[1]
Perez, T.; De Rose, C.A.F. Non-volatile memory: Emerging technologies and their impacts on memory systems. Technical Report; Pontifical Catholic University of Rio Grande do Sul, 2015.
[5]
Liaw, C.; Kund, M.; Schmitt-Landsiedel, D.; Ruge, I. The conductive bridging random access memory (CBRAM): A non-volatile multi- level memory technology. Proceedings of the 37th European Solid-State Device Research Conference, Munich, GermanySeptember 11-13, 2007
[6]
Kozicki, M.N.; Barnaby, H.J. Conductive bridging random access memory — materials, devices and applications. Semicond. Sci. Technol., 2016, 31(11), 54.
[8]
Erokhin, V. Organic memristors: Basic principles. Proceedings of 2010 IEEE International Symposium on Circuits and Systems, Paris, France30 May-2 June 2010
[12]
Wang, X.; Chen, Y.; Xi, H.; Li, H.; Dimitrov, D. Spintronic memristor through spin-torque-induced magnetization. Motion, 2009, 30(3), 294-297.
[14]
Babacan, Y.; Kaçar, F. Memristor emulator with spike-timing-dependent-plasticity. AEUE - Int. J. Electron. Commun., 2017, 73, 16-22.
[18]
Naous, R.; Alshedivat, M.; Neftci, E.; Cauwenberghs, G.; Salama, K.N.; Naous, R.; Alshedivat, M.; Neftci, E.; Cauwenberghs, G. Memristor-based neural networks. Synaptic vs. Neuronal Stochastic., 2016, 2017111304
[26]
Li, C.; Hu, M.; Li, Y.; Jiang, H.; Ge, N.; Montgomery, E.; Zhang, J.; Song, W.; Dávila, N.; Graves, C.E. Analogue signal and image processing with large memristor crossbars. Nat. Electron., 2017, 1, 52-59.
[33]
Sun, J.; Liu, Q.; Xie, H.; Wu, X.; Xu, F. In situ observation of nickel as an oxidizable electrode material for the solid-electrolyte-based resistive random access memory. Appl. Phys. Lett., 2013, 102(5)053502
[35]
H-S., Philip Wong B.; Raoux, S.; Kim, S.; Liang, J.; Reifenberg, J. P.; Rajendran, B.; Member, I.; Asheghi, M.; Goodson, K. E. Phase change memory. Proc. IEEE, 2010, 98(12), 2201-2227.
[40]
Kavehei, O.; Cho, K.; Lee, S.; Kim, S.J.; Al-Sarawi, S.; Abbott, D.; Eshraghian, K. Fabrication and modeling of Ag/TiO2/ITO memristor. Midwest Symposium on Circuits and Systems, Seoul, South Korea 7-10 Aug.2011.
[45]
Saraju, P. Mohanty. Memristor: From basics to deployment. IEEE Potentials, 2017, 32, 34-39.
[48]
Hu, Q.; Yu, Y.; Men, L.; Lei, F.; Zhang, H. Memristor-based chaotic circuit design on image en/decryption. Proceedings of the 31st Youth Academic Annual Conference of Chinese Association of Automation , Wuhan, China, 11-13 Nov.2016.
[50]
Iu, H.H.C.; Yu, D.S.; Fitch, A.L.; Sreeram, V.; Chen, H. Controlling chaos in a memristor based circuit using a twin-t notch filter. Circuits Syst. I Regul. Pap. IEEE Trans., 2011, 58(6), 1337-1344.
[52]
Lin, Z.; Wang, H. Image encryption based on chaos with pwl memristor in Chua’s circuit. Proceedings of the International Conference on Communications, Circuits and Systems , , Milpitas, CA, USA, 23-25 July2009.
[56]
Yu, Q.; Qin, Z.; Yu, J.; Mao, Y. Transmission characteristics study of memristors based op-amp circuits. Proceeding of the International Conference on Communications, Circuits and Systems , Milpitas, CA, USA, 23-25 July 2009.
[63]
Sampath, M.; Mane, P.S.; Ramesha, C.K. Hybrid CMOSmemristor based FPGA architecture. Int. Conf. VLSI Sys. Architect. Technol. Applicat., 2015, 2015, 1-6.
[67]
Chen, W.; Yang, X.; Wang, F. Memristor content addressable memory. Proceeding of the IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), Paris, France 8-10, July,2014.
[69]
Sklyar, R. Analytical treatment of the signal propagation in an EM Transistor/Memristor (EMTM). Nonlinear Dyn. Synchron., 2009, 2009, 116-120.
[78]
Wainstein, N.; Kvatinsky, S. A lumped RF model for nanoscale memristive devices and non-volatile single-pole double-throw switches. IEEE Trans. NanoTechnol., 2018, 17(5), 873-883.
[79]
Hisham, A.; Pickett, M.D. SPICE modeling of memristors. Proceeding of the IEEE International Symposium of Circuits and Systems (ISCAS), 15-18 May, , 2011.
[80]
Elgabra, H.; Farhat, I.A.H.; Al Hosani, A.S.; Homouz, D.; Mohammad, B. Mathematical modeling of a memristor device. Int. Conf. Innovat. Inform. Technol.,2012,, 2012, pp. 156-161.
[86]
Kvatinsky, S.; Talisveyberg, K.; Fliter, D.; Friedman, E.G.; Kolodny, A.; Weiser, U.C.Verilog-A for Memristor Models, 2011. Available from: https://asic2.group/wp-content/uploads/2017/06/VerilogA-models-technical-report.pdf
[88]
Zaplatilek, K. Memristor modeling in MATLAB & simulink. Proc. European Comput. Conf.2011,, 2011, pp. 62-67.
[89]
Soman, P.; Sonkusare, R. Memristor modeling using finite element and. Int. J. Ind. Electron. Electr. Eng., 2015, 3(3), 9-13.
[92]
Biolek, Z.; Biolek, D.; Biolková, V. SPICE model of memristor with nonlinear dopant drift. Wuxiandian Gongcheng, 2009, 18(2), 210-214.
[95]
Yu, J.; Mu, X.; Xi, X.; Wang, S. A memristor model with piecewise window function. Wuxiandian Gongcheng, 2013, 22(4), 969-974.
[101]
Halawani, Y.; Member, S.; Mohammad, B.; Member, S.; Al-qutayri, M.; Member, S.; Al-sarawi, S.F. Memristor-based hardware accelerator for image compression. IEEE Trans. Very Large Scale Integr. (VLSI). Syst., 2018, 99, 1-10.
[107]
Sahin, M.E.; Guler, H. The design of memristor based high pass filter circuit. IEEE Int. Conf. Electronics Circuits Syst 2018,, 2018, pp. 494-497.
[110]
Ali, S.; Hassan, A.; Hassan, G.; Bae, J.; Lee, C.H. Memristor-capacitor passive filters to tune both cut-off frequency and bandwidth. Optical Fiber Sensors Conf.2017,, 2017, pp. 1-4.
[111]
Yener, Ş.Ç.; Mutlu, R.; Kuntman, H.H. Examination of a memristor-based low-pass filter topology. Int. Conf. Electrical Electron. Eng.2017,, 2017, pp. 1221-1225.
[117]
Kvatinsky, S.; Satat, G.; Wald, N.; Friedman, E.G.; Kolodny, A.; Weiser, U.C. Memristor-based material implication (IMPLY). Logic: Design principles and methodologies. IEEE Trans. Very Large Scale Integr. Syst., 2014, 22(10), 2054-2066.
[118]
Kvatinsky, S.; Wald, N.; Satat, G.; Kolodny, A.; Weiser, U.C.; Friedman, E.G. MRL - Memristor ratioed logic. Int. Workshop Cell. Nanoscale Networks Applicat.2012,, 2012, pp. 1-6.
[122]
Lee, S.R.; Kim, Y.B.; Chang, M.; Kim, K.M.; Lee, C.B.; Hur, J.H.; Park, G.S.; Lee, D.; Lee, M.J.; Kim, C.J. Multi-level switching of triple-layered TaOxRRAM with excellent reliability for storage class memory. Dig. Tech. Pap. Symp. VLSI Technol., 2011, 2012(52), 71-72.