New Targeted Treatments for Fragile X Syndrome

Page: [251 - 258] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Fragile X Syndrome (FXS) is the most common cause of inherited intellectual disability with prevalence rates estimated to be 1:5,000 in males and 1:8,000 in females. The increase of >200 Cytosine Guanine Guanine (CGG) repeats in the 5’ untranslated region of the Fragile X Mental Retardation 1 (FMR1) gene results in transcriptional silencing on the FMR1 gene with a subsequent reduction or absence of fragile X mental retardation protein (FMRP), an RNA binding protein involved in the maturation and elimination of synapses. In addition to intellectual disability, common features of FXS are behavioral problems, autism, language deficits and atypical physical features. There are still no currently approved curative therapies for FXS, and clinical management continues to focus on symptomatic treatment of comorbid behaviors and psychiatric problems. Here we discuss several treatments that target the neurobiological pathway abnormal in FXS. These medications are clinically available at present and the data suggest that these medications can be helpful for those with FXS.

Keywords: Fragile X syndrome, targeted treatment, sertraline, metformin, cannabidiol, acamprosate, lovastatin, minocycline.

[1]
Tassone F, Iong KP, Tong TH, et al. FMR1 CGG allele size and prevalence ascertained through newborn screening in the United States. Genome Med 2012; 4(12): 100.
[http://dx.doi.org/10.1186/gm401] [PMID: 23259642]
[2]
O’Donnell WT, Warren ST. A decade of molecular studies of fragile X syndrome. Annu Rev Neurosci 2002; 25: 315-38.
[http://dx.doi.org/10.1146/annurev.neuro.25.112701.142909] [PMID: 12052912]
[3]
Hagerman RJ, Berry-Kravis E, Hazlett HC, et al. Fragile X syndrome. Nat Rev Dis Primers 2017; 3: 17065.
[http://dx.doi.org/10.1038/nrdp.2017.65] [PMID: 28960184]
[4]
Erickson CA, Davenport MH, Schaefer TL, et al. Fragile X targeted pharmacotherapy: lessons learned and future directions. J Neurodev Disord 2017; 9: 7.
[http://dx.doi.org/10.1186/s11689-017-9186-9] [PMID: 28616096]
[5]
Healy A, Rush R, Ocain T. Fragile X syndrome: an update on developing treatment modalities. ACS Chem Neurosci 2011; 2(8): 402-10.
[http://dx.doi.org/10.1021/cn200019z] [PMID: 22860169]
[6]
Hagerman RJ, Berry-Kravis E, Kaufmann WE, et al. Advances in the treatment of fragile X syndrome. Pediatrics 2009; 123(1): 378-90.
[http://dx.doi.org/10.1542/peds.2008-0317] [PMID: 19117905]
[7]
Schaefer TL, Davenport MH, Grainger LM, et al. Acamprosate in a mouse model of fragile X syndrome: modulation of spontaneous cortical activity, ERK1/2 activation, locomotor behavior, and anxiety. J Neurodev Disord 2017; 9: 6.
[http://dx.doi.org/10.1186/s11689-017-9184-y] [PMID: 28616095]
[8]
Berry-Kravis EM, Lindemann L, Jønch AE, et al. Drug development for neurodevelopmental disorders: lessons learned from fragile X syndrome. Nat Rev Drug Discov 2018; 17(4): 280-99.
[http://dx.doi.org/10.1038/nrd.2017.221] [PMID: 29217836]
[9]
Lee AW, Ventola P, Budimirovic D, Berry-Kravis E, Visootsak J. Clinical development of targeted fragile x syndrome treatments: An industry perspective. Brain Sci 2018; 8(12)E214
[http://dx.doi.org/10.3390/brainsci8120214] [PMID: 30563047]
[10]
Berry-Kravis E, Des Portes V, Hagerman R, et al. Mavoglurant in fragile X syndrome: Results of two randomized, double-blind, placebo-controlled trials. Sci Transl Med 2016; 8(321)321ra5
[http://dx.doi.org/10.1126/scitranslmed.aab4109] [PMID: 26764156]
[11]
Youssef EA, Berry-Kravis E, Czech C, et al. Effect of the mGluR5-NAM basimglurant on behavior in adolescents and adults with fragile X syndrome in a randomized, double-blind, placebo-controlled Trial: FragXis phase 2 results. Neuropsychopharmacology 2018; 43(3): 503-12.
[http://dx.doi.org/10.1038/npp.2017.177] [PMID: 28816242]
[12]
Chugani DC. Role of altered brain serotonin mechanisms in autism. Mol Psychiatry 2002; 7(Suppl. 2): S16-7.
[http://dx.doi.org/10.1038/sj.mp.4001167] [PMID: 12142936]
[13]
Hanson AC, Hagerman RJ. Serotonin dysregulation in Fragile X Syndrome: implications for treatment. Intractable Rare Dis Res 2014; 3(4): 110-7.
[http://dx.doi.org/10.5582/irdr.2014.01027] [PMID: 25606361]
[14]
Boccuto L, Chen CF, Pittman AR, et al. Decreased tryptophan metabolism in patients with autism spectrum disorders. Mol Autism 2013; 4(1): 16.
[http://dx.doi.org/10.1186/2040-2392-4-16] [PMID: 23731516]
[15]
Winarni TI, Schneider A, Borodyanskara M, Hagerman RJ. Early intervention combined with targeted treatment promotes cognitive and behavioral improvements in young children with fragile x syndrome. Case Rep Genet 2012; 2012280813
[http://dx.doi.org/10.1155/2012/280813] [PMID: 23074686]
[16]
Greiss Hess L, Fitzpatrick SE, Nguyen DV, et al. A randomized, double-blind, placebo-controlled trial of low-dose sertraline in young children with fragile X syndrome. J Dev Behav Pediatr 2016; 37(8): 619-28.
[http://dx.doi.org/10.1097/DBP.0000000000000334] [PMID: 27560971]
[17]
Yoo K, Burris J, Gaul K, Hagerman RJ, Rivera SM. Low-dose sertraline improves receptive language in children with fragile X syndrome when eye tracking methodology is used to measure treatment outcome. J Psychol Clin Psychiatry 2017; 7(6): 00465.
[18]
Romero R, Erez O, Hüttemann M, et al. Metformin, the aspirin of the 21st century: its role in gestational diabetes mellitus, prevention of preeclampsia and cancer, and the promotion of longevity. Am J Obstet Gynecol 2017; 217(3): 282-302.
[http://dx.doi.org/10.1016/j.ajog.2017.06.003] [PMID: 28619690]
[19]
Bailey CJ. Metformin: historical overview. Diabetologia 2017; 60(9): 1566-76.
[http://dx.doi.org/10.1007/s00125-017-4318-z] [PMID: 28776081]
[20]
Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia 2017; 60(9): 1577-85.
[http://dx.doi.org/10.1007/s00125-017-4342-z] [PMID: 28776086]
[21]
Song R. Mechanism of metformin: A tale of two sites. Diabetes Care 2016; 39(2): 187-9.
[http://dx.doi.org/10.2337/dci15-0013] [PMID: 26798149]
[22]
Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B. Metformin: from mechanisms of action to therapies. Cell Metab 2014; 20(6): 953-66.
[http://dx.doi.org/10.1016/j.cmet.2014.09.018] [PMID: 25456737]
[23]
Graham GG, Punt J, Arora M, et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet 2011; 50(2): 81-98.
[http://dx.doi.org/10.2165/11534750-000000000-00000] [PMID: 21241070]
[24]
Łabuzek K, Suchy D, Gabryel B, Bielecka A, Liber S, Okopień B. Quantification of metformin by the HPLC method in brain regions, cerebrospinal fluid and plasma of rats treated with lipopolysaccharide. Pharmacol Rep 2010; 62(5): 956-65.
[http://dx.doi.org/10.1016/S1734-1140(10)70357-1] [PMID: 21098880]
[25]
Powers A, D’Alessio D. Endocrine Pancreas and Pharmacotherapy of diabetes mellitus and hypoglycemia. In: Hilal-Dandan R, Knollmann B, Eds. Goodman and Gilman’s the pharmacological basis of therapeutics.. New York: McGraw-Hill Medical 2018; pp. 863-87.
[26]
Nolte Kennedy M, Masharanu U. Pancreatic hormones and antidiabetic drugs. In: Katzung B, Ed. Basic and clinical pharmacology.. USA: McGraw-Hill Education 2018; pp. 361-71.
[27]
Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond) 2012; 122(6): 253-70.
[http://dx.doi.org/10.1042/CS20110386] [PMID: 22117616]
[28]
Gantois I, Popic J, Khoutorsky A, Sonenberg N. Metformin for treatment of fragile X syndrome and other neurological disorders. Annu Rev Med 2019; 70: 167-81.
[http://dx.doi.org/10.1146/annurev-med-081117-041238] [PMID: 30365357]
[29]
Gantois I, Khoutorsky A, Popic J, et al. Metformin ameliorates core deficits in a mouse model of fragile X syndrome. Nat Med 2017; 23(6): 674-7.
[http://dx.doi.org/10.1038/nm.4335] [PMID: 28504725]
[30]
Dziembowska M, Pretto DI, Janusz A, et al. High MMP-9 activity levels in fragile X syndrome are lowered by minocycline. Am J Med Genet A 2013; 161A(8): 1897-903.
[http://dx.doi.org/10.1002/ajmg.a.36023] [PMID: 23824974]
[31]
Leigh MJ, Nguyen DV, Mu Y, et al. A randomized double-blind, placebo-controlled trial of minocycline in children and adolescents with fragile x syndrome. J Dev Behav Pediatr 2013; 34(3): 147-55.
[http://dx.doi.org/10.1097/DBP.0b013e318287cd17] [PMID: 23572165]
[32]
Sidhu H, Dansie LE, Hickmott PW, Ethell DW, Ethell IM. Genetic removal of matrix metalloproteinase 9 rescues the symptoms of fragile X syndrome in a mouse model. J Neurosci 2014; 34(30): 9867-79.
[http://dx.doi.org/10.1523/JNEUROSCI.1162-14.2014] [PMID: 25057190]
[33]
Gkogkas CG, Khoutorsky A, Cao R, et al. Pharmacogenetic inhibition of eIF4E-dependent Mmp9 mRNA translation reverses fragile X syndrome-like phenotypes. Cell Rep 2014; 9(5): 1742-55.
[http://dx.doi.org/10.1016/j.celrep.2014.10.064] [PMID: 25466251]
[34]
Monyak RE, Emerson D, Schoenfeld BP, et al. Insulin signaling misregulation underlies circadian and cognitive deficits in a Drosophila fragile X model. Mol Psychiatry 2017; 22(8): 1140-8.
[http://dx.doi.org/10.1038/mp.2016.51] [PMID: 27090306]
[35]
Dy ABC, Tassone F, Eldeeb M, Salcedo-Arellano MJ, Tartaglia N, Hagerman R. Metformin as targeted treatment in fragile X syndrome. Clin Genet 2018; 93(2): 216-22.
[http://dx.doi.org/10.1111/cge.13039] [PMID: 28436599]
[36]
Formukong EA, Evans AT, Evans FJ. Analgesic and antiinflammatory activity of constituents of Cannabis sativa L. Inflammation 1988; 12(4): 361-71.
[http://dx.doi.org/10.1007/BF00915771] [PMID: 3169967]
[37]
Costa B, Giagnoni G, Franke C, Trovato AE, Colleoni M. Vanilloid TRPV1 receptor mediates the antihyperalgesic effect of the nonpsychoactive cannabinoid, cannabidiol, in a rat model of acute inflammation. Br J Pharmacol 2004; 143(2): 247-50.
[http://dx.doi.org/10.1038/sj.bjp.0705920] [PMID: 15313881]
[38]
Costa B, Colleoni M, Conti S, et al. Repeated treatment with the synthetic cannabinoid WIN 55,212-2 reduces both hyperalgesia and production of pronociceptive mediators in a rat model of neuropathic pain. Br J Pharmacol 2004; 141(1): 4-8.
[http://dx.doi.org/10.1038/sj.bjp.0705587] [PMID: 14662732]
[39]
Hammell DC, Zhang LP, Ma F, et al. Transdermal cannabidiol reduces inflammation and pain-related behaviours in a rat model of arthritis. Eur J Pain 2016; 20(6): 936-48.
[http://dx.doi.org/10.1002/ejp.818] [PMID: 26517407]
[40]
Morgan CJ, Das RK, Joye A, Curran HV, Kamboj SK. Cannabidiol reduces cigarette consumption in tobacco smokers: preliminary findings. Addict Behav 2013; 38(9): 2433-6.
[http://dx.doi.org/10.1016/j.addbeh.2013.03.011] [PMID: 23685330]
[41]
Rapino C, Tortolani D, Scipioni L, Maccarrone M. Neuroprotection by (endo)cannabinoids in glaucoma and retinal neurodegenerative diseases. Curr Neuropharmacol 2018; 16(7): 959-70.
[http://dx.doi.org/10.2174/1570159X15666170724104305] [PMID: 28738764]
[42]
Valdeolivas S, Sagredo O, Delgado M, Pozo MA, Fernández-Ruiz J. Effects of a sativex-like combination of phytocannabinoids on disease progression in R6/2 mice, an experimental model of Huntington’s disease. Int J Mol Sci 2017; 18(4)E684
[http://dx.doi.org/10.3390/ijms18040684] [PMID: 28333097]
[43]
López-Sendón Moreno JL, García Caldentey J, Trigo Cubillo P, et al. A double-blind, randomized, cross-over, placebo-controlled, pilot trial with Sativex in Huntington’s disease. J Neurol 2016; 263(7): 1390-400.
[http://dx.doi.org/10.1007/s00415-016-8145-9] [PMID: 27159993]
[44]
Consroe P, Laguna J, Allender J, et al. Controlled clinical trial of cannabidiol in Huntington’s disease. Pharmacol Biochem Behav 1991; 40(3): 701-8.
[http://dx.doi.org/10.1016/0091-3057(91)90386-G] [PMID: 1839644]
[45]
Crippa JA, Guimarães FS, Campos AC, Zuardi AW. Translational investigation of the therapeutic potential of cannabidiol (CBD): Toward a new age. Front Immunol 2018; 9: 2009.
[http://dx.doi.org/10.3389/fimmu.2018.02009] [PMID: 30298064]
[46]
Crippa JA, Zuardi AW, Martín-Santos R, et al. Cannabis and anxiety: a critical review of the evidence. Hum Psychopharmacol 2009; 24(7): 515-23.
[http://dx.doi.org/10.1002/hup.1048] [PMID: 19693792]
[47]
Crippa JA, Zuardi AW, Hallak JE. Therapeutical use of the cannabinoids in psychiatry. Br J Psychiatry 2010; 32(Suppl. 1): S56-66.
[PMID: 20512271]
[48]
Crippa JA, Derenusson GN, Ferrari TB, et al. Neural basis of anxiolytic effects of cannabidiol (CBD) in generalized social anxiety disorder: a preliminary report. J Psychopharmacol (Oxford) 2011; 25(1): 121-30.
[http://dx.doi.org/10.1177/0269881110379283] [PMID: 20829306]
[49]
Bergamaschi MM, Queiroz RH, Chagas MH, et al. Cannabidiol reduces the anxiety induced by simulated public speaking in treatment-naïve social phobia patients. Neuropsychopharmacology 2011; 36(6): 1219-26.
[http://dx.doi.org/10.1038/npp.2011.6] [PMID: 21307846]
[50]
Zuardi AW, Rodrigues NP, Silva AL, et al. Inverted u-shaped dose-response curve of the anxiolytic effect of cannabidiol during public speaking in real life. Front Pharmacol 2017; 8: 259.
[http://dx.doi.org/10.3389/fphar.2017.00259] [PMID: 28553229]
[51]
Zuardi AW, Crippa JA, Hallak JE, Moreira FA, Guimarães FS. Cannabidiol, a Cannabis sativa constituent, as an antipsychotic drug. Braz J Med Biol Res 2006; 39(4): 421-9.
[http://dx.doi.org/10.1590/S0100-879X2006000400001] [PMID: 16612464]
[52]
Schubart CD, Sommer IE, van Gastel WA, Goetgebuer RL, Kahn RS, Boks MP. Cannabis with high cannabidiol content is associated with fewer psychotic experiences. Schizophr Res 2011; 130(1-3): 216-21.
[http://dx.doi.org/10.1016/j.schres.2011.04.017] [PMID: 21592732]
[53]
Leweke FM, Piomelli D, Pahlisch F, et al. Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl Psychiatry 2012; 2e940
[http://dx.doi.org/10.1038/tp.2012.15] [PMID: 22832859]
[54]
Peres FF, Diana MC, Suiama MA, et al. Peripubertal treatment with cannabidiol prevents the emergence of psychosis in an animal model of schizophrenia. Schizophr Res 2016; 172(1-3): 220-1.
[http://dx.doi.org/10.1016/j.schres.2016.02.004] [PMID: 26856781]
[55]
Devinsky O, Patel AD, Cross JH, et al. Effect of Cannabidiol on Drop Seizures in the Lennox-Gastaut Syndrome. N Engl J Med 2018; 378(20): 1888-97.
[http://dx.doi.org/10.1056/NEJMoa1714631] [PMID: 29768152]
[56]
Devinsky O, Marsh E, Friedman D, et al. Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial. Lancet Neurol 2016; 15(3): 270-8.
[http://dx.doi.org/10.1016/S1474-4422(15)00379-8] [PMID: 26724101]
[57]
Devinsky O, Cross JH, Laux L, et al. Trial of Cannabidiol for Drug-Resistant Seizures in the Dravet Syndrome. N Engl J Med 2017; 376(21): 2011-20.
[http://dx.doi.org/10.1056/NEJMoa1611618] [PMID: 28538134]
[58]
Thiele EA, Marsh ED, French JA, et al. Cannabidiol in patients with seizures associated with Lennox-Gastaut syndrome (GWPCARE4): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 2018; 391(10125): 1085-96.
[http://dx.doi.org/10.1016/S0140-6736(18)30136-3] [PMID: 29395273]
[59]
Bailey DB Jr, Raspa M, Olmsted M, Holiday DB. Co-occurring conditions associated with FMR1 gene variations: findings from a national parent survey. Am J Med Genet A 2008; 146A(16): 2060-9.
[http://dx.doi.org/10.1002/ajmg.a.32439] [PMID: 18570292]
[60]
Cordeiro L, Ballinger E, Hagerman R, Hessl D. Clinical assessment of DSM-IV anxiety disorders in fragile X syndrome: prevalence and characterization. J Neurodev Disord 2011; 3(1): 57-67.
[http://dx.doi.org/10.1007/s11689-010-9067-y] [PMID: 21475730]
[61]
Bear MF, Huber KM, Warren ST. The mGluR theory of fragile X mental retardation. Trends Neurosci 2004; 27(7): 370-7.
[http://dx.doi.org/10.1016/j.tins.2004.04.009] [PMID: 15219735]
[62]
Weiler IJ, Greenough WT. Metabotropic glutamate receptors trigger postsynaptic protein synthesis. Proc Natl Acad Sci USA 1993; 90(15): 7168-71.
[http://dx.doi.org/10.1073/pnas.90.15.7168] [PMID: 8102206]
[63]
Zhang L, Alger BE. Enhanced endocannabinoid signaling elevates neuronal excitability in fragile X syndrome. J Neurosci 2010; 30(16): 5724-9.
[http://dx.doi.org/10.1523/JNEUROSCI.0795-10.2010] [PMID: 20410124]
[64]
Bergamaschi MM, Queiroz RH, Zuardi AW, Crippa JA. Safety and side effects of cannabidiol, a Cannabis sativa constituent. Curr Drug Saf 2011; 6(4): 237-49.
[http://dx.doi.org/10.2174/157488611798280924] [PMID: 22129319]
[65]
Babalonis S, Haney M, Malcolm RJ, et al. Oral cannabidiol does not produce a signal for abuse liability in frequent marijuana smokers. Drug Alcohol Depend 2017; 172: 9-13.
[http://dx.doi.org/10.1016/j.drugalcdep.2016.11.030] [PMID: 28088032]
[66]
Iffland K, Grotenhermen F. An update on safety and side effects of cannabidiol: A review of clinical data and relevant animal studies. Cannabis Cannabinoid Res 2017; 2(1): 139-54.
[http://dx.doi.org/10.1089/can.2016.0034] [PMID: 28861514]
[67]
Sultan SR, Millar SA, England TJ, O’Sullivan SE. A systematic review and meta-analysis of the haemodynamic effects of cannabidiol. Front Pharmacol 2017; 8: 81.
[http://dx.doi.org/10.3389/fphar.2017.00081] [PMID: 28286481]
[68]
Heussler H, Cohen J, Silove N, Tich N, Sebree T, Siegel S, Eds. Transdermal Cannabidiol (CBD) gel for the treatment of fragile X Syndrome (FXS). 57th annual meeting of the American College of Neuropsychopharmacology (ACNP) 2018.
[69]
Mann K, Kiefer F, Spanagel R, Littleton J. Acamprosate: recent findings and future research directions. Alcohol Clin Exp Res 2008; 32(7): 1105-10.
[http://dx.doi.org/10.1111/j.1530-0277.2008.00690.x] [PMID: 18540918]
[70]
Harris BR, Prendergast MA, Gibson DA, et al. Acamprosate inhibits the binding and neurotoxic effects of trans-ACPD, suggesting a novel site of action at metabotropic glutamate receptors. Alcohol Clin Exp Res 2002; 26(12): 1779-93.
[http://dx.doi.org/10.1111/j.1530-0277.2002.tb02484.x] [PMID: 12500101]
[71]
Erickson CA, Mullett JE, McDougle CJ. Brief report: acamprosate in fragile X syndrome. J Autism Dev Disord 2010; 40(11): 1412-6.
[http://dx.doi.org/10.1007/s10803-010-0988-9] [PMID: 20213249]
[72]
Erickson CA, Early M, Stigler KA, Wink LK, Mullett JE, McDougle CJ. An open-label naturalistic pilot study of acamprosate in youth with autistic disorder. J Child Adolesc Psychopharmacol 2011; 21(6): 565-9.
[http://dx.doi.org/10.1089/cap.2011.0034] [PMID: 22136091]
[73]
Salcedo-Arellano MJ, Lozano R, Tassone F, Hagerman RJ, Saldarriaga W. Alcohol use dependence in fragile X syndrome. Intractable Rare Dis Res 2016; 5(3): 207-13.
[http://dx.doi.org/10.5582/irdr.2016.01046] [PMID: 27672544]
[74]
Xu XQ, McGuire TF, Blaskovich MA, Sebti SM, Romero G. Lovastatin inhibits the stimulation of mitogen-activated protein kinase by insulin in HIRcB fibroblasts. Arch Biochem Biophys 1996; 326(2): 233-7.
[http://dx.doi.org/10.1006/abbi.1996.0070] [PMID: 8611028]
[75]
Osterweil EK, Chuang SC, Chubykin AA, et al. Lovastatin corrects excess protein synthesis and prevents epileptogenesis in a mouse model of fragile X syndrome. Neuron 2013; 77(2): 243-50.
[http://dx.doi.org/10.1016/j.neuron.2012.01.034] [PMID: 23352161]
[76]
Çaku A, Pellerin D, Bouvier P, Riou E, Corbin F. Effect of lovastatin on behavior in children and adults with fragile X syndrome: an open-label study. Am J Med Genet A 2014; 164A(11): 2834-42.
[http://dx.doi.org/10.1002/ajmg.a.36750] [PMID: 25258112]
[77]
Bilousova TV, Dansie L, Ngo M, et al. Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J Med Genet 2009; 46(2): 94-102.
[http://dx.doi.org/10.1136/jmg.2008.061796] [PMID: 18835858]
[78]
Siller SS, Broadie K. Neural circuit architecture defects in a Drosophila model of Fragile X syndrome are alleviated by minocycline treatment and genetic removal of matrix metalloproteinase. Dis Model Mech 2011; 4(5): 673-85.
[http://dx.doi.org/10.1242/dmm.008045] [PMID: 21669931]
[79]
Paribello C, Tao L, Folino A, et al. Open-label add-on treatment trial of minocycline in fragile X syndrome. BMC Neurol 2010; 10: 91.
[http://dx.doi.org/10.1186/1471-2377-10-91] [PMID: 20937127]
[80]
Utari A, Chonchaiya W, Rivera SM, et al. Side effects of minocycline treatment in patients with fragile X syndrome and exploration of outcome measures. Am J Intellect Dev Disabil 2010; 115(5): 433-43.
[http://dx.doi.org/10.1352/1944-7558-115.5.433] [PMID: 20687826]