1088/1361-6439/aaf7e3]
[50]
Jiang, Y.; Luo, B.; Cheng, X. Enhanced thermal stability of thermoplastic polymer nanostructures for nanoimprint lithography. Materials (Basel), 2019, 12(3), E545
[http://dx.doi.org/10.3390/ma12030545] [PMID: 30759757]
[51]
Silva, A.S.; Hierro-Rodriguez, A.; Bunyaev, S.A.; Kakazei, G.N.; Dobrovolskiy, O.V.; Redondo, C.; Navas, D. Magnetic properties of permalloy antidot array fabricated by interference lithography. AIP Adv., 2019, 9, 035136
[http://dx.doi.org/10.1063/1.5080111]
[52]
Panda, K.; Kim, J.E.; Park, J.Y. Nitrogen ion implanted ultrananocrystalline diamond films: A better electrostatic charge storage medium. Carbon, 2019, 141, 123-133.
[http://dx.doi.org/10.1016/j.carbon.2018.09.052]
[53]
Nesse, T.; Simonsen, I.; Holst, B. Nanometer-resolution mask lithography with matter waves: Near-field binary holography. Phys. Rev. Appl., 2019, 11, 024009
[http://dx.doi.org/10.1103/PhysRevApplied.11.024009]
[54]
Pinc, J.; Dendisová, M.; Kolářová, K.; Gedeon, O.; Švecová, M.; Hradil, D.; Hradilová, J.; Bartůněk, V. Preparation of surfaces of composite samples for tip based micro-analyses using ion beam milling. Micron, 2019, 116, 1-4.
[http://dx.doi.org/10.1016/j.micron.2018.09.003] [PMID: 30219738]
[55]
Hauwiller, M.R.; Ondry, J.C.; Alivisatos, A.P. Using graphene liquid cell transmission electron microscopy to study in situ nanocrystal etching. J. Vis. Exp., 2018, 135(135), e57665
[http://dx.doi.org/10.3791/57665] [PMID: 29863683]
[56]
Lockhart, J.N.; Hmelo, A.B.; Harth, E. Electron beam lithography of poly (glycidol) nanogels for immobilization of a three-enzyme cascade. Polym. Chem., 2018, 9, 637-645.
[http://dx.doi.org/10.1039/C7PY01904A]
[57]
Keskinbora, K.; Sanli, U.T.; Baluktsian, M.; Grévent, C.; Weigand, M.; Schütz, G. High-throughput synthesis of modified Fresnel zone plate arrays via ion beam lithography. Beilstein J. Nanotechnol., 2018, 9, 2049-2056.
[http://dx.doi.org/10.3762/bjnano.9.194] [PMID: 30116695]
[58]
López-Suárez, M.; Torres, F.; Mestres, N.; Rurali, R.; Abadal, G. Fabrication of highly regular suspended graphene nanoribbons through a one-step electron beam lithography process. Microelectron. Eng., 2014, 129, 81-85.
[http://dx.doi.org/10.1016/j.mee.2014.07.022]
[59]
Kang, S.; Movva, H.C.; Sanne, A.; Rai, A.; Banerjee, S.K. Influence of electron-beam lithography exposure current level on the transport characteristics of graphene field effect transistors. J. Appl. Phys., 2016, 119, 124502
[http://dx.doi.org/10.1063/1.4944599]
[60]
Dykas, M.M.; Poddar, K.; Yoong, S.L.; Viswanathan, V.; Mathew, S.; Patra, A.; Saha, S.; Pastorin, G.; Venkatesan, T. Enhancing image contrast of carbon nanotubes on cellular background using helium ion microscope by varying helium ion fluence. J. Microsc., 2018, 269(1), 14-22.
[http://dx.doi.org/10.1111/jmi.12604] [PMID: 28703381]
[61]
Byrne, J.M.; Schmidt, M.; Gauger, T.; Bryce, C.; Kappler, A. Imaging organic–mineral aggregates formed by Fe (II)-oxidizing bacteria using helium ion microscopy. Environ. Sci. Technol. Lett., 2018, 5, 209-213.
[http://dx.doi.org/10.1021/acs.estlett.8b00077]
[62]
Xia, D.; Huynh, C.; McVey, S.; Kobler, A.; Stern, L.; Yuan, Z.; Ling, X.S. Rapid fabrication of solid-state nanopores with high reproducibility over a large area using a helium ion microscope. Nanoscale, 2018, 10(11), 5198-5204.
[http://dx.doi.org/10.1039/C7NR08406D] [PMID: 29493685]
[63]
Stehling, N.; Masters, R.; Zhou, Y.; O’Connell, R.; Holland, C.; Zhang, H.; Rodenburg, C. New perspectives on nano-engineering by secondary electron spectroscopy in the helium ion and scanning electron microscope. MRS Commun., 2018, 8(2), 226-240.
[http://dx.doi.org/10.1557/mrc.2018.75]
[64]
Abbas, A.N.; Liu, G.; Liu, B.; Zhang, L.; Liu, H.; Ohlberg, D.; Wu, W.; Zhou, C. Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography. ACS Nano, 2014, 8(2), 1538-1546.
[http://dx.doi.org/10.1021/nn405759v] [PMID: 24467172]
[65]
Lemme, M.C.; Bell, D.C.; Williams, J.R.; Stern, L.A.; Baugher, B.W.; Jarillo-Herrero, P.; Marcus, C.M. Etching of graphene devices with a helium ion beam. ACS Nano, 2009, 3(9), 2674-2676.
[http://dx.doi.org/10.1021/nn900744z] [PMID: 19769403]
[66]
Acosta, D.; López-Suárez, A.; Magaña, C.; Hernández, F. Structural, electrical and optical properties of ZnO thin films produced by chemical spray using ethanol in different amounts of the sprayed solution. Thin Solid Films, 2018, 653, 309-316.
[http://dx.doi.org/10.1016/j.tsf.2018.03.031]
[67]
López-Suárez, A.; Acosta, D.; Magaña, C.; Hernández, F. Effect of substrate temperature and sprayed methanol on nanostructure, optical and electrical properties of ZnO films. Adv. Sci., 2018, 10, 105-113.
[http://dx.doi.org/10.1166/asem.2018.2181]
[68]
Khomchenko, V.; Mazin, M.; Sopinskyy, M.; Lytvyn, O.; Dan’ko, V.; Piryatinskii, Y.; Demydiuk, P. Preparation, structural and luminescent properties of nanocrystalline ZnO films doped Ag by close space sublimation method. Appl. Nanosci., 2018, 8, 1-8.
[http://dx.doi.org/10.1007/s13204-018-0796-7]
[69]
Wanotayan, T.; Panpranot, J.; Qin, J.; Boonyongmaneerat, Y. Microstructures and photocatalytic properties of ZnO films fabricated by Zn electrodeposition and heat treatment. Mater. Sci. Semicond. Process., 2018, 74, 232-237.
[http://dx.doi.org/10.1016/j.mssp.2017.10.025]
[70]
Jarjour, A.; Cox, J.W.; Ruane, W.T. Von; Wenckstern, H.; Grundmann, M.; Brillson, L.J. Single metal ohmic and rectifying contacts to ZnO nanowires. Ann. Phys., 2018, 530, 1700335
[http://dx.doi.org/10.1002/andp.201700335]
[71]
Dylewicz, R.; Lis, S.; De La Rue, R.M.; Rahman, F. Charge dissipation layer based on conductive polymer for electron-beam patterning of bulk zinc oxide. Electron. Lett., 2010, 46, 1025-1027.
[http://dx.doi.org/10.1049/el.2010.1282]
[72]
Santiago, K.; Mundle, R.; Samantaray, C.B.; Bahoura, M.; Pradhan, A.K. Nanopatterning of atomic layer deposited Al: ZnO films using electron beam lithography for waveguide applications in the NIR region. Opt. Mater. Express, 2012, 2, 1743-1750.
[http://dx.doi.org/10.1364/OME.2.001743]
[73]
Pauporté, T.; Lupan, O.; Postica, V.; Hoppe, M.; Chow, L.; Adelung, R. Al-doped ZnO nanowires by electrochemical deposition for selective VOC nanosensor and nanophotodetector. Phys. Status Solidi., A Appl. Mater. Sci., 2018, 215, 1700824
[http://dx.doi.org/10.1002/pssa.201700824]
[74]
Sun, K.; Zeimpekis, I.; Hu, C.; Ditshego, N.M.J.; Thomas, O.; de Planque, M.R.; Ashburn, P. Low-cost top-down zinc oxide nanowire sensors through a highly transferable ion beam etching for healthcare applications. Microelectron. Eng., 2016, 153, 96-100.
[http://dx.doi.org/10.1016/j.mee.2016.02.016]
[75]
Yoon, B.; Yadav, D.; Raj, R.; Sortino, E.; Ghose, S.; Sarin, P.; Shoemaker, D. Measurement of O and Ti atom displacements in TiO2 during flash sintering experiments. J. Am. Ceram. Soc., 2018, 101, 1811-1817.
[http://dx.doi.org/10.1111/jace.15375]
[76]
Vorontsov, A.V.; Kabachkov, E.N.; Balikhin, I.L.; Kurkin, E.N.; Troitskii, V.N.; Smirniotis, P.G. Correlation of surface area with photocatalytic activity of TiO2. J. Adv. Oxid. Technol., 2018, 21, 127-137.
[http://dx.doi.org/10.26802/jaots.2017.0063]
[77]
Petala, A.; Panagiotopoulou, P. Methanation of CO2 over alkali-promoted Ru/TiO2 catalysts: I. Effect of alkali additives on catalytic activity and selectivity. Appl. Catal. B, 2018, 224, 919-927.
[http://dx.doi.org/10.1016/j.apcatb.2017.11.048]
[78]
Krbal, M.; Sopha, H.; Pohl, D.; Benes, L.; Damm, C.; Rellinghaus, B.; Macak, J.M. Self-organized TiO2 nanotubes grown on Ti substrates with different crystallographic preferential orientations: Local structure of TiO2 nanotubes vs. photo-electrochemical response. Electrochim. Acta, 2018, 264, 393-399.
[http://dx.doi.org/10.1016/j.electacta.2018.01.113]
[79]
Ye, Y.; Feng, Y.; Bruning, H.; Yntema, D.; Rijnaarts, H.H.M. Photocatalytic degradation of metoprolol by TiO2 nanotube arrays and UV-LED: Effects of catalyst properties, operational parameters, commonly present water constituents, and photo-induced reactive species. Appl. Catal. B, 2018, 220, 171-181.
[http://dx.doi.org/10.1016/j.apcatb.2017.08.040]
[80]
Khorasaninejad, M.; Chen, W.T.; Devlin, R.C.; Oh, J.; Zhu, A.Y.; Capasso, F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science, 2016, 352(6290), 1190-1194.
[http://dx.doi.org/10.1126/science.aaf6644] [PMID: 27257251]
[81]
Dallorto, S.; Staaks, D.; Schwartzberg, A.; Yang, X.; Lee, K.Y.; Rangelow, I.W.; Cabrini, S.; Olynick, D.L. Atomic layer deposition for spacer defined double patterning of sub-10 nm titanium dioxide features. Nanotechnology, 2018, 29(40), 405302
[http://dx.doi.org/10.1088/1361-6528/aad393] [PMID: 30010091]
[82]
Guler, U.; Zemlyanov, D.; Kim, J.; Wang, Z.; Chandrasekar, R.; Meng, X.; Boltasseva, A. Plasmonic titanium nitride nanostructures via nitridation of nanopatterned titanium dioxide. Adv. Opt. Mater., 2017, 5, 1600717
[http://dx.doi.org/10.1002/adom.201600717]
[83]
Khorasaninejad, M.; Chen, W.T.; Zhu, A.Y.; Oh, J.; Devlin, R.C.; Roques-Carmes, C.; Capasso, F. Visible wavelength planar metalenses based on titanium dioxide. IEEE J. Sel. Top. Quantum Electron., 2017, 23, 4700216
[http://dx.doi.org/10.1109/JSTQE.2016.2616447]
[84]
Vega, V.; Montero-Moreno, J.M.; García, J.; Prida, V.M.; Rahimi, W.; Waleczek, M.; Nielsch, K. Long-range hexagonal arrangement of TiO2 nanotubes by soft lithography-guided anodization. Electrochim. Acta, 2016, 203, 51-58.
[http://dx.doi.org/10.1016/j.electacta.2016.04.016]
[85]
Kondo, T.; Nagao, S.; Yanagishita, T.; Nguyen, N.T.; Lee, K.; Schmuki, P.; Masuda, H. Ideally ordered porous TiO2 prepared by anodization of pretextured Ti by nanoimprinting process. Electrochem. Commun., 2015, 50, 73-76.
[http://dx.doi.org/10.1016/j.elecom.2014.11.013]
[86]
Wollschläger, N.; Palasse, L.; Häusler, I.; Dirscherl, K.; Oswald, F.; Narbey, S.; Hodoroaba, V.D. Characterization of the inner structure of porous TiO2 nanoparticle films in dye sensitive solar cells (DSSC) by focused ion beam (Focused Ion Beam Lithography) tomography and transmission Kikuchi diffraction (TKD) in the scanning electron microscope (scanning electron microscopy). Mater. Charact., 2017, 131, 39-48.
[http://dx.doi.org/10.1016/j.matchar.2017.06.030]
[87]
Lampert, F.; Christiansen, A.B.; Din, R.U.; Gonzalez-Garcia, Y.; Møller, P. Corrosion resistance of AISI 316L coated with an air-cured hydrogen silsesquioxane based spin-on-glass enamel in chloride environment. Corros. Sci., 2017, 127, 110-119.
[http://dx.doi.org/10.1016/j.corsci.2017.08.024]
[88]
Camino, F.E.; Manfrinato, V.R.; Stein, A.; Zhang, L.; Lu, M.; Stach, E.A.; Black, C.T. Single-digit nanometer electron-beam lithography with an aberration-corrected scanning transmission electron microscope. J. Vis. Exp., 2018, 139(139), e58272
[http://dx.doi.org/10.3791/58272] [PMID: 30272655]
[89]
Desai, V.; Mellish, M.; Bennett, S.; Cady, N.C. Process development for high resolution hydrogen silsesquioxane patterning using a commercial scanner for extreme ultraviolet lithography. J. Vac. Sci. Technol. B, 2017, 35, 021603
[http://dx.doi.org/10.1116/1.4975797]
[90]
Mishra, P.; Bhat, B.R. Synthesis and characterization of graphene quantum dots and their size reduction using swift heavy ion beam. Radiat. Eff. Defects Solids, 2018, 173, 232-238.
[http://dx.doi.org/10.1080/10420150.2018.1424850]
[91]
Dutta, S.; Som, S.; Kunti, A.K.; Kumar, V.; Sharma, S.K.; Swart, H.C.; Visser, H.G. Structural and luminescence responses of CaMoO4 nano phosphors synthesized by hydrothermal route to swift heavy ion irradiation: Elemental and spectral stability. Acta Mater., 2017, 124, 109-119.
[http://dx.doi.org/10.1016/j.actamat.2016.11.002]
[92]
Hamedani, A.H.; Lee, S.W.; Al-Sammarraie, A.; Hesabi, Z.R.; Bhatti, A.; Alamgir, F.M.; Khaleel, M.A. Synthesis and growth mechanism of thin-film TiO2 nanotube arrays on focused-ion-beam micropatterned 3D isolated regions of titanium on silicon. ACS Appl. Mater. Interfaces, 2013, 5, 9026-9033.
[93]
Perez-Giron, J.V.; Hirtz, M.; McAtamney, C.; Bell, A.P.; Mas, J.A.; Jaafar, M.; Sanz, R. Selective binding of oligonucleotide on TiO2 surfaces modified by swift heavy ion beam lithography. Nucl. Instrum. Methods Phys. Res. B, 2014, 339, 67-74.
[http://dx.doi.org/10.1016/j.nimb.2014.02.134]
[94]
Sanz, R.; Jaafar, M.; Hernández-Vélez, M.; Asenjo, A.; Vázquez, M.; Jensen, J. Patterning of rutile TiO2 surface by ion beam lithography through full-solid masks. Nanotechnology, 2010, 21(23), 235301
[http://dx.doi.org/10.1088/0957-4484/21/23/235301] [PMID: 20463385]
[95]
Huang, J.; Lee, M.; Lucero, A.; Cheng, L.; Kim, J. Area-selective atomic layer deposition of TiO2 nanolines with electron-beam lithography. J. Phys. Chem. C, 2014, 118, 23306-23312.
[http://dx.doi.org/10.1021/jp5037662]
[96]
Tian, W.C.; Ho, Y.H.; Chen, C.H.; Kuo, C.Y. Sensing performance of precisely ordered TiO2 nanowire gas sensors fabricated by electron-beam lithography. Sensors (Basel), 2013, 13(1), 865-874.
[http://dx.doi.org/10.3390/s130100865] [PMID: 23344381]
[97]
Penley, C.; Walker, M.; Wilson, M.; Billingsley, D.; Raviswaran, A.; Phillips, S. Advanced quantitative analysis of epitaxial SiGe composition on production wafer for logic devices. Surf. Interface Anal., 2018, 50, 90-95.
[http://dx.doi.org/10.1002/sia.6340]
[98]
Hodoroaba, V.D.; Kim, K.J. Measurement of elemental composition of FeNi and SiGe thin films by electron probe microanalysis with stratagem software. Microsc. Microanal., 2018, 24, 758-759.
[http://dx.doi.org/10.1017/S1431927618004282]
[99]
Hamdoh, A.; Kaneko, T.; Isomura, M. Formation of crystalline silicon-germanium thin films on silicon substrates by solid phase crystallization. Thin Solid Films, 2018, 645, 203-208.
[http://dx.doi.org/10.1016/j.tsf.2017.10.002]
[100]
Isomura, M.; Yajima, M.; Nakamura, I. Crystallization of silicon–germanium by aluminum-induced layer exchange. Jpn. J. Appl. Phys., 2018, 57, 025503
[http://dx.doi.org/10.7567/JJAP.57.025503]
[101]
Shklyaev, A.A.; Volodin, V.A.; Stoffel, M.; Rinnert, H.; Vergnat, M. Raman and photoluminescence spectroscopy of SiGe layer evolution on Si (100) induced by dewetting. J. Appl. Phys., 2018, 123, 015304
[http://dx.doi.org/10.1063/1.5009720]
[102]
Zhigunov, D.M.; Evlyukhin, A.B.; Shalin, A.S.; Zywietz, U.; Chichkov, B.N. Femtosecond laser printing of single Ge and SiGe nanoparticles with electric and magnetic optical resonances. ACS Photonics, 2018, 5, 977-983.
[http://dx.doi.org/10.1021/acsphotonics.7b01275]
[103]
Leonhardt, A.; dos Santos, P.M.V.; Diniz, J.A.; Manera, L.T.; Lima, L.P.B. Ga+ focused ion beam lithography as a viable alternative for multiple fin field effect transistor prototyping. J. Vac. Sci. Technol. B, 2016, 34, 06KA03
[http://dx.doi.org/10.1116/1.4963879]
[104]
Smagina, Z.V.; Zinovyev, V.A.; Rudin, S.A.; Novikov, P.L.; Rodyakina, E.E.; Dvurechenskii, A.V. Nucleation sites of Ge nanoislands grown on pit-patterned Si substrate prepared by electron-beam lithography. J. Appl. Phys., 2018, 123, 165302
[http://dx.doi.org/10.1063/1.5009154]
[105]
Gangnaik, A.S.; Georgiev, Y.M.; Collins, G.; Holmes, J.D. Novel germanium surface modification for sub-10 nm patterning with electron beam lithography and hydrogen silsesquioxane resist. J. Vac. Sci. Technol. B, 2016, 34, 041603
[http://dx.doi.org/10.1116/1.4948916]
[106]
Chee, S.W.; Kammler, M.; Graham, J.; Gignac, L.; Reuter, M.C.; Hull, R.; Ross, F.M. Directed self-asscanning electron microscopybly of Ge quantum dots using focused Si+2 ion beam patterning. Sci. Rep., 2018, 8, 9361.
[http://dx.doi.org/10.1038/s41598-018-27512-z] [PMID: 29921894]