Formulating SLN and NLC as Innovative Drug Delivery Systems for Non-Invasive Routes of Drug Administration

Page: [3623 - 3656] Pages: 34

  • * (Excluding Mailing and Handling)

Abstract

Colloidal carriers diverge depending on their composition, ability to incorporate drugs and applicability, but the common feature is the small average particle size. Among the carriers with the potential nanostructured drug delivery application there are SLN and NLC. These nanostructured systems consist of complex lipids and highly purified mixtures of glycerides having varying particle size. Also, these systems have shown physical stability, protection capacity of unstable drugs, release control ability, excellent tolerability, possibility of vectorization, and no reported production problems related to large-scale. Several production procedures can be applied to achieve high association efficiency between the bioactive and the carrier, depending on the physicochemical properties of both, as well as on the production procedure applied. The whole set of unique advantages such as enhanced drug loading capacity, prevention of drug expulsion, leads to more flexibility for modulation of drug release and makes Lipid-based nanocarriers (LNCs) versatile delivery system for various routes of administration. The route of administration has a significant impact on the therapeutic outcome of a drug. Thus, the non-invasive routes, which were of minor importance as parts of drug delivery in the past, have assumed added importance drugs, proteins, peptides and biopharmaceuticals drug delivery and these include nasal, buccal, vaginal and transdermal routes. The objective of this paper is to present the state of the art concerning the application of the lipid nanocarriers designated for non-invasive routes of administration. In this manner, this review presents an innovative technological platform to develop nanostructured delivery systems with great versatility of application in non-invasive routes of administration and targeting drug release.

Keywords: Solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), colloidal carriers, non-invasive routes of administration, nanostructured systems, lipid-based nanocarriers (LNCs).

[1]
Goldberg, M.; Langer, R.; Jia, X. Nanostructured materials for applications in drug delivery and tissue engineering. J. Biomater. Sci. Polym. Ed., 2007, 18(3), 241-268.
[http://dx.doi.org/10.1163/156856207779996931] [PMID: 17471764]
[2]
Tiwari, G.; Tiwari, R.; Sriwastawa, B.; Bhati, L.; Pandey, S.; Pandey, P.; Bannerjee, S.K. Drug delivery systems: An updated review. Int. J. Pharm. Investig., 2012, 2(1), 2-11.
[http://dx.doi.org/10.4103/2230-973X.96920] [PMID: 23071954]
[3]
Farokhzad, O.C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3(1), 16-20.
[http://dx.doi.org/10.1021/nn900002m] [PMID: 19206243]
[4]
Müller, R.H.; Mäder, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur. J. Pharm. Biopharm., 2000, 50(1), 161-177.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[5]
Schwarz, C.; Mehnert, W. Solid lipid nanoparticles (SLN) for controlled drug delivery. II. Drug incorporation and physicochemical characterization. J. Microencapsul., 1999, 16(2), 205-213.
[http://dx.doi.org/10.1080/026520499289185] [PMID: 10080114]
[6]
Rajashree, H.; Harshal, G.; Vilasrao, K. Solid lipid nanoparticles and nanostructured lipid carriers: a review. Curr. Drug Ther., 2011, 6(4), 240-250.
[http://dx.doi.org/10.2174/157488511798109637]
[7]
Fang, C.L.; Al-Suwayeh, S.A.; Fang, J.Y. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat. Nanotechnol., 2013, 7(1), 41-55.
[http://dx.doi.org/10.2174/187221013804484827] [PMID: 22946628]
[8]
Müller, R.H.; Alexiev, U.; Sinambela, P.; Keck, C.M. Nanostructured lipid carriers (nlc): the second generation of solid lipid nanoparticles. In:Percutaneous penetration enhancers chemical methods. In: penetration enhancement: nanocarriers. ; Dragicevic, N.; Maibach, H.I; Heidelberg, S.B., Eds.; Berlin, Heidelberg,. , 2016, pp. 161-185.
[http://dx.doi.org/10.1007/978-3-662-47862-2_11]
[9]
Muller, R.H.; Souto, E.B.; Mehnert, W. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for Dermal Delivery.Percutaneous Absorption; CRC Press, 2005, pp. 719-738.
[10]
Doktorovova, S.; Souto, E.B.; Silva, A.M. Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers - a systematic review of in vitro data. Eur. J. Pharm. Biopharm., 2014, 87(1), 1-18.
[http://dx.doi.org/10.1016/j.ejpb.2014.02.005] [PMID: 24530885]
[11]
Aljaeid, B.M.; Hosny, K.M. Miconazole-loaded solid lipid nanoparticles: formulation and evaluation of a novel formula with high bioavailability and antifungal activity. Int. J. Nanomedicine, 2016, 11, 441-447.
[http://dx.doi.org/10.2147/IJN.S100625] [PMID: 26869787]
[12]
Moazeni, M.; Kelidari, H.R.; Saeedi, M.; Morteza-Semnani, K.; Nabili, M.; Gohar, A.A.; Akbari, J.; Lotfali, E.; Nokhodchi, A. Time to overcome fluconazole resistant Candida isolates: Solid lipid nanoparticles as a novel antifungal drug delivery system. Colloids Surf. B Biointerfaces, 2016, 142, 400-407.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.013] [PMID: 26974361]
[13]
Cassano, R.; Ferrarelli, T.; Mauro, M.V.; Cavalcanti, P.; Picci, N.; Trombino, S. Preparation, characterization and in vitro activities evaluation of solid lipid nanoparticles based on PEG-40 stearate for antifungal drugs vaginal delivery. Drug Deliv., 2016, 23(3), 1047-1056.
[http://dx.doi.org/10.3109/10717544.2014.932862] [PMID: 25005582]
[14]
Hazzah, H.A.; Farid, R.M.; Nasra, M.M.A.; El-Massik, M.A.; Abdallah, O.Y. Lyophilized sponges loaded with curcumin solid lipid nanoparticles for buccal delivery: Development and characterization. Int. J. Pharm., 2015, 492(1-2), 248-257.
[http://dx.doi.org/10.1016/j.ijpharm.2015.06.022] [PMID: 26189427]
[15]
Jones, E.; Ojewole, E.; Kalhapure, R.; Govender, T. In vitro comparative evaluation of monolayered multipolymeric films embedded with didanosine-loaded solid lipid nanoparticles: a potential buccal drug delivery system for ARV therapy. Drug Dev. Ind. Pharm., 2014, 40(5), 669-679.
[http://dx.doi.org/10.3109/03639045.2014.892957] [PMID: 24576267]
[16]
Fang, J-Y.; Fang, C-L.; Liu, C-H.; Su, Y-H. Lipid nanoparticles as vehicles for topical psoralen delivery: solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur. J. Pharm. Biopharm., 2008, 70(2), 633-640.
[http://dx.doi.org/10.1016/j.ejpb.2008.05.008] [PMID: 18577447]
[17]
Souto, E.B.; Wissing, S.A.; Barbosa, C.M.; Müller, R.H. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int. J. Pharm., 2004, 278(1), 71-77.
[http://dx.doi.org/10.1016/j.ijpharm.2004.02.032] [PMID: 15158950]
[18]
Vaz, S.; Silva, R.; Amaral, M.H.; Martins, E.; Sousa Lobo, J.M.; Silva, A.C. Evaluation of the biocompatibility and skin hydration potential of vitamin E-loaded lipid nanosystems formulations: In vitro and human in vivo studies. Colloids Surf. B Biointerfaces, 2019, 179, 242-249.
[http://dx.doi.org/10.1016/j.colsurfb.2019.03.036] [PMID: 30974262]
[19]
Jain, S.; Addan, R.; Kushwah, V.; Harde, H.; Mahajan, R.R. Comparative assessment of efficacy and safety potential of multifarious lipid based Tacrolimus loaded nanoformulations. Int. J. Pharm., 2019, 562, 96-104.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.042] [PMID: 30902706]
[20]
Gu, Y.; Tang, X.; Yang, M.; Yang, D.; Liu, J. Transdermal drug delivery of triptolide-loaded nanostructured lipid carriers: Preparation, pharmacokinetic, and evaluation for rheumatoid arthritis. Int. J. Pharm., 2019, 554, 235-244.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.024] [PMID: 30423415]
[21]
Tripathi, P.; Kumar, A.; Jain, P.K.; Patel, J.R. Carbomer gel bearing methotrexate loaded lipid nanocontainers shows improved topical delivery intended for effective management of psoriasis. Int. J. Biol. Macromol, 2018, 120(Pt A), 1322-1334.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.136]
[22]
Rincón, M.; Calpena, A.C.; Clares, B.; Espina, M.; Garduño-Ramírez, M.L.; Rodríguez-Lagunas, M.J.; García, M.L.; Abrego, G. Skin-controlled release lipid nanosystems of pranoprofen for the treatment of local inflammation and pain. Nanomedicine (Lond.), 2018, 13(19), 2397-2413.
[http://dx.doi.org/10.2217/nnm-2018-0195] [PMID: 30311846]
[23]
Anand, A.; Arya, M.; Kaithwas, G.; Singh, G.; Saraf, S.A. Sucrose stearate as a biosurfactant for development of rivastigmine containing nanostructured lipid carriers and assessment of its activity against dementia in C. elegans model. J. Drug Deliv. Sci. Technol., 2019, 49, 219-226.
[http://dx.doi.org/10.1016/j.jddst.2018.11.021]
[24]
Yasir, M.; Sara, U.V.S.; Chauhan, I.; Gaur, P.K.; Singh, A.P.; Puri, D.A. Solid lipid nanoparticles for nose to brain delivery of donepezil: formulation, optimization by Box-Behnken design, in vitro and in vivo evaluation. Artif. Cells Nanomed. Biotechnol., 2018, 46(8), 1838-1851.
[http://dx.doi.org/10.1080/21691401.2017.1394872]
[25]
Rajput, A.; Bariya, A.; Allam, A.; Othman, S.; Butani, S.B. In situ nanostructured hydrogel of resveratrol for brain targeting: in vitro/in vivo characterization. Drug Deliv. Transl. Res., 2018, 8(5), 1460-1470.
[http://dx.doi.org/10.1007/s13346-018-0540-6] [PMID: 29785574]
[26]
Wavikar, P.; Pai, R.; Vavia, P. Nose to brain delivery of rivastigmine by in situ gelling cationic nanostructured lipid carriers: enhanced brain distribution and pharmacodynamics. J. Pharm. Sci., 2017, 106(12), 3613-3622.
[http://dx.doi.org/10.1016/j.xphs.2017.08.024] [PMID: 28923321]
[27]
Fatouh, A.M.; Elshafeey, A.H.; Abdelbary, A. Intranasal agomelatine solid lipid nanoparticles to enhance brain delivery: formulation, optimization and in vivo pharmacokinetics. Drug Des. Devel. Ther., 2017, 11, 1815-1825.
[http://dx.doi.org/10.2147/DDDT.S102500] [PMID: 28684900]
[28]
Esposito, E.; Cortesi, R.; Drechsler, M.; Fan, J.; Fu, B.M.; Calderan, L.; Mannucci, S.; Boschi, F.; Nastruzzi, C. Nanoformulations for dimethyl fumarate: Physicochemical characterization and in vitro/in vivo behavior. Eur. J. Pharm. Biopharm., 2017, 115, 285-296.
[http://dx.doi.org/10.1016/j.ejpb.2017.04.011] [PMID: 28412473]
[29]
Pokharkar, V.; Patil-Gadhe, A.; Palla, P. Efavirenz loaded nanostructured lipid carrier engineered for brain targeting through intranasal route: In-vivo pharmacokinetic and toxicity study. Biomed. Pharmacother., 2017, 94, 150-164.
[http://dx.doi.org/10.1016/j.biopha.2017.07.067] [PMID: 28759752]
[30]
Chandra Bhatt, P.; Srivastava, P.; Pandey, P.; Khan, W.; Panda, B.P. Nose to brain delivery of astaxanthin-loaded solid lipid nanoparticles: fabrication, radio labeling, optimization and biological studies. RSC Advances, 2016, 6(12), 10001-10010.
[http://dx.doi.org/10.1039/C5RA19113K]
[31]
Madane, R.G.; Mahajan, H.S. Curcumin-loaded nanostructured lipid carriers (NLCs) for nasal administration: design, characterization, and in vivo study. Drug Deliv., 2016, 23(4), 1326-1334.
[http://dx.doi.org/10.3109/10717544.2014.975382] [PMID: 25367836]
[32]
Mehnert, W.; Mäder, K. Solid lipid nanoparticles: production, characterization and applications. Adv. Drug Deliv. Rev., 2001, 47(2-3), 165-196.
[http://dx.doi.org/10.1016/S0169-409X(01)00105-3] [PMID: 11311991]
[33]
Mukherjee, S.; Ray, S.; Thakur, R.S. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J. Pharm. Sci., 2009, 71(4), 349-358.
[http://dx.doi.org/10.4103/0250-474X.57282] [PMID: 20502539]
[34]
Üner, M. Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): their benefits as colloidal drug carrier systems. Pharmazie, 2006, 61(5), 375-386.
[PMID: 16724531]
[35]
Rigon, R.B.; Fachinetti, N.; Severino, P.; Santana, M.H.; Chorilli, M. Skin delivery and in vitro biological evaluation of trans-resveratrol-loaded solid lipid nanoparticles for skin disorder therapies. Molecules, 2016, 21(1)E116
[http://dx.doi.org/10.3390/molecules21010116] [PMID: 26805794]
[36]
Lim, S-J.; Lee, M-K.; Kim, C-K. Altered chemical and biological activities of all-trans retinoic acid incorporated in solid lipid nanoparticle powders. J. Control. Release, 2004, 100(1), 53-61.
[http://dx.doi.org/10.1016/j.jconrel.2004.07.032] [PMID: 15491810]
[37]
Puglia, C.; Offerta, A.; Rizza, L.; Zingale, G.; Bonina, F.; Ronsisvalle, S. Optimization of curcumin loaded lipid nanoparticles formulated using high shear homogenization (HSH) and ultrasonication (US) methods. J. Nanosci. Nanotechnol., 2013, 13(10), 6888-6893.
[http://dx.doi.org/10.1166/jnn.2013.7766] [PMID: 24245159]
[38]
Vijayan, V.; Aafreen, S.; Sakthivel, S.; Reddy, K.R. Formulation and characterization of solid lipid nanoparticles loaded Neem oil for topical treatment of acne. J. Acute Dis., 2013, 2(4), 282-286.
[http://dx.doi.org/10.1016/S2221-6189(13)60144-4]
[39]
Mukherjee, B.; Santra, K.; Pattnaik, G.; Ghosh, S. Preparation, characterization and in-vitro evaluation of sustained release protein-loaded nanoparticles based on biodegradable polymers. Int. J. Nanomedicine, 2008, 3(4), 487-496.
[http://dx.doi.org/10.2147/IJN.S3938] [PMID: 19337417]
[40]
Betts, J.N.; Johnson, M.G.; Rygiewicz, P.T.; King, G.A.; Andersen, C.P. Potential for metal contamination by direct sonication of nanoparticle suspensions. Environ. Toxicol. Chem., 2013, 32(4), 889-893.
[http://dx.doi.org/10.1002/etc.2123] [PMID: 23322586]
[41]
Siddiqui, A.; Alayoubi, A.; El-Malah, Y.; Nazzal, S. Modeling the effect of sonication parameters on size and dispersion temperature of solid lipid nanoparticles (SLNs) by response surface methodology (RSM). Pharm. Dev. Technol., 2014, 19(3), 342-346.
[http://dx.doi.org/10.3109/10837450.2013.784336] [PMID: 23590412]
[42]
Corrias, F.; Lai, F. New methods for lipid nanoparticles preparation. Recent Pat. Drug Deliv. Formul., 2011, 5(3), 201-213.
[http://dx.doi.org/10.2174/187221111797200597] [PMID: 21834772]
[43]
Souto, E.B.; Severino, P.; Santana, M.H.A.; Pinho, S.C. Solid lipid nanoparticles: classical methods of lab production. Quim. Nova, 2011, 34(10), 1762-1769.
[44]
Nastruzzi, C. Lipospheres in drug targets and delivery: approaches, methods, and applications; CRC Press, 2004.
[http://dx.doi.org/10.1201/9780203505281]
[45]
Wissing, S.A.; Kayser, O.; Müller, R.H. Solid lipid nanoparticles for parenteral drug delivery. Adv. Drug Deliv. Rev., 2004, 56(9), 1257-1272.
[http://dx.doi.org/10.1016/j.addr.2003.12.002] [PMID: 15109768]
[46]
Das, S.; Chaudhury, A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS Pharm.Sci.Tech, 2011, 12(1), 62-76.
[http://dx.doi.org/10.1208/s12249-010-9563-0] [PMID: 21174180]
[47]
Muchow, M.; Maincent, P.; Müller, R.H. Lipid nanoparticles with a solid matrix (SLN, NLC, LDC) for oral drug delivery. Drug Dev. Ind. Pharm., 2008, 34(12), 1394-1405.
[http://dx.doi.org/10.1080/03639040802130061] [PMID: 18665980]
[48]
Yadav, N.; Khatak, S.; Sara, U.V.S. Solid lipid nanoparticles-a review. Int. J. Appl. Pharm, 2013, 5(2), 8-18.
[49]
Silva, A.C.; González-Mira, E.; García, M.L.; Egea, M.A.; Fonseca, J.; Silva, R.; Santos, D.; Souto, E.B.; Ferreira, D. Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): high pressure homogenization versus ultrasound. Colloids Surf. B Biointerfaces, 2011, 86(1), 158-165.
[http://dx.doi.org/10.1016/j.colsurfb.2011.03.035] [PMID: 21530187]
[50]
Reis, C.P.; Neufeld, R.J.; Ribeiro, A.J.; Veiga, F.; Nanoencapsulation, I.; Nanoencapsulation, I.; Nanoencapsulation, I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine (Lond.), 2006, 2(1), 8-21.
[http://dx.doi.org/10.1016/j.nano.2005.12.003] [PMID: 17292111]
[51]
Schwab, M. Degradation of lipid based drug delivery systems and characterization of semi-synthetic spider silk proteins for the application in pharmaceutical technology. lmu, 2009.
[52]
Tice, T.R.; Gilley, R.M. Preparation of injectable controlled-release microcapsules by a solvent-evaporation process. J. Control. Release, 1985, 2, 343-352.
[http://dx.doi.org/10.1016/0168-3659(85)90056-2]
[53]
Soppimath, K.S.; Aminabhavi, T.M.; Kulkarni, A.R.; Rudzinski, W.E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release, 2001, 70(1-2), 1-20.
[http://dx.doi.org/10.1016/S0168-3659(00)00339-4] [PMID: 11166403]
[54]
Chang, W. Handbook of Nutraceuticals; Scale-Up, Processing and Automation, 2011, Vol. II, .
[55]
Gasco, M.R. Solid Lipid nanoparticles from warm microemulsion. Tech. Eur., 1997, 9, 52-59.
[56]
Marengo, E.; Cavalli, R.; Caputo, O.; Rodriguez, L.; Gasco, M.R. Scale-up of the preparation process of solid lipid nanospheres. Part I. Int. J. Pharm., 2000, 205(1-2), 3-13.
[http://dx.doi.org/10.1016/S0378-5173(00)00471-3] [PMID: 11000537]
[57]
Mektrirat, R.; Janngeon, K.; Pikulkaew, S.; Okonogi, S. Evaluation of cytotoxic and inflammatory properties of clove oil microemulsion in mice. Asian Journal of Pharmaceutical Sciences, 2016, 11(1), 231-232.
[http://dx.doi.org/10.1016/j.ajps.2015.11.020]
[58]
Byrappa, K.; Ohara, S.; Adschiri, T. Nanoparticles synthesis using supercritical fluid technology - towards biomedical applications. Adv. Drug Deliv. Rev., 2008, 60(3), 299-327.
[http://dx.doi.org/10.1016/j.addr.2007.09.001] [PMID: 18192071]
[59]
Santo, I.E.; Pedro, A.S.; Fialho, R.; Cabral-Albuquerque, E. Characteristics of lipid micro- and nanoparticles based on supercritical formation for potential pharmaceutical application. Nanoscale Res. Lett., 2013, 8(1), 386.
[http://dx.doi.org/10.1186/1556-276X-8-386] [PMID: 24034341]
[60]
Akbari, Z.; Amanlou, M.; Karimi-Sabet, J.; Golestani, A.; Niassar, M.S. Preparation and characterization of solid lipid nanoparticles through rapid expansion of supercritical solution. Int. J. Pharm. Sci. Res., 2014, 5(5), 1693.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.5(5).1693-04]
[61]
Reverchon, E.; Della Porta, G.; Di Trolio, A.; Pace, S. Supercritical antisolvent precipitation of nanoparticles of superconductor precursors. Ind. Eng. Chem. Res., 1998, 37(3), 952-958.
[http://dx.doi.org/10.1021/ie970510a]
[62]
Gupta, R.; Chattopadhyay, P. In production of drug nanoparticles of controllable size using supercritical fluid antisolvent technique with enhanced mass transfer Proc. 6th Int. Symp. Supercrit. Fluid, Citeseer, 2003, pp. 1617-22.
[63]
Zhao, Z.; Xie, M.; Li, Y.; Chen, A.; Li, G.; Zhang, J.; Hu, H.; Wang, X.; Li, S. Formation of curcumin nanoparticles via solution-enhanced dispersion by supercritical CO2. Int. J. Nanomedicine, 2015, 10, 3171-3181.
[http://dx.doi.org/10.2147/IJN.S80434] [PMID: 25995627]
[64]
Esfandiari, N.; Ghoreishi, S.M. Ampicillin nanoparticles production via supercritical CO2 gas antisolvent process. AAPS PharmSciTech, 2015, 16(6), 1263-1269.
[http://dx.doi.org/10.1208/s12249-014-0264-y] [PMID: 25771736]
[65]
Chattopadhyay, P.; Shekunov, B.Y.; Yim, D.; Cipolla, D.; Boyd, B.; Farr, S. Production of solid lipid nanoparticle suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system. Adv. Drug Deliv. Rev., 2007, 59(6), 444-453.
[http://dx.doi.org/10.1016/j.addr.2007.04.010] [PMID: 17582648]
[66]
Pestieau, A.; Krier, F.; Lebrun, P.; Brouwers, A.; Streel, B.; Evrard, B. Optimization of a PGSS (particles from gas saturated solutions) process for a fenofibrate lipid-based solid dispersion formulation. Int. J. Pharm., 2015, 485(1-2), 295-305.
[http://dx.doi.org/10.1016/j.ijpharm.2015.03.027] [PMID: 25796121]
[67]
Neha, B.; Ganesh, B.; Preeti, K. Drug delivery to the brain using polymeric nanoparticles: a review. International Journal of Pharmaceutical and Life Sciences, 2013, 2(3), 107-132.
[http://dx.doi.org/10.3329/ijpls.v2i3.15457]
[68]
Li, X.; Anton, N.; Arpagaus, C.; Belleteix, F.; Vandamme, T.F. Nanoparticles by spray drying using innovative new technology: the Büchi nano spray dryer B-90. J. Control. Release, 2010, 147(2), 304-310.
[http://dx.doi.org/10.1016/j.jconrel.2010.07.113] [PMID: 20659510]
[69]
Freitas, C.; Müllerä, R.H. Spray-drying of solid lipid nanoparticles (SLN TM). Eur. J. Pharm. Biopharm., 1998, 46(2), 145-151.
[http://dx.doi.org/10.1016/S0939-6411(97)00172-0] [PMID: 9795036]
[70]
Cavalli, R.; Caputo, O.; Carlotti, M.E.; Trotta, M.; Scarnecchia, C.; Gasco, M.R. Sterilization and freeze-drying of drug-free and drug-loaded solid lipid nanoparticles. Int. J. Pharm., 1997, 148(1), 47-54.
[http://dx.doi.org/10.1016/S0378-5173(96)04822-3]
[71]
Hu, F-Q.; Jiang, S-P.; Du, Y-Z.; Yuan, H.; Ye, Y-Q.; Zeng, S. Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. Colloids Surf. B Biointerfaces, 2005, 45(3-4), 167-173.
[http://dx.doi.org/10.1016/j.colsurfb.2005.08.005] [PMID: 16198092]
[72]
Fachinetti, N.; Rigon, R.B.; Eloy, J.O.; Sato, M.R.; Dos Santos, K.C.; Chorilli, M. Comparative study of glyceryl behenate or polyoxyethylene 40 stearate-based lipid carriers for trans-resveratrol delivery: development, characterization and evaluation of the in vitro tyrosinase inhibition. AAPS Pharm.Sci.Tech, 2018, 19(3), 1401-1409.
[http://dx.doi.org/10.1208/s12249-018-0961-z] [PMID: 29404955]
[73]
Luo, Y.; Chen, D.; Ren, L.; Zhao, X.; Qin, J. Solid lipid nanoparticles for enhancing vinpocetine’s oral bioavailability. J. Control. Release, 2006, 114(1), 53-59.
[http://dx.doi.org/10.1016/j.jconrel.2006.05.010] [PMID: 16828192]
[74]
Asasutjarit, R.; Lorenzen, S-I.; Sirivichayakul, S.; Ruxrungtham, K.; Ruktanonchai, U.; Ritthidej, G.C. Effect of solid lipid nanoparticles formulation compositions on their size, zeta potential and potential for in vitro pHIS-HIV-hugag transfection. Pharm. Res., 2007, 24(6), 1098-1107.
[http://dx.doi.org/10.1007/s11095-007-9234-3] [PMID: 17385021]
[75]
Tabatt, K.; Sameti, M.; Olbrich, C.; Müller, R.H.; Lehr, C-M. Effect of cationic lipid and matrix lipid composition on solid lipid nanoparticle-mediated gene transfer. Eur. J. Pharm. Biopharm., 2004, 57(2), 155-162.
[http://dx.doi.org/10.1016/j.ejpb.2003.10.015] [PMID: 15018970]
[76]
Müller, R.H.; Radtke, M.; Wissing, S.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev., 2002, 54(Suppl. 1), S131-S155.
[http://dx.doi.org/10.1016/S0169-409X(02)00118-7] [PMID: 12460720]
[77]
Müller, R.H.; Rühl, D.; Runge, S.A. Biodegradation of solid lipid nanoparticles as a function of lipase incubation time. Int. J. Pharm., 1996, 144(1), 115-121.
[http://dx.doi.org/10.1016/S0378-5173(96)04731-X]
[78]
Gasco, M.R.; Cavalli, R.; Carlotti, M.E. Timolol in lipospheres. Pharmazie, 1992, 47(2), 119-121.
[PMID: 1635918]
[79]
Patlolla, R.R.; Chougule, M.; Patel, A.R.; Jackson, T.; Tata, P.N.; Singh, M. Formulation, characterization and pulmonary deposition of nebulized celecoxib encapsulated nanostructured lipid carriers. J. Control. Release, 2010, 144(2), 233-241.
[http://dx.doi.org/10.1016/j.jconrel.2010.02.006] [PMID: 20153385]
[80]
Hu, L.; Jia, Y.; Ding, W. Preparation and characterization of solid lipid nanoparticles loaded with epirubicin for pulmonary delivery. Pharmazie, 2010, 65(8), 585-587.
[PMID: 20824958]
[81]
Ahlin, P.; Kristl, J.; Smid-Korbar, J. Optimization of procedure parameters and physical stability of solid lipid nanoparticles in dispersions. Acta Pharm., 1998, 48(4), 259-267.
[82]
zur Mühlen, A.; Schwarz, C.; Mehnert, W. Solid lipid nanoparticles (SLN) for controlled drug delivery--drug release and release mechanism. Eur. J. Pharm. Biopharm., 1998, 45(2), 149-155.
[http://dx.doi.org/10.1016/S0939-6411(97)00150-1] [PMID: 9704911]
[83]
Schwarz, C.; Mehnert, W. Freeze-drying of drug-free and drug-loaded solid lipid nanoparticles (SLN). Int. J. Pharm., 1997, 157(2), 171-179.
[http://dx.doi.org/10.1016/S0378-5173(97)00222-6] [PMID: 10477814]
[84]
zur Mühlen, A.; zur Mühlen, E.; Niehus, H.; Mehnert, W. Atomic force microscopy studies of solid lipid nanoparticles. Pharm. Res., 1996, 13(9), 1411-1416.
[http://dx.doi.org/10.1023/A:1016042504830] [PMID: 8893284]
[85]
Freitas, C.; Müller, R.H. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN™) dispersions. Int. J. Pharm., 1998, 168(2), 221-229.
[http://dx.doi.org/10.1016/S0378-5173(98)00092-1]
[86]
Freitas, C.; Müller, R.H. Stability determination of solid lipid nanoparticles (SLN) in aqueous dispersion after addition of electrolyte. J. Microencapsul., 1999, 16(1), 59-71.
[http://dx.doi.org/10.1080/026520499289310] [PMID: 9972503]
[87]
Freitas, C.; Müller, R.H. Correlation between long-term stability of solid lipid nanoparticles (SLN) and crystallinity of the lipid phase. Eur. J. Pharm. Biopharm., 1999, 47(2), 125-132.
[http://dx.doi.org/10.1016/S0939-6411(98)00074-5] [PMID: 10234536]
[88]
Müller, R.; Olbrich, C. Solid lipid nanoparticles: Phagocytic uptake, in vitro cytotoxicity and in vitro biodegradation 1st communication. Pharm. Ind., 1999, 61(5), 462-467.
[89]
Müller, R.; Maaßen, S.; Weyhers, H.; Specht, F.; Lucks, J. Cytotoxicity of magnetite-loaded polylactide, polylactide/glycolide particles and solid lipid nanoparticles. Int. J. Pharm., 1996, 138(1), 85-94.
[http://dx.doi.org/10.1016/0378-5173(96)04539-5]
[90]
Müller, R.H.; Maassen, S.; Weyhers, H.; Mehnert, W. Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407. J. Drug Target., 1996, 4(3), 161-170.
[http://dx.doi.org/10.3109/10611869609015973] [PMID: 8959488]
[91]
Gonçalez, M.L.; Rigon, R.B.; Pereira-da-Silva, M.A.; Chorilli, M. Curcumin-loaded cationic solid lipid nanoparticles as a potential platform for the treatment of skin disorders. Pharmazie, 2017, 72(12), 721-727.
[http://dx.doi.org/10.1691/ph.2017.7101] [PMID: 29441956]
[92]
Cavalli, R.; Peira, E.; Caputo, O.; Gasco, M.R. Solid lipid nanoparticles as carriers of hydrocortisone and progesterone complexes with β-cyclodextrins. Int. J. Pharm., 1999, 182(1), 59-69.
[http://dx.doi.org/10.1016/S0378-5173(99)00066-6] [PMID: 10332075]
[93]
Videira, M.; Almeida, A.J.; Fabra, A. Preclinical evaluation of a pulmonary delivered paclitaxel-loaded lipid nanocarrier antitumor effect. Nanomedicine (Lond.), 2012, 8(7), 1208-1215.
[http://dx.doi.org/10.1016/j.nano.2011.12.007] [PMID: 22206945]
[94]
Almeida, A.J.; Runge, S.; Müller, R.H. Peptide-loaded solid lipid nanoparticles (SLN): influence of production parameters. Int. J. Pharm., 1997, 149(2), 255-265.
[http://dx.doi.org/10.1016/S0378-5173(97)04885-0]
[95]
Liu, J.; Gong, T.; Fu, H.; Wang, C.; Wang, X.; Chen, Q.; Zhang, Q.; He, Q.; Zhang, Z. Solid lipid nanoparticles for pulmonary delivery of insulin. Int. J. Pharm., 2008, 356(1-2), 333-344.
[http://dx.doi.org/10.1016/j.ijpharm.2008.01.008] [PMID: 18281169]
[96]
Pardeike, J.; Weber, S.; Haber, T.; Wagner, J.; Zarfl, H.P.; Plank, H.; Zimmer, A. Development of an itraconazole-loaded nanostructured lipid carrier (NLC) formulation for pulmonary application. Int. J. Pharm., 2011, 419(1-2), 329-338.
[http://dx.doi.org/10.1016/j.ijpharm.2011.07.040] [PMID: 21839157]
[97]
Dharmala, K.; Yoo, J.W.; Lee, C.H. Development of chitosan-SLN microparticles for chemotherapy: in vitro approach through efflux-transporter modulation. J. Control. Release, 2008, 131(3), 190-197.
[http://dx.doi.org/10.1016/j.jconrel.2008.07.034] [PMID: 18723057]
[98]
Pandey, R.; Khuller, G.K. Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis (Edinb.), 2005, 85(4), 227-234.
[http://dx.doi.org/10.1016/j.tube.2004.11.003] [PMID: 15922668]
[99]
Cavalli, R.; Marengo, E.; Rodriguez, L.; Gasco, M.R. Effects of some experimental factors on the production process of solid lipid nanoparticles. Eur. J. Pharm. Biopharm., 1996, 42(2), 110-115.
[100]
Cavalli, R.; Caputo, O.; Marengo, E.; Pattarino, F.; Gasco, M. The effect of the components of microemulsions on both size and crystalline structure of solid lipid nanoparticles (SLN) containing a series of model molecules. Pharmazie, 1998, 53(6), 392-396.
[101]
Cavalli, R.; Gasco, M.; Morel, S. Behaviour of timolol incorporated in lipospheres in the presence of a series of phosphate esters. STP pharma sciences, 1992, 2(6), 514-518.
[102]
Morel, S.; Ugazio, E.; Cavalli, R.; Gasco, M.R. Thymopentin in solid lipid nanoparticles. Int. J. Pharm., 1996, 132(1), 259-261.
[http://dx.doi.org/10.1016/0378-5173(95)04388-8]
[103]
Morel, S.; Gasco, M.R.; Cavalli, R. Incorporation in lipospheres of [D-Trp-6] LHRH. Int. J. Pharm., 1994, 105(2), R1-R3.
[http://dx.doi.org/10.1016/0378-5173(94)90466-9]
[104]
Morel, S.; Terreno, E.; Ugazio, E.; Aime, S.; Gasco, M.R. NMR relaxometric investigations of solid lipid nanoparticles (SLN) containing gadolinium(III) complexes. Eur. J. Pharm. Biopharm., 1998, 45(2), 157-163.
[http://dx.doi.org/10.1016/S0939-6411(97)00107-0] [PMID: 9704912]
[105]
Cavalli, R.; Morel, S.; Gasco, M.; Chetoni, P. Preparation and evaluation in vitro of colloidal lipospheres containing pilocarpine as ion pair. Int. J. Pharm., 1995, 117(2), 243-246.
[http://dx.doi.org/10.1016/0378-5173(94)00339-7]
[106]
Yang, S.; Zhu, J.; Lu, Y.; Liang, B.; Yang, C. Body distribution of camptothecin solid lipid nanoparticles after oral administration. Pharm. Res., 1999, 16(5), 751-757.
[http://dx.doi.org/10.1023/A:1018888927852] [PMID: 10350020]
[107]
Bocca, C.; Caputo, O.; Cavalli, R.; Gabriel, L.; Miglietta, A.; Gasco, M.R. Phagocytic uptake of fluorescent stealth and non-stealth solid lipid nanoparticles. Int. J. Pharm., 1998, 175(2), 185-193.
[http://dx.doi.org/10.1016/S0378-5173(98)00282-8]
[108]
Cavalli, R.; Bocca, C.; Miglietta, A.; Caputo, O.; Gasco, M. Albumin adsorption on stealth and non-stealth solid lipid nanoparticles. STP pharma sciences, 1999, 9(2), 183-189.
[109]
Rigon, R.B.; Gonçalez, M.L.; Severino, P.; Alves, D.A.; Santana, M.H.A.; Souto, E.B.; Chorilli, M. Solid lipid nanoparticles optimized by 22 factorial design for skin administration: Cytotoxicity in NIH3T3 fibroblasts. Colloids Surf. B Biointerfaces, 2018, 171, 501-505.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.065] [PMID: 30081382]
[110]
Domb, A.J. Long acting injectable oxytetracycline-liposphere formulations. Int. J. Pharm., 1995, 124(2), 271-278.
[http://dx.doi.org/10.1016/0378-5173(95)00098-4]
[111]
Westesen, K.; Bunjes, H. Do nanoparticles prepared from lipids solid at room temperature always possess a solid lipid matrix? Int. J. Pharm., 1995, 115(1), 129-131.
[http://dx.doi.org/10.1016/0378-5173(94)00347-8]
[112]
Bunjes, H.; Westesen, K.; Koch, M.H. Crystallization tendency and polymorphic transitions in triglyceride nanoparticles. Int. J. Pharm., 1996, 129(1), 159-173.
[http://dx.doi.org/10.1016/0378-5173(95)04286-5]
[113]
Heiati, H.; Tawashi, R.; Phillips, N.C. Drug retention and stability of solid lipid nanoparticles containing azidothymidine palmitate after autoclaving, storage and lyophilization. J. Microencapsul., 1998, 15(2), 173-184.
[http://dx.doi.org/10.3109/02652049809006847] [PMID: 9532523]
[114]
Heiati, H.; Tawashi, R.; Shivers, R.R.; Phillips, N.C. Solid lipid nanoparticles as drug carriers. I. Incorporation and retention of the lipophilic prodrug 3′-azido-3′-deoxythymidine palmitate. Int. J. Pharm., 1997, 146(1), 123-131.
[http://dx.doi.org/10.1016/S0378-5173(96)04782-5]
[115]
Westesen, K.; Bunjes, H.; Koch, M. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J. Control. Release, 1997, 48(2), 223-236.
[http://dx.doi.org/10.1016/S0168-3659(97)00046-1]
[116]
Siekmann, B.; Westesen, K. Submicron-sized parenteral carrier systems based on solid lipids. Pharm. Pharmacol. Lett, 1992, 1(3), 123-126.
[117]
Siekmann, B.; Westesen, K. Melt-homogenized solid lipid nanoparticles stabilized by the nonionic surfactant tyloxapol. I. Preparation and particle size determination. Pharm Pharmacol Lett, 1994, 3, 194-197.
[118]
Siekmann, B.; Westesen, K. Investigations on solid lipid nanoparticles prepared by precipitation in o/w emulsions. Eur. J. Pharm. Biopharm., 1996, 42(2), 104-109.
[119]
Westesen, K.; Siekmann, B.; Koch, M.H. Investigations on the physical state of lipid nanoparticles by synchrotron radiation X-ray diffraction. Int. J. Pharm., 1993, 93(1), 189-199.
[http://dx.doi.org/10.1016/0378-5173(93)90177-H]
[120]
Westesen, K.; Siekmann, B. Investigation of the gel formation of phospholipid-stabilized solid lipid nanoparticles. Int. J. Pharm., 1997, 151(1), 35-45.
[http://dx.doi.org/10.1016/S0378-5173(97)04890-4]
[121]
Gasco, M.; Morel, S.; Carpignano, R. Optimization of the incorporation of deoxycorticosterone acetate in lipospheres. Eur. J. Pharm. Biopharm., 1992, 38(1), 7-10.
[122]
Zhang, P.; Tu, Y.; Wang, S.; Wang, Y.; Xie, Y.; Li, M.; Jin, Y. Preparation and characterization of budesonide-loaded solid lipid nanoparticles for pulmonary delivery. J. Chin. Pharm. Sci., 2011, 20(4), 390-396.
[http://dx.doi.org/10.5246/jcps.2011.04.049]
[123]
Li, Y-Z.; Sun, X.; Gong, T.; Liu, J.; Zuo, J.; Zhang, Z-R. Inhalable microparticles as carriers for pulmonary delivery of thymopentin-loaded solid lipid nanoparticles. Pharm. Res., 2010, 27(9), 1977-1986.
[http://dx.doi.org/10.1007/s11095-010-0201-z] [PMID: 20625801]
[124]
Moulik, S.; Paul, B. Structure, dynamics and transport properties of microemulsions. Adv. Colloid Interface Sci., 1998, 78(2), 99-195.
[http://dx.doi.org/10.1016/S0001-8686(98)00063-3]
[125]
Yang, S.C.; Lu, L.F.; Cai, Y.; Zhu, J.B.; Liang, B.W.; Yang, C.Z. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J. Control. Release, 1999, 59(3), 299-307.
[http://dx.doi.org/10.1016/S0168-3659(99)00007-3] [PMID: 10332062]
[126]
Rudolph, C.; Schillinger, U.; Ortiz, A.; Tabatt, K.; Plank, C.; Müller, R.H.; Rosenecker, J. Application of novel solid lipid nanoparticle (SLN)-gene vector formulations based on a dimeric HIV-1 TAT-peptide in vitro and in vivo. Pharm. Res., 2004, 21(9), 1662-1669.
[http://dx.doi.org/10.1023/B:PHAM.0000041463.56768.ec] [PMID: 15497694]
[127]
Parhi, R.; Suresh, P. Preparation and characterization of solid lipid nanoparticles-a review. Curr. Drug Discov. Technol., 2012, 9(1), 2-16.
[http://dx.doi.org/10.2174/157016312799304552] [PMID: 22235925]
[128]
Kaur, S.; Nautyal, U.; Singh, R.; Singh, S.; Devi, A. Nanostructure lipid carrier (NLC): the new generation of lipid nanoparticles Asian Pacific. J. Health Sci., 2015, 2(2), 76-93.
[129]
Azhar Shekoufeh Bahari, L.; Hamishehkar, H. The impact of variables on particle size of solid lipid nanoparticles and nanostructured lipid carriers; a comparative literature review. Adv. Pharm. Bull., 2016, 6(2), 143-151.
[http://dx.doi.org/10.15171/apb.2016.021] [PMID: 27478775]
[130]
Üner, M. Characterization and imaging of solid lipid nanoparticles and nanostructured lipid carriers. In: Handbook of Nanoparticles; Aliofkhazraei, M., Ed.; Springer International Publishing: Cham, 2016, pp. 117-141.
[http://dx.doi.org/10.1007/978-3-319-15338-4_3]
[131]
Jia, L.J.; Zhang, D.R.; Li, Z.Y.; Feng, F.F.; Wang, Y.C.; Dai, W.T.; Duan, C.X.; Zhang, Q. Preparation and characterization of silybin-loaded nanostructured lipid carriers. Drug Deliv., 2010, 17(1), 11-18.
[http://dx.doi.org/10.3109/10717540903431586] [PMID: 19941406]
[132]
Date, P.V.; Samad, A.; Devarajan, P.V. Freeze thaw: a simple approach for prediction of optimal cryoprotectant for freeze drying. AAPS Pharm.Sci.Tech, 2010, 11(1), 304-313.
[http://dx.doi.org/10.1208/s12249-010-9382-3] [PMID: 20182826]
[133]
Kasper, J.C.; Friess, W. The freezing step in lyophilization: physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals. Eur. J. Pharm. Biopharm., 2011, 78(2), 248-263.
[http://dx.doi.org/10.1016/j.ejpb.2011.03.010] [PMID: 21426937]
[134]
Souto, E.B.; Wissing, S.A.; Barbosa, C.M.; Müller, R.H. Evaluation of the physical stability of SLN and NLC before and after incorporation into hydrogel formulations. Eur. J. Pharm. Biopharm., 2004, 58(1), 83-90.
[http://dx.doi.org/10.1016/j.ejpb.2004.02.015] [PMID: 15207541]
[135]
De Jong, W.H.; Hagens, W.I.; Krystek, P.; Burger, M.C.; Sips, A.J.; Geertsma, R.E. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials, 2008, 29(12), 1912-1919.
[http://dx.doi.org/10.1016/j.biomaterials.2007.12.037] [PMID: 18242692]
[136]
Gatoo, M.A.; Naseem, S.; Arfat, M.Y.; Dar, A.M.; Qasim, K.; Zubair, S. Physicochemical properties of nanomaterials: implication in associated toxic manifestations. BioMed Res. Int., 2014, 2014, 498420-498420.
[http://dx.doi.org/10.1155/2014/498420] [PMID: 25165707]
[137]
Garcês, A.; Amaral, M.H.; Sousa Lobo, J.M.; Silva, A.C. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review. Eur. J. Pharm. Sci., 2018, 112, 159-167.
[http://dx.doi.org/10.1016/j.ejps.2017.11.023] [PMID: 29183800]
[138]
Schaffazick, S.R.; Pohlmann, A.R.; Dalla-Costa, T.; Guterres, S.S. Freeze-drying polymeric colloidal suspensions: nanocapsules, nanospheres and nanodispersion. A comparative study. Eur. J. Pharm. Biopharm., 2003, 56(3), 501-505.
[http://dx.doi.org/10.1016/S0939-6411(03)00139-5] [PMID: 14602195]
[139]
Moore, J.; Cerasoli, E. Particle light scattering methods and applications in: Encyclopedia of Spectroscopy and Spectrometry,; Third Edition; Lindon, J.C.; Tranter, G.E.; Koppenaal, D.W, Eds.. Academic Press: Oxford, 2017, pp. 543-553.
[140]
Kathe, N.; Henriksen, B.; Chauhan, H. Physicochemical characterization techniques for solid lipid nanoparticles: principles and limitations. Drug Dev. Ind. Pharm., 2014, 40(12), 1565-1575.
[http://dx.doi.org/10.3109/03639045.2014.909840] [PMID: 24766553]
[141]
Sarmento, B.; Mazzaglia, D.; Bonferoni, M.C.; Neto, A.P.; do Céu Monteiro, M.; Seabra, V. Effect of chitosan coating in overcoming the phagocytosis of insulin loaded solid lipid nanoparticles by mononuclear phagocyte system. Carbohydr. Polym., 2011, 84(3), 919-925.
[http://dx.doi.org/10.1016/j.carbpol.2010.12.042]
[142]
Kadam, R.S.; Bourne, D.W.A.; Kompella, U.B. Nano-advantage in enhanced drug delivery with biodegradable nanoparticles: contribution of reduced clearance. Drug Metab. Dispos., 2012, 40(7), 1380-1388.
[http://dx.doi.org/10.1124/dmd.112.044925] [PMID: 22498894]
[143]
Qi, L.; Xu, Z.; Jiang, X.; Li, Y.; Wang, M. Cytotoxic activities of chitosan nanoparticles and copper-loaded nanoparticles. Bioorg. Med. Chem. Lett., 2005, 15(5), 1397-1399.
[http://dx.doi.org/10.1016/j.bmcl.2005.01.010] [PMID: 15713395]
[144]
Gratton, S.E.A.; Ropp, P.A.; Pohlhaus, P.D.; Luft, J.C.; Madden, V.J.; Napier, M.E.; DeSimone, J.M. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. USA, 2008, 105(33), 11613-11618.
[http://dx.doi.org/10.1073/pnas.0801763105] [PMID: 18697944]
[145]
Chirio, D.; Gallarate, M.; Peira, E.; Battaglia, L.; Muntoni, E.; Riganti, C.; Biasibetti, E.; Capucchio, M.T.; Valazza, A.; Panciani, P.; Lanotte, M.; Annovazzi, L.; Caldera, V.; Mellai, M.; Filice, G.; Corona, S.; Schiffer, D. Positive-charged solid lipid nanoparticles as paclitaxel drug delivery system in glioblastoma treatment. Eur. J. Pharm. Biopharm., 2014, 88(3), 746-758.
[http://dx.doi.org/10.1016/j.ejpb.2014.10.017] [PMID: 25445304]
[146]
Herrera, J.E.; Sakulchaicharoen, N. Microscopic and spectroscopic characterization of nanoparticles. In: Drug Delivery Nanoparticles Formulation and Characterization;; Pathak, Y.; Thassu, D., Eds.; Informa healthcare: New York,. , 2009, pp. 239-251.
[147]
Patel, M.R.; San Martin-Gonzalez, M.F. Characterization of ergocalciferol loaded solid lipid nanoparticles. J. Food Sci., 2012, 77(1), N8-N13.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02517.x] [PMID: 22260120]
[148]
Albanese, A.; Tang, P.S.; Chan, W.C.W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng., 2012, 14(1), 1-16.
[http://dx.doi.org/10.1146/annurev-bioeng-071811-150124] [PMID: 22524388]
[149]
Chithrani, B.D.; Chan, W.C.W. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett., 2007, 7(6), 1542-1550.
[http://dx.doi.org/10.1021/nl070363y] [PMID: 17465586]
[150]
Geng, Y.; Dalhaimer, P.; Cai, S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D.E. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol., 2007, 2(4), 249-255.
[http://dx.doi.org/10.1038/nnano.2007.70] [PMID: 18654271]
[151]
Tak, Y.K.; Pal, S.; Naoghare, P.K.; Rangasamy, S.; Song, J.M. Shape-dependent skin penetration of silver nanoparticles: does it really matter? Sci. Rep., 2015, 5, 16908.
[http://dx.doi.org/10.1038/srep16908] [PMID: 26584777]
[152]
Hilfiker, R.; von Raumer, M. Polymorphism in the Pharmaceutical Industry, Solid Form and Drug Development, 2nd ed; Wiley-VCH: Weinheim, Germany, 2019.
[153]
Domingues, M.A.F.; Ribeiro, A.P.B.; Kieckbusch, T.G.; Gioielli, L.A.; Grimaldi, R.; Cardoso, L.P.; Gonçalves, L.A.G. Advances in lipids crystallization technology. In: Advanced topics in crystallization,, 2015.
[http://dx.doi.org/10.5772/59767]
[154]
Vivek, K.; Reddy, H.; Murthy, R.S.R. Investigations of the effect of the lipid matrix on drug entrapment, in vitro release, and physical stability of olanzapine-loaded solid lipid nanoparticles. AAPS Pharm.Sci.Tech, 2007, 8(4) E83
[http://dx.doi.org/10.1208/pt0804083] [PMID: 18181544]
[155]
Jenning, V.; Schäfer-Korting, M.; Gohla, S. Vitamin A-loaded solid lipid nanoparticles for topical use: drug release properties. J. Control. Release, 2000, 66(2-3), 115-126.
[http://dx.doi.org/10.1016/s0168-3659(99)00223-0] [PMID: 10742573]
[156]
van Langevelde, A.; Van Malssen, K.; Peschar, R.; Schenk, H. Effect of temperature on recrystallization behavior of cocoa butter. J. Am. Oil Chem. Soc., 2001, 78(9), 919-925.
[http://dx.doi.org/10.1007/s11746-001-0364-2]
[157]
Muniz, F.T.L.; Miranda, M.A.R.; Morilla Dos Santos, C.; Sasaki, J.M. The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallogr. A Found. Adv., 2016, 72(Pt 3), 385-390.
[http://dx.doi.org/10.1107/S205327331600365X] [PMID: 27126115]
[158]
Bunjes, H.; Unruh, T. Characterization of lipid nanoparticles by differential scanning calorimetry, X-ray and neutron scattering. Adv. Drug Deliv. Rev., 2007, 59(6), 379-402.
[http://dx.doi.org/10.1016/j.addr.2007.04.013] [PMID: 17658653]
[159]
Attama, A.A.; Schicke, B.C.; Müller-Goymann, C.C. Further characterization of theobroma oil-beeswax admixtures as lipid matrices for improved drug delivery systems. Eur. J. Pharm. Biopharm., 2006, 64(3), 294-306.
[http://dx.doi.org/10.1016/j.ejpb.2006.06.010] [PMID: 16949805]
[160]
Mathias, N.R.; Hussain, M.A. Non-invasive systemic drug delivery: developability considerations for alternate routes of administration. J. Pharm. Sci., 2010, 99(1), 1-20.
[http://dx.doi.org/10.1002/jps.21793] [PMID: 19499570]
[161]
Horii, M.; Boyd, T.K.; Quade, B.J.; Crum, C.P.; Parast, M.M. Chapter 1 - Female Genital Tract Development and Disorders of Childhood in: Diagnostic Gynecologic and Obstetric Pathology, Third Edition; Crum, C.P; Nucci, M.R; Howitt, B.E.; Granter, S.R.; Boyd, T.K., Eds.; Content Repository Only! Philadelphia, 2018, p. 1-21.
[162]
de Araújo Pereira, R.R.; Bruschi, M.L. Vaginal mucoadhesive drug delivery systems. Drug Dev. Ind. Pharm., 2012, 38(6), 643-652.
[http://dx.doi.org/10.3109/03639045.2011.623355] [PMID: 21999572]
[163]
Mazloomdoost, D.; Westermann, L.B.; Mutema, G.; Crisp, C.C.; Kleeman, S.D.; Pauls, R.N. Histologic anatomy of the anterior vagina and urethra. Female Pelvic Med. Reconstr. Surg., 2017, 23(5), 329-335.
[http://dx.doi.org/10.1097/SPV.0000000000000387] [PMID: 28118170]
[164]
Brown, L. Pathology of the Vulva and Vagina; Springer London: London, 2012, p. 286.
[http://dx.doi.org/ 10.1007/978-0-85729-757-0]
[165]
Ferreira, D.M.; Bezerra, R.O.F.; Ortega, C.D.; Blasbalg, R.; Viana, P.C.C.; de Menezes, M.R.; Rocha, Mde.S. Magnetic resonance imaging of the vagina: an overview for radiologists with emphasis on clinical decision making. Radiol. Bras., 2015, 48(4), 249-259.
[http://dx.doi.org/10.1590/0100-3984.2013.1726] [PMID: 26379324]
[166]
Bray, R.; Derpapas, A.; Fernando, R.; Khullar, V.; Panayi, D.C. Does the vaginal wall become thinner as prolapse grade increases? Int. Urogynecol. J. Pelvic Floor Dysfunct., 2017, 28(3), 397-402.
[http://dx.doi.org/10.1007/s00192-016-3150-1] [PMID: 27678142]
[167]
Ensign, L.M.; Cone, R.; Hanes, J. Nanoparticle-based drug delivery to the vagina: a review. J. Control. Release, 2014, 190, 500-514.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.033] [PMID: 24830303]
[168]
El-Hammadi, M.M.; Arias, J.L. Nano-sized platforms for vaginal drug delivery. Curr. Pharm. Des., 2015, 21(12), 1633-1644.
[http://dx.doi.org/10.2174/1381612820666141029150427] [PMID: 25354177]
[169]
Machado, R.M.; Palmeira-de-Oliveira, A.; Martinez-de-Oliveira, J.; Palmeira-de-Oliveira, R. Vaginal semisolid products: Technological performance considering physiologic parameters. Eur. J. Pharm. Sci., 2017, 109, 556-568.
[http://dx.doi.org/10.1016/j.ejps.2017.09.009] [PMID: 28887234]
[170]
Indurkhya, A.; Patel, M.; Sharma, P.; Abed, S.N.; Shnoudeh, A.; Maheshwari, R.; Deb, P.K.; Tekade, R.K. Influence of drug properties and routes of drug administration on the design of controlled release system. In: Dosage Form Design Considerations; Tekade, R.K., Ed.; Academic Press, 2018, pp. 179-223.
[http://dx.doi.org/10.1016/B978-0-12-814423-7.00006-X]
[171]
Antimisiaris, S.G.; Mourtas, S. Recent advances on anti-HIV vaginal delivery systems development. Adv. Drug Deliv. Rev., 2015, 92, 123-145.
[http://dx.doi.org/10.1016/j.addr.2015.03.015] [PMID: 25858666]
[172]
Palmeira-de-Oliveira, R.; Duarte, P.; Palmeira-de-Oliveira, A.; das Neves, J.; Amaral, M.H.; Breitenfeld, L.; Martinez-de-Oliveira, J. Women’s experiences, preferences and perceptions regarding vaginal products: Results from a cross-sectional web-based survey in Portugal. Eur. J. Contracept. Reprod. Health Care, 2015, 20(4), 259-271.
[http://dx.doi.org/10.3109/13625187.2014.980501] [PMID: 25529320]
[173]
Gupta, S.; Gabrani, R.; Ali, J.; Dang, S. Exploring novel approaches to vaginal drug delivery. Recent Pat. Drug Deliv. Formul., 2011, 5(2), 82-94.
[http://dx.doi.org/10.2174/187221111795471418] [PMID: 21413924]
[174]
Acartürk, F. Mucoadhesive vaginal drug delivery systems. Recent Pat. Drug Deliv. Formul., 2009, 3(3), 193-205.
[http://dx.doi.org/10.2174/187221109789105658] [PMID: 19925443]
[175]
Caramella, C.M.; Rossi, S.; Ferrari, F.; Bonferoni, M.C.; Sandri, G. Mucoadhesive and thermogelling systems for vaginal drug delivery. Adv. Drug Deliv. Rev., 2015, 92, 39-52.
[http://dx.doi.org/10.1016/j.addr.2015.02.001] [PMID: 25683694]
[176]
Vanić, Ž.; Škalko-Basnet, N. Nanopharmaceuticals for improved topical vaginal therapy: can they deliver? Eur. J. Pharm. Sci., 2013, 50(1), 29-41.
[http://dx.doi.org/10.1016/j.ejps.2013.04.035] [PMID: 23684936]
[177]
Hainer, B.L.; Gibson, M.V. Vaginitis. Am. Fam. Physician, 2011, 83(7), 807-815.
[PMID: 21524046]
[178]
Johal, H.S.; Garg, T.; Rath, G.; Goyal, A.K. Advanced topical drug delivery system for the management of vaginal candidiasis. Drug Deliv., 2016, 23(2), 550-563.
[http://dx.doi.org/10.3109/10717544.2014.928760] [PMID: 24959937]
[179]
Andersen, T.; Bleher, S.; Eide Flaten, G.; Tho, I.; Mattsson, S.; Škalko-Basnet, N. Chitosan in mucoadhesive drug delivery: focus on local vaginal therapy. Mar. Drugs, 2015, 13(1), 222-236.
[http://dx.doi.org/10.3390/md13010222] [PMID: 25574737]
[180]
Wu, L.; Liu, M.; Zhu, X.; Shan, W.; Huang, Y. Modification strategies of lipid-based nanocarriers for mucosal drug delivery. Curr. Pharm. Des., 2015, 21(36), 5198-5211.
[http://dx.doi.org/10.2174/1381612821666150923103000] [PMID: 26412355]
[181]
Yoo, J-W.; Giri, N.; Lee, C.H. pH-sensitive Eudragit nanoparticles for mucosal drug delivery. Int. J. Pharm., 2011, 403(1-2), 262-267.
[http://dx.doi.org/10.1016/j.ijpharm.2010.10.032] [PMID: 20971177]
[182]
J.; Nunes, R.; Machado, A.; Sarmento, B., Polymer-based nanocarriers for vaginal drug delivery. Adv. Drug Deliv. Rev., 2015, 92, 53-70.
[http://dx.doi.org/10.1016/j.addr.2014.12.004]
[183]
Ravani, L.; Esposito, E.; Bories, C.; Moal, V.L-L.; Loiseau, P.M.; Djabourov, M.; Cortesi, R.; Bouchemal, K. Clotrimazole-loaded nanostructured lipid carrier hydrogels: thermal analysis and in vitro studies. Int. J. Pharm., 2013, 454(2), 695-702.
[http://dx.doi.org/10.1016/j.ijpharm.2013.06.015] [PMID: 23792467]
[184]
Esposito, E.; Ravani, L.; Contado, C.; Costenaro, A.; Drechsler, M.; Rossi, D.; Menegatti, E.; Grandini, A.; Cortesi, R. Clotrimazole nanoparticle gel for mucosal administration. Mater. Sci. Eng. C, 2013, 33(1), 411-418.
[http://dx.doi.org/10.1016/j.msec.2012.09.007] [PMID: 25428089]
[185]
Patel, V.F.; Liu, F.; Brown, M.B. Modeling the oral cavity: in vitro and in vivo evaluations of buccal drug delivery systems. J. Control. Release, 2012, 161(3), 746-756.
[http://dx.doi.org/10.1016/j.jconrel.2012.05.026] [PMID: 22626941]
[186]
Patel, V.F.; Liu, F.; Brown, M.B. Advances in oral transmucosal drug delivery. J. Control. Release, 2011, 153(2), 106-116.
[http://dx.doi.org/10.1016/j.jconrel.2011.01.027] [PMID: 21300115]
[187]
Scholz, O.A.; Wolff, A.; Schumacher, A.; Giannola, L.I.; Campisi, G.; Ciach, T.; Velten, T. Drug delivery from the oral cavity: focus on a novel mechatronic delivery device. Drug Discov. Today, 2008, 13(5-6), 247-253.
[http://dx.doi.org/10.1016/j.drudis.2007.10.018] [PMID: 18342801]
[188]
Sattar, M.; Sayed, O.M.; Lane, M.E. Oral transmucosal drug delivery--current status and future prospects. Int. J. Pharm., 2014, 471(1-2), 498-506.
[http://dx.doi.org/10.1016/j.ijpharm.2014.05.043] [PMID: 24879936]
[189]
Kraan, H.; Vrieling, H.; Czerkinsky, C.; Jiskoot, W.; Kersten, G.; Amorij, J-P. Buccal and sublingual vaccine delivery. J. Control. Release, 2014, 190, 580-592.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.060] [PMID: 24911355]
[190]
Hearnden, V.; Sankar, V.; Hull, K.; Juras, D.V.; Greenberg, M.; Kerr, A.R.; Lockhart, P.B.; Patton, L.L.; Porter, S.; Thornhill, M.H. New developments and opportunities in oral mucosal drug delivery for local and systemic disease. Adv. Drug Deliv. Rev., 2012, 64(1), 16-28.
[http://dx.doi.org/10.1016/j.addr.2011.02.008] [PMID: 21371513]
[191]
Salamat-Miller, N.; Chittchang, M.; Johnston, T.P. The use of mucoadhesive polymers in buccal drug delivery. Adv. Drug Deliv. Rev., 2005, 57(11), 1666-1691.
[http://dx.doi.org/10.1016/j.addr.2005.07.003] [PMID: 16183164]
[192]
Repka, M.A.; Chen, L.L.; Chan, R.S. Buccal Drug Delivery. Controlled Release in Oral Drug Delivery; Wilson, C.G; Crowley, P.J., Ed.; Springer: New York, 2010, pp. 329-359.
[193]
Vasir, J.K.; Tambwekar, K.; Garg, S. Bioadhesive microspheres as a controlled drug delivery system. Int. J. Pharm., 2003, 255(1-2), 13-32.
[http://dx.doi.org/10.1016/S0378-5173(03)00087-5] [PMID: 12672598]
[194]
Sudhakar, Y.; Kuotsu, K.; Bandyopadhyay, A.K. Buccal bioadhesive drug delivery--a promising option for orally less efficient drugs. J. Control. Release, 2006, 114(1), 15-40.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.012] [PMID: 16828915]
[195]
Paderni, C.; Compilato, D.; Giannola, L.I.; Campisi, G. Oral local drug delivery and new perspectives in oral drug formulation. Oral Surg. Oral Med. Oral Pathol. Oral Radiol., 2012, 114(3), e25-e34.
[http://dx.doi.org/10.1016/j.oooo.2012.02.016] [PMID: 22771408]
[196]
Madhav, N.V.S.; Shakya, A.K.; Shakya, P.; Singh, K. Orotransmucosal drug delivery systems: a review. J. Control. Release, 2009, 140(1), 2-11.
[http://dx.doi.org/10.1016/j.jconrel.2009.07.016] [PMID: 19665039]
[197]
Farnaud, S.J.C.; Kosti, O.; Getting, S.J.; Renshaw, D. Saliva: physiology and diagnostic potential in health and disease. Sci. World J., 2010, 10, 434-456.
[http://dx.doi.org/10.1100/tsw.2010.38] [PMID: 20305986]
[198]
Bradway, S.D.; Bergey, E.J.; Jones, P.C.; Levine, M.J. Oral mucosal pellicle. Adsorption and transpeptidation of salivary components to buccal epithelial cells. Biochem. J., 1989, 261(3), 887-896.
[http://dx.doi.org/10.1042/bj2610887] [PMID: 2572218]
[199]
Collins, L.M.C.; Dawes, C. The surface area of the adult human mouth and thickness of the salivary film covering the teeth and oral mucosa. J. Dent. Res., 1987, 66(8), 1300-1302.
[http://dx.doi.org/10.1177/00220345870660080201] [PMID: 3476596]
[200]
Hombach, J.; Bernkop-Schnürch, A. Mucoadhesive Drug Delivery Systems. Drug Delivery; Schäfer-Korting, M; Heidelberg, S.B., Ed.; Berlin, Heidelberg, 2010, pp. 251-266.
[201]
Carvalho, F.C.; Chorilli, M.; Gremião, M.P.D. Plataformas bio(muco) adesivas poliméricas baseadas em nanotecnologia para liberação controlada de fármacos - propriedades, metodologias e aplicações. Polímeros, 2014, 24, 203-213.
[http://dx.doi.org/10.4322/polimeros.2014.043]
[202]
Serra, L.; Doménech, J.; Peppas, N.A. Engineering design and molecular dynamics of mucoadhesive drug delivery systems as targeting agents. Eur. J. Pharm. Biopharm., 2009, 71(3), 519-528.
[http://dx.doi.org/10.1016/j.ejpb.2008.09.022] [PMID: 18976706]
[203]
Hao, J.; Heng, P.W.S. Buccal delivery systems. Drug Dev. Ind. Pharm., 2003, 29(8), 821-832.
[http://dx.doi.org/10.1081/DDC-120024178] [PMID: 14570303]
[204]
Smart, J.D. The basics and underlying mechanisms of mucoadhesion. Adv. Drug Deliv. Rev., 2005, 57(11), 1556-1568.
[http://dx.doi.org/10.1016/j.addr.2005.07.001] [PMID: 16198441]
[205]
Ahuja, A.; Khar, R.K.; Ali, J. Mucoadhesive drug delivery systems. Drug Dev. Ind. Pharm., 1997, 23(5), 489-515.
[http://dx.doi.org/10.3109/03639049709148498]
[206]
Carvalho, F.C.; Bruschi, M.L.; Evangelista, R.C.; Gremião, M.P.D. Mucoadhesive drug delivery systems. Braz. J. Pharm. Sci., 2010, 46, 1-17.
[http://dx.doi.org/10.1590/S1984-82502010000100002]
[207]
Jiménez-castellanos, M.R.; Zia, H.; Rhodes, C.T. Mucoadhesive drug delivery systems. Drug Dev. Ind. Pharm., 1993, 19(1-2), 143-194.
[http://dx.doi.org/10.3109/03639049309038765]
[208]
Boddupalli, B.M.; Mohammed, Z.N.K.; Nath, R.A.; Banji, D. Mucoadhesive drug delivery system: An overview. J. Adv. Pharm. Technol. Res., 2010, 1(4), 381-387.
[http://dx.doi.org/10.4103/0110-5558.76436] [PMID: 22247877]
[209]
Shaikh, R.; Raj Singh, T.R.; Garland, M.J.; Woolfson, A.D.; Donnelly, R.F. Mucoadhesive drug delivery systems. J. Pharm. Bioallied Sci., 2011, 3(1), 89-100.
[http://dx.doi.org/10.4103/0975-7406.76478] [PMID: 21430958]
[210]
Peppas, N.A.; Sahlin, J.J. Hydrogels as mucoadhesive and bioadhesive materials: a review. Biomaterials, 1996, 17(16), 1553-1561.
[http://dx.doi.org/10.1016/0142-9612(95)00307-X] [PMID: 8842358]
[211]
Kaelble, D.H.; Moacanin, J. A surface energy analysis of bioadhesion. Polymer (Guildf.), 1977, 18(5), 475-482.
[http://dx.doi.org/10.1016/0032-3861(77)90164-1]
[212]
Lehr, C.M.; Bouwstra, J.A.; Boddé, H.E.; Junginger, H.E. A surface energy analysis of mucoadhesion: contact angle measurements on polycarbophil and pig intestinal mucosa in physiologically relevant fluids. Pharm. Res., 1992, 9(1), 70-75.
[http://dx.doi.org/10.1023/A:1018931811189] [PMID: 1589412]
[213]
Lehr, C-M.; Boddé, H.E.; Bouwstra, J.A.; Junginger, H.E. A surface energy analysis of mucoadhesion II. Prediction of mucoadhesive performance by spreading coefficients. Eur. J. Pharm. Sci., 1993, 1(1), 19-30.
[http://dx.doi.org/10.1016/0928-0987(93)90014-2]
[214]
Andrews, G.P.; Laverty, T.P.; Jones, D.S. Mucoadhesive polymeric platforms for controlled drug delivery. Eur. J. Pharm. Biopharm., 2009, 71(3), 505-518.
[http://dx.doi.org/10.1016/j.ejpb.2008.09.028] [PMID: 18984051]
[215]
J, Sarmento, B. Mucosal Delivery of Biopharmaceuticals: Biology, Challenges and Strategies; Springer: New York, 2014, p. 601.
[216]
Dünnhaupt, S.; Kammona, O.; Waldner, C.; Kiparissides, C.; Bernkop-Schnürch, A. Nano-carrier systems: Strategies to overcome the mucus gel barrier. Eur. J. Pharm. Biopharm., 2015, 96, 447-453.
[http://dx.doi.org/10.1016/j.ejpb.2015.01.022] [PMID: 25712487]
[217]
Liu, M.; Zhang, J.; Shan, W.; Huang, Y. Developments of mucus penetrating nanoparticles. Asian Journal of Pharmaceutical Sciences, 2015, 10(4), 275-282.
[http://dx.doi.org/10.1016/j.ajps.2014.12.007]
[218]
Sosnik, A. das Neves, J.; Sarmento, B., Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: a review. Prog. Polym. Sci., 2014, 39(12), 2030-2075.
[http://dx.doi.org/10.1016/j.progpolymsci.2014.07.010]
[219]
Lai, S.K.; Wang, Y-Y.; Hanes, J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev., 2009, 61(2), 158-171.
[http://dx.doi.org/10.1016/j.addr.2008.11.002] [PMID: 19133304]
[220]
Fonte, P.; Nogueira, T.; Gehm, C.; Ferreira, D.; Sarmento, B. Chitosan-coated solid lipid nanoparticles enhance the oral absorption of insulin. Drug Deliv. Transl. Res., 2011, 1(4), 299-308.
[http://dx.doi.org/10.1007/s13346-011-0023-5] [PMID: 25788364]
[221]
Ramalingam, P.; Yoo, S.W.; Ko, Y.T. Nanodelivery systems based on mucoadhesive polymer coated solid lipid nanoparticles to improve the oral intake of food curcumin. Food Res. Int., 2016, 84, 113-119.
[http://dx.doi.org/10.1016/j.foodres.2016.03.031]
[222]
de Freitas, L.M.; Calixto, G.M.F.; Chorilli, M.; Giusti, J.S.M.; Bagnato, V.S.; Soukos, N.S.; Amiji, M.M.; Fontana, C.R. Polymeric nanoparticle-based photodynamic therapy for chronic periodontitis in Vivo. Int. J. Mol. Sci., 2016, 17(5)E769
[http://dx.doi.org/10.3390/ijms17050769] [PMID: 27213356]
[223]
Benergossi, J.; Calixto, G.; Fonseca-Santos, B.; Aida, K.L.; de Cássia Negrini, T.; Duque, C.; Gremião, M.P.D.; Chorilli, M. Highlights in peptide nanoparticle carriers intended to oral diseases. Curr. Top. Med. Chem., 2015, 15(4), 345-355.
[http://dx.doi.org/10.2174/1568026615666150108125040] [PMID: 25579347]
[224]
Calixto, G.; Bernegossi, J.; Fonseca-Santos, B.; Chorilli, M. Nanotechnology-based drug delivery systems for treatment of oral cancer: a review. Int. J. Nanomedicine, 2014, 9(1), 3719-3735.
[http://dx.doi.org/10.2147/IJN.S61670] [PMID: 25143724]
[225]
Allen, L.; Ansel, H.C. Ansel’s pharmaceutical dosage forms and drug delivery systems; 10th ed; Wolters Kluwer Health: Baltmore, 2013, p. 794
[226]
Gibson, M. Pharmaceutical preformulation and formulation: A practical guide from candidate drug selection to commercial dosage form; Informa Healthcare: New York, 2009, p. 541.
[227]
Wiechers, J.W. The barrier function of the skin in relation to percutaneous absorption of drugs. Pharm. Weekbl. Sci., 1989, 11(6), 185-198.
[http://dx.doi.org/10.1007/BF01959410] [PMID: 2694089]
[228]
Barry, B.W. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur. J. Pharm. Sci., 2001, 14(2), 101-114.
[http://dx.doi.org/10.1016/S0928-0987(01)00167-1] [PMID: 11500256]
[229]
Benson, H.A.E. Skin structure, function, and permeation in: Transdermal and topical drug delivery principles and practice; Benson, H.A.E; Watkinson, A.C., Ed.; Wiley: Hoboken, 2012, pp. 3-22.
[230]
Bhowmick, M.; Sengodan, T. Mechanisms, kinetics and mathematical modelling of transdermal permeation- an updated review. International Journal of Research and Development in Pharmacy and Life Sciences., 2013, 2(6), 636-641.
[231]
Knorr, F.; Lademann, J.; Patzelt, A.; Sterry, W.; Blume-Peytavi, U.; Vogt, A. Follicular transport route--research progress and future perspectives. Eur. J. Pharm. Biopharm., 2009, 71(2), 173-180.
[http://dx.doi.org/10.1016/j.ejpb.2008.11.001] [PMID: 19041720]
[232]
Lane, M.E.; Santos, P.; Watkinson, A.C.; Hadgraft, J. Passive skin permeation enhancement in: Transdermal and topical drug delivery principles and practice; Benson, H.A.E; Watkinson, A.C., Ed.; Wiley: Hoboken, 2012, pp. 23-42.
[233]
Küchler, S.; Herrmann, W.; Panek-Minkin, G.; Blaschke, T.; Zoschke, C.; Kramer, K.D.; Bittl, R.; Schäfer-Korting, M. SLN for topical application in skin diseases--characterization of drug-carrier and carrier-target interactions. Int. J. Pharm., 2010, 390(2), 225-233.
[http://dx.doi.org/10.1016/j.ijpharm.2010.02.004] [PMID: 20153414]
[234]
Küchler, S.; Radowski, M.R.; Blaschke, T.; Dathe, M.; Plendl, J.; Haag, R.; Schäfer-Korting, M.; Kramer, K.D. Nanoparticles for skin penetration enhancement--a comparison of a dendritic core-multishell-nanotransporter and solid lipid nanoparticles. Eur. J. Pharm. Biopharm., 2009, 71(2), 243-250.
[http://dx.doi.org/10.1016/j.ejpb.2008.08.019] [PMID: 18796329]
[235]
Kuntsche, J.; Bunjes, H.; Fahr, A.; Pappinen, S.; Rönkkö, S.; Suhonen, M.; Urtti, A. Interaction of lipid nanoparticles with human epidermis and an organotypic cell culture model. Int. J. Pharm., 2008, 354(1-2), 180-195.
[http://dx.doi.org/10.1016/j.ijpharm.2007.08.028] [PMID: 17920216]
[236]
Mak, W.C.; Patzelt, A.; Richter, H.; Renneberg, R.; Lai, K.K.; Rühl, E.; Sterry, W.; Lademann, J. Triggering of drug release of particles in hair follicles. J. Control. Release, 2012, 160(3), 509-514.
[http://dx.doi.org/10.1016/j.jconrel.2012.04.007] [PMID: 22516090]
[237]
Lademann, J.; Richter, H.; Teichmann, A.; Otberg, N.; Blume-Peytavi, U.; Luengo, J.; Weiss, B.; Schaefer, U.F.; Lehr, C-M.; Wepf, R.; Sterry, W. Nanoparticles--an efficient carrier for drug delivery into the hair follicles. Eur. J. Pharm. Biopharm., 2007, 66(2), 159-164.
[http://dx.doi.org/10.1016/j.ejpb.2006.10.019] [PMID: 17169540]
[238]
Mak, W.C.; Richter, H.; Patzelt, A.; Sterry, W.; Lai, K.K.; Renneberg, R.; Lademann, J. Drug delivery into the skin by degradable particles. Eur. J. Pharm. Biopharm., 2011, 79(1), 23-27.
[http://dx.doi.org/10.1016/j.ejpb.2011.03.021] [PMID: 21457780]
[239]
Lauterbach, A.; Müller-Goymann, C. C. Applications and limitations of lipid nanoparticles in dermal and transdermal drug delivery via the follicular route Eur. J. Pharm. Biopharm.,, 2015, 97(Part A), 152-163.
[http://dx.doi.org/10.1016/j.ejpb.2015.06.020] [PMID: 26144664]
[240]
Fang, C.L.; Aljuffali, I.A.; Li, Y.C.; Fang, J.Y. Delivery and targeting of nanoparticles into hair follicles. Ther. Deliv., 2014, 5(9), 991-1006.
[http://dx.doi.org/10.4155/tde.14.61] [PMID: 25375342]
[241]
Schäfer-Korting, M.; Mehnert, W.; Korting, H-C. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv. Drug Deliv. Rev., 2007, 59(6), 427-443.
[http://dx.doi.org/10.1016/j.addr.2007.04.006] [PMID: 17544165]
[242]
Saez, V.; Souza, I.D.L.; Mansur, C.R.E. Lipid nanoparticles (SLN & NLC) for delivery of vitamin E: a comprehensive review. Int. J. Cosmet. Sci., 2018, 40(2), 103-116.
[http://dx.doi.org/10.1111/ics.12452] [PMID: 29505675]
[243]
Sharma, A.; Madhunapantula, S.V.; Robertson, G.P. Toxicological considerations when creating nanoparticle-based drugs and drug delivery systems. Expert Opin. Drug Metab. Toxicol., 2012, 8(1), 47-69.
[http://dx.doi.org/10.1517/17425255.2012.637916] [PMID: 22097965]
[244]
Yang, Y.; Qin, Z.; Zeng, W.; Yang, T.; Cao, Y.; Mei, C.; Kuang, Y. Toxicity assessment of nanoparticles in various systems and organs. Nanotechnol. Rev., 2017, 6, 279.
[http://dx.doi.org/10.1515/ntrev-2016-0047]
[245]
Severino, P.; Andreani, T.; Macedo, A.S.; Fangueiro, J.F.; Santana, M.H.A.; Silva, A.M.; Souto, E.B. Current state-of-art and new trends on lipid nanoparticles (SLN and NLC) for oral drug delivery. J. Drug Deliv., 2012, 2012 750891
[http://dx.doi.org/10.1155/2012/750891] [PMID: 22175030]
[246]
Jones, C.F.; Grainger, D.W. In vitro assessments of nanomaterial toxicity. Adv. Drug Deliv. Rev., 2009, 61(6), 438-456.
[http://dx.doi.org/10.1016/j.addr.2009.03.005] [PMID: 19383522]
[247]
Kaul, S.; Gulati, N.; Verma, D.; Mukherjee, S.; Nagaich, U. Role of nanotechnology in cosmeceuticals: a review of recent advances. J. Pharm. (Cairo), 2018, 2018, 3420204-3420204.
[http://dx.doi.org/10.1155/2018/3420204] [PMID: 29785318]
[248]
Auletta, C.S. Current in vivo assays for cutaneous toxicity: local and systemic toxicity testing. Basic Clin. Pharmacol. Toxicol., 2004, 95(5), 201-208.
[http://dx.doi.org/10.1111/j.1742-7843.2004.pto950501.x] [PMID: 15546473]
[249]
Roguet, R. Use of skin cell cultures for in vitro assessment of corrosion and cutaneous irritancy. Cell Biol. Toxicol., 1999, 15(1), 63-75.
[http://dx.doi.org/10.1023/A:1007506824183] [PMID: 10195352]
[250]
Rocha, V.; Marques, C.; Figueiredo, J.L.; Gaio, A.R.; Costa, P.C.; Sousa Lobo, J.M.; Almeida, I.F. In vitro cytotoxicity evaluation of resveratrol-loaded nanoparticles: Focus on the challenges of in vitro methodologies. Food Chem. Toxicol., 2017, 103, 214-222.
[http://dx.doi.org/10.1016/j.fct.2017.03.017] [PMID: 28288928]
[251]
Silva, E.; Barreiros, L.; Segundo, M.A.; Costa Lima, S.A.; Reis, S. Cellular interactions of a lipid-based nanocarrier model with human keratinocytes: Unravelling transport mechanisms. Acta Biomater., 2017, 53, 439-449.
[http://dx.doi.org/10.1016/j.actbio.2017.01.057] [PMID: 28119111]
[252]
Amasya, G.; Sandri, G.; Onay-Besikci, A.; Badilli, U.; Caramella, C.; Bonferoni, M.C.; Tarimci, N. Skin localization of lipid nanoparticles (SLN/NLC): focusing the influence of formulation parameters. Curr. Drug Deliv., 2016, 13(7), 1100-1110.
[http://dx.doi.org/10.2174/1567201813666160104130505] [PMID: 26725723]
[253]
Garg, N.K.; Tyagi, R.K.; Singh, B.; Sharma, G.; Nirbhavane, P.; Kushwah, V.; Jain, S.; Katare, O.P. Nanostructured lipid carrier mediates effective delivery of methotrexate to induce apoptosis of rheumatoid arthritis via NF-κB and FOXO1. Int. J. Pharm., 2016, 499(1-2), 301-320.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.061] [PMID: 26768725]
[254]
Baek, J.S.; Pham, C.V.; Myung, C.S.; Cho, C.W. Tadalafil-loaded nanostructured lipid carriers using permeation enhancers. Int. J. Pharm., 2015, 495(2), 701-709.
[http://dx.doi.org/10.1016/j.ijpharm.2015.09.054] [PMID: 26423175]
[255]
Venturini, C.G.; Bruinsmann, F.A.; Contri, R.V.; Fonseca, F.N.; Frank, L.A.; D’Amore, C.M.; Raffin, R.P.; Buffon, A.; Pohlmann, A.R.; Guterres, S.S. Co-encapsulation of imiquimod and copaiba oil in novel nanostructured systems: promising formulations against skin carcinoma. Eur. J. Pharm. Sci., 2015, 79, 36-43.
[http://dx.doi.org/10.1016/j.ejps.2015.08.016] [PMID: 26342772]
[256]
Netto MPharm, G.; Jose, J. Development, characterization, and evaluation of sunscreen cream containing solid lipid nanoparticles of silymarin. J. Cosmet. Dermatol., 2018, 17(6), 1073-1083.
[http://dx.doi.org/10.1111/jocd.12470] [PMID: 29226503]
[257]
Castro, G.A.; Oliveira, C.A.; Mahecha, G.A.B.; Ferreira, L.A.M. Comedolytic effect and reduced skin irritation of a new formulation of all-trans retinoic acid-loaded solid lipid nanoparticles for topical treatment of acne. Arch. Dermatol. Res., 2011, 303(7), 513-520.
[http://dx.doi.org/10.1007/s00403-011-1130-3] [PMID: 21298279]
[258]
Mangesh, B.R.; Prashant, U.; Ashwini, M. Solid lipid nanoparticles incorporated transdermal patch for improving the permeation of piroxicam. Asian Journal of Pharmaceutics, 2016, 10(1), 45-50.
[259]
Harde, H.; Agrawal, A.K.; Katariya, M.; Kale, D.; Jain, S. Development of a topical adapalene-solid lipid nanoparticle loaded gel with enhanced efficacy and improved skin tolerability. RSC Advances, 2015, 5(55), 43917-43929.
[http://dx.doi.org/10.1039/C5RA06047H]
[260]
Wolf, N.B.; Küchler, S.; Radowski, M.R.; Blaschke, T.; Kramer, K.D.; Weindl, G.; Kleuser, B.; Haag, R.; Schäfer-Korting, M. Influences of opioids and nanoparticles on in vitro wound healing models. Eur. J. Pharm. Biopharm., 2009, 73(1), 34-42.
[http://dx.doi.org/10.1016/j.ejpb.2009.03.009] [PMID: 19344759]
[261]
Gilleron, L.; Coecke, S.; Sysmans, M.; Hansen, E.; van Oproy, S.; Marzin, D.; van Cauteren, H.; Vanparys, P. Evaluation of the HET-CAM-TSA method as an alternative to the draize eye irritation test. Toxicol. In Vitro, 1997, 11(5), 641-644.
[http://dx.doi.org/10.1016/S0887-2333(97)00074-X] [PMID: 20654364]
[262]
Wilson, T.D.; Steck, W.F. A modified HET-CAM assay approach to the assessment of anti-irritant properties of plant extracts. Food Chem. Toxicol., 2000, 38(10), 867-872.
[PMID: 11039320]
[263]
Lee, M.; Hwang, J-H.; Lim, K-M. Alternatives to in vivo draize rabbit eye and skin irritation tests with a focus on 3D reconstructed human cornea-like epithelium and epidermis models. Toxicol. Res., 2017, 33(3), 191-203.
[http://dx.doi.org/10.5487/TR.2017.33.3.191] [PMID: 28744350]
[264]
Mehling, A.; Kleber, M.; Hensen, H. Comparative studies on the ocular and dermal irritation potential of surfactants. Food Chem. Toxicol., 2007, 45(5), 747-758.
[http://dx.doi.org/10.1016/j.fct.2006.10.024] [PMID: 17169473]
[265]
Steiling, W.; Bracher, M.; Courtellemont, P.; de Silva, O. The HET-CAM, a useful in vitro assay for assessing the eye irritation properties of cosmetic formulations and ingredients. Toxicol. In Vitro, 1999, 13(2), 375-384.
[http://dx.doi.org/10.1016/S0887-2333(98)00091-5] [PMID: 20654494]
[266]
Almeida, H.; Lobão, P.; Frigerio, C.; Fonseca, J.; Silva, R.; Palmeira-de-Oliveira, A.; Lobo, J.M.; Amaral, M.H. New thermoresponsive eye drop formulation containing ibuprofen loaded-nanostructured lipid carriers (NLC): development, characterization and biocompatibility studies. Curr. Drug Deliv., 2016, 13(6), 953-970.
[http://dx.doi.org/10.2174/1567201813666151111143434] [PMID: 26502890]
[267]
Kumar, R.; Sinha, V.R. Solid lipid nanoparticle: an efficient carrier for improved ocular permeation of voriconazole. Drug Dev. Ind. Pharm., 2016, 42(12), 1956-1967.
[http://dx.doi.org/10.1080/03639045.2016.1185437] [PMID: 27143048]
[268]
Cole, P. The four components of the nasal valve. Am. J. Rhinol., 2003, 17(2), 107-110.
[http://dx.doi.org/10.1177/194589240301700208] [PMID: 12751706]
[269]
Vidgren, M.T.; Kublik, H. Nasal delivery systems and their effect on deposition and absorption. Adv. Drug Deliv. Rev., 1998, 29(1-2), 157-177.
[http://dx.doi.org/10.1016/S0169-409X(97)00067-7] [PMID: 10837586]
[270]
Bitter, C.; Suter-Zimmermann, K.; Surber, C. Nasal drug delivery in humans. Curr. Probl. Dermatol., 2011, 40, 20-35.
[http://dx.doi.org/10.1159/000321044] [PMID: 21325837]
[271]
Pires, A.; Fortuna, A.; Alves, G.; Falcão, A. Intranasal drug delivery: how, why and what for? J. Pharm. Pharm. Sci., 2009, 12(3), 288-311.
[http://dx.doi.org/10.18433/j3nc79] [PMID: 20067706]
[272]
Ghori, M.U.; Mahdi, M.H.; Smith, A.M.; Conway, B.R. Nasal drug delivery systems: an overview. Am. J. Pharmacol. Sci., 2015, 3(5), 110-119.
[273]
Türker, S.; Onur, E.; Ózer, Y. Nasal route and drug delivery systems. Pharm. World Sci., 2004, 26(3), 137-142.
[http://dx.doi.org/10.1023/B:PHAR.0000026823.82950.ff] [PMID: 15230360]
[274]
Costantino, H.R.; Illum, L.; Brandt, G.; Johnson, P.H.; Quay, S.C. Intranasal delivery: physicochemical and therapeutic aspects. Int. J. Pharm., 2007, 337(1-2), 1-24.
[http://dx.doi.org/10.1016/j.ijpharm.2007.03.025] [PMID: 17475423]
[275]
Illum, L. Nasal drug delivery--possibilities, problems and solutions. J. Control. Release, 2003, 87(1-3), 187-198.
[http://dx.doi.org/10.1016/S0168-3659(02)00363-2] [PMID: 12618035]
[276]
Illum, L. Nasal drug delivery - recent developments and future prospects. J. Control. Release, 2012, 161(2), 254-263.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.024] [PMID: 22300620]
[277]
Aulton, M.E.; Taylor, K.M.G. Aulton’s Pharmaceutics: The Design and Manufacture of Medicines, 4th ed; Churchill Livingstone: London, 2013.
[278]
Ugwoke, M.I.; Verbeke, N.; Kinget, R. The biopharmaceutical aspects of nasal mucoadhesive drug delivery. J. Pharm. Pharmacol., 2001, 53(1), 3-21.
[http://dx.doi.org/10.1211/0022357011775145] [PMID: 11206189]
[279]
Lochhead, J.J.; Thorne, R.G. Intranasal delivery of biologics to the central nervous system. Adv. Drug Deliv. Rev., 2012, 64(7), 614-628.
[http://dx.doi.org/10.1016/j.addr.2011.11.002] [PMID: 22119441]
[280]
Serwer, L.P.; James, C.D. Challenges in drug delivery to tumors of the central nervous system: an overview of pharmacological and surgical considerations. Adv. Drug Deliv. Rev., 2012, 64(7), 590-597.
[http://dx.doi.org/10.1016/j.addr.2012.01.004] [PMID: 22306489]
[281]
Singh, A.K.; Singh, A.; Madhv, N.V.S. Nasal cavity, a promising transmucosal platform for drug delivery and research approaches from nasal to brain targeting. J. Drug Deliv. Ther., 2012, 2(3), 22-33.
[http://dx.doi.org/10.22270/jddt.v2i3.163]
[282]
Romeo, V.D.; deMeireles, J.; Sileno, A.P.; Pimplaskar, H.K.; Behl, C.R. Effects of physicochemical properties and other factors on systemic nasal drug delivery. Adv. Drug Deliv. Rev., 1998, 29(1-2), 89-116.
[http://dx.doi.org/10.1016/S0169-409X(97)00063-X] [PMID: 10837582]
[283]
Kisan, R.J.; Manoj, N.G.; Ishaque, M.S.; Vilarsrao, J.K.; Sambjahi, S.P. Nasal drug delivery system-factors affecting and applications. Curr. Drug Ther., 2007, 2(1), 27-38.
[http://dx.doi.org/10.2174/157488507779422374]
[284]
Sakloetsakun, D.; Perera, G.; Hombach, J.; Millotti, G.; Bernkop-Schnürch, A. The impact of vehicles on the mucoadhesive properties of orally administrated nanoparticles: a case study with chitosan-4-thiobutylamidine conjugate. AAPS PharmSciTech, 2010, 11(3), 1185-1192.
[http://dx.doi.org/10.1208/s12249-010-9479-8] [PMID: 20668967]
[285]
Park, J.S.; Oh, Y.K.; Yoon, H.; Kim, J.M.; Kim, C.K. In situ gelling and mucoadhesive polymer vehicles for controlled intranasal delivery of plasmid DNA. J. Biomed. Mater. Res., 2002, 59(1), 144-151.
[http://dx.doi.org/10.1002/jbm.1227] [PMID: 11745547]
[286]
Kaur, P.; Garg, T.; Rath, G.; Goyal, A.K. In situ nasal gel drug delivery: A novel approach for brain targeting through the mucosal membrane. Artif. Cells Nanomed. Biotechnol., 2016, 44(4), 1167-1176.
[PMID: 25749276]
[287]
Wang, X.; Liu, G.; Ma, J.; Guo, S.; Gao, L.; Jia, Y.; Li, X.; Zhang, Q. In situ gel-forming system: an attractive alternative for nasal drug delivery. Crit. Rev. Ther. Drug Carrier Syst., 2013, 30(5), 411-434.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2013007362] [PMID: 24099327]
[288]
Mittal, D.; Ali, A.; Md, S.; Baboota, S.; Sahni, J.K.; Ali, J. Insights into direct nose to brain delivery: current status and future perspective. Drug Deliv., 2014, 21(2), 75-86.
[http://dx.doi.org/10.3109/10717544.2013.838713] [PMID: 24102636]
[289]
Wen, M.M. Olfactory targeting through intranasal delivery of biopharmaceutical drugs to the brain: current development. Discov. Med., 2011, 11(61), 497-503.
[PMID: 21712015]
[290]
Mistry, A.; Stolnik, S.; Illum, L. Nanoparticles for direct nose-to-brain delivery of drugs. Int. J. Pharm., 2009, 379(1), 146-157.
[http://dx.doi.org/10.1016/j.ijpharm.2009.06.019] [PMID: 19555750]
[291]
Patel, S.; Chavhan, S.; Soni, H.; Babbar, A.K.; Mathur, R.; Mishra, A.K.; Sawant, K. Brain targeting of risperidone-loaded solid lipid nanoparticles by intranasal route. J. Drug Target., 2011, 19(6), 468-474.
[http://dx.doi.org/10.3109/1061186X.2010.523787] [PMID: 20958095]
[292]
Huang, G.; Zhang, N.; Bi, X.; Dou, M. Solid lipid nanoparticles of temozolomide: potential reduction of cardial and nephric toxicity. Int. J. Pharm., 2008, 355(1-2), 314-320.
[http://dx.doi.org/10.1016/j.ijpharm.2007.12.013] [PMID: 18255242]
[293]
Manjunath, K.; Venkateswarlu, V. Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. J. Control. Release, 2005, 107(2), 215-228.
[http://dx.doi.org/10.1016/j.jconrel.2005.06.006] [PMID: 16014318]
[294]
Üner, M.; Yener, G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int. J. Nanomedicine, 2007, 2(3), 289-300.
[PMID: 18019829]
[295]
Gregori, M.; Masserini, M.; Mancini, S. Nanomedicine for the treatment of Alzheimer’s disease. Nanomedicine (Lond.), 2015, 10(7), 1203-1218.
[http://dx.doi.org/10.2217/nnm.14.206] [PMID: 25929574]
[296]
Kulkarni, A.D.; Vanjari, Y.H.; Sancheti, K.H.; Belgamwar, V.S.; Surana, S.J.; Pardeshi, C.V. Nanotechnology-mediated nose to brain drug delivery for Parkinson’s disease: a mini review. J. Drug Target., 2015, 23(9), 775-788.
[http://dx.doi.org/10.3109/1061186X.2015.1020809] [PMID: 25758751]
[297]
Silva, A.C.; González-Mira, E.; Lobo, J.M.S.; Amaral, M.H. Current progresses on nanodelivery systems for the treatment of neuropsychiatric diseases: Alzheimer’s and schizophrenia. Curr. Pharm. Des., 2013, 19(41), 7185-7195.
[http://dx.doi.org/10.2174/138161281941131219123329] [PMID: 23489198]
[298]
Barchet, T.M.; Amiji, M.M. Challenges and opportunities in CNS delivery of therapeutics for neurodegenerative diseases. Expert Opin. Drug Deliv., 2009, 6(3), 211-225.
[http://dx.doi.org/10.1517/17425240902758188] [PMID: 19290842]
[299]
Fonseca-Santos, B.; Gremião, M.P.D.; Chorilli, M. Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease. Int. J. Nanomedicine, 2015, 10, 4981-5003.
[http://dx.doi.org/10.2147/IJN.S87148] [PMID: 26345528]
[300]
Costa, C.; Moreira, J.N.; Amaral, M.H.; Sousa Lobo, J.M.; Silva, A.C. Nose-to-brain delivery of lipid-based nanosystems for epileptic seizures and anxiety crisis. J. Control. Release, 2019, 295, 187-200.
[http://dx.doi.org/10.1016/j.jconrel.2018.12.049] [PMID: 30610952]
[301]
Jores, K.; Mehnert, W.; Drechsler, M.; Bunjes, H.; Johann, C.; Mäder, K. Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. J. Contr. Rel., 2004, 95(2), 217-227.http://www.doi.org/10.1016/j.jconrel.2003.11.012