Multifunctional Ligands Targeting Phosphodiesterase as the Future Strategy for the Symptomatic and Disease-Modifying Treatment of Alzheimer’s Disease

Page: [5351 - 5373] Pages: 23

  • * (Excluding Mailing and Handling)

Abstract

Alzheimer’s Disease (AD) is a chronic neurodegenerative disorder characterized by cognitive impairments such as memory loss, decline in language skills, and disorientation that affects over 46 million people worldwide. Patients with AD also suffer from behavioral and psychological symptoms of dementia that deteriorate their quality of life and lead to premature death. Currently available drugs provide modest symptomatic relief but do not reduce pathological hallmarks (senile plaques and neurofibrillary tangles) and neuroinflammation, both of which are integral parts of dementia. A large body of evidence indicates that impaired signaling pathways of cyclic-3′,5′- Adenosine Monophosphate (cAMP) and cyclic-3′,5′-guanosine Monophosphate (cGMP) may contribute to the development and progression of AD. In addition, Phosphodiesterase (PDE) inhibitors, commonly known as cAMP and/or cGMP modulators, were found to be involved in the phosphorylation of tau; aggregation of amyloid beta; neuroinflammation; and regulation of cognition, mood, and emotion processing. The purpose of this review was to update the most recent reports on the development of novel multifunctional ligands targeting PDE as potential drugs for both symptomatic and disease-modifying therapy of AD. This review collected the chemical structures of representative multifunctional ligands, results of experimental in vitro and in vivo pharmacological studies, and current opinions regarding the potential utility of these compounds for the comprehensive therapy of AD. Finally, the multiparameter predictions of drugability of the representative compounds were calculated and discussed.

Keywords: Alzheimer's disease, behavioral and psychological symptoms of dementia, cognitive impairments, neuroinflammation, pathological hallmarks, phosphodiesterase, PDE inhibitors, multifunctional ligands.

[1]
Ferris, S.H.; Farlow, M. Language impairment in Alzheimer’s disease and benefits of acetylcholinesterase inhibitors. Clin. Interv. Aging, 2013, 8, 1007-1014.
[http://dx.doi.org/10.2147/CIA.S39959] [PMID: 23946647]
[2]
Mayeux, R.; Stern, Y. Epidemiology of Alzheimer disease. Cold Spring Harb. Perspect. Med., 2012, 2(8), 137-152.
[http://dx.doi.org/10.1101/cshperspect.a006239] [PMID: 22908189]
[3]
Prince, M.; Ali, G.C.; Guerchet, M.; Prina, A.M.; Albanese, E.; Wu, Y.T. Recent global trends in the prevalence and incidence of dementia, and survival with dementia. Alzheimers Res. Ther., 2016, 8(1), 23.
[http://dx.doi.org/10.1186/s13195-016-0188-8] [PMID: 27473681]
[4]
Wimo, A.; Guerchet, M.; Ali, G.C.; Wu, Y.T.; Prina, A.M.; Winblad, B.; Jönsson, L.; Liu, Z.; Prince, M. The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimers Dement., 2017, 13(1), 1-7.
[http://dx.doi.org/10.1016/j.jalz.2016.07.150] [PMID: 27583652]
[5]
Vradenburg, G. A pivotal moment in Alzheimer’s disease and dementia: how global unity of purpose and action can beat the disease by 2025. Expert Rev. Neurother., 2015, 15(1), 73-82.
[http://dx.doi.org/10.1586/14737175.2015.995638] [PMID: 25576089]
[6]
Mukherjee, A.; Biswas, A.; Roy, A.; Biswas, S.; Gangopadhyay, G.; Das, S.K. Behavioural and psychological symptoms of dementia: correlates and impact on caregiver distress. Dement. Geriatr. Cogn. Disord. Extra, 2017, 7(3), 354-365.
[http://dx.doi.org/10.1159/000481568] [PMID: 29282408]
[7]
Cerejeira, J.; Lagarto, L.; Mukaetova-Ladinska, E.B. Behavioral and psychological symptoms of dementia. Front. Neurol., 2012, 3, 73.
[http://dx.doi.org/10.3389/fneur.2012.00073] [PMID: 22586419]
[8]
Liperoti, R.; Pedone, C.; Corsonello, A. Antipsychotics for the treatment of behavioral and psychological symptoms of dementia (BPSD). Curr. Neuropharmacol., 2008, 6(2), 117-124.
[http://dx.doi.org/10.2174/157015908784533860] [PMID: 19305792]
[9]
Hersch, E.C.; Falzgraf, S. Management of the behavioral and psychological symptoms of dementia. Clin. Interv. Aging, 2007, 2(4), 611-621.
[PMID: 18225462]
[10]
Gauthier, S.; Cummings, J.; Ballard, C.; Brodaty, H.; Grossberg, G.; Robert, P.; Lyketsos, C. Management of behavioral problems in Alzheimer’s disease. Int. Psychogeriatr., 2010, 22(3), 346-372.
[http://dx.doi.org/10.1017/S1041610209991505] [PMID: 20096151]
[11]
Azermai, M.; Petrovic, M.; Elseviers, M.M.; Bourgeois, J.; Van Bortel, L.M.; Vander Stichele, R.H. Systematic appraisal of dementia guidelines for the management of behavioural and psychological symptoms. Ageing Res. Rev., 2012, 11(1), 78-86.
[http://dx.doi.org/10.1016/j.arr.2011.07.002] [PMID: 21856452]
[12]
Tagarelli, A.; Piro, A.; Tagarelli, G.; Lagonia, P.; Quattrone, A. Alois Alzheimer: a hundred years after the discovery of the eponymous disorder. Int. J. Biomed. Sci., 2006, 2(2), 196-204.
[PMID: 23674983]
[13]
Serrano-Pozo, A.; Frosch, M.P.; Masliah, E.; Hyman, B.T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med., 2011, 1(1), a006189.
[http://dx.doi.org/10.1101/cshperspect.a006189] [PMID: 22229116]
[14]
Mufson, E.J.; Counts, S.E.; Perez, S.E.; Ginsberg, S.D. Cholinergic system during the progression of Alzheimer’s disease: therapeutic implications. Expert Rev. Neurother., 2008, 8(11), 1703-1718.
[http://dx.doi.org/10.1586/14737175.8.11.1703] [PMID: 18986241]
[15]
Wyss-Coray, T.; Rogers, J. Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature. Cold Spring Harb. Perspect. Med., 2012, 2(1), a006346.
[http://dx.doi.org/10.1101/cshperspect.a006346] [PMID: 22315714]
[16]
Bolós, M.; Perea, J.R.; Avila, J. Alzheimer’s disease as an inflammatory disease. Biomol. Concepts, 2017, 8(1), 37-43.
[http://dx.doi.org/10.1515/bmc-2016-0029] [PMID: 28231054]
[17]
Cai, Z.; Hussain, M.D.; Yan, L.J. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer’s disease. Int. J. Neurosci., 2014, 124(5), 307-321.
[http://dx.doi.org/10.3109/00207454.2013.833510] [PMID: 23930978]
[18]
Ojo, O.; Brooke, J. Evaluating the association between diabetes, cognitive decline and dementia. Int. J. Environ. Res. Public Health, 2015, 12(7), 8281-8294.
[http://dx.doi.org/10.3390/ijerph120708281] [PMID: 26193295]
[19]
Rodda, J.; Carter, J. Cholinesterase inhibitors and memantine for symptomatic treatment of dementia. BMJ, 2012, 344, e2986-e2986.
[http://dx.doi.org/10.1136/bmj.e2986] [PMID: 22550350]
[20]
Kumar, A.; Singh, A. Ekavali, A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol. Rep., 2015, 67(2), 195-203.
[http://dx.doi.org/10.1016/j.pharep.2014.09.004] [PMID: 25712639]
[21]
Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr. Neuropharmacol., 2013, 11(3), 315-335.
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[22]
Godyń, J.; Jończyk, J.; Panek, D.; Malawska, B. Therapeutic strategies for Alzheimer’s disease in clinical trials. Pharmacol. Rep., 2016, 68(1), 127-138.
[http://dx.doi.org/10.1016/j.pharep.2015.07.006] [PMID: 26721364]
[23]
Martínez, M.; Hernández, A.I.; Hernanz, A. Increased cAMP immunostaining in cerebral vessels in Alzheimer’s disease. Brain Res., 2001, 922(1), 148-152.
[http://dx.doi.org/10.1016/S0006-8993(01)03009-8] [PMID: 11730714]
[24]
Hesse, R.; Lausser, L.; Gummert, P.; Schmid, F.; Wahler, A.; Schnack, C.; Kroker, K.S.; Otto, M.; Tumani, H.; Kestler, H.A.; Rosenbrock, H.; von Arnim, C.A. Reduced cGMP levels in CSF of AD patients correlate with severity of dementia and current depression. Alzheimers Res. Ther., 2017, 9(1), 17.
[http://dx.doi.org/10.1186/s13195-017-0245-y] [PMID: 28274265]
[25]
Ugarte, A.; Gil-Bea, F.; García-Barroso, C.; Cedazo-Minguez, Á.; Ramírez, M.J.; Franco, R.; García-Osta, A.; Oyarzabal, J.; Cuadrado-Tejedor, M. Decreased levels of guanosine 3′, 5′-monophosphate (cGMP) in cerebrospinal fluid (CSF) are associated with cognitive decline and amyloid pathology in Alzheimer’s disease. Neuropathol. Appl. Neurobiol., 2015, 41(4), 471-482.
[http://dx.doi.org/10.1111/nan.12203] [PMID: 25488891]
[26]
Veremeyko, T.; Yung, A.W.Y.; Dukhinova, M.; Kuznetsova, I.S.; Pomytkin, I.; Lyundup, A.; Strekalova, T.; Barteneva, N.S.; Ponomarev, E.D. Cyclic AMP pathway suppress autoimmune neuroinflammation by inhibiting functions of encephalitogenic CD4 T cells and enhancing M2 macrophage polarization at the site of inflammation. Front. Immunol., 2018, 9, 50.
[http://dx.doi.org/10.3389/fimmu.2018.00050] [PMID: 29422898]
[27]
Reierson, G.W.; Guo, S.; Mastronardi, C.; Licinio, J.; Wong, M.L. cGMP signaling, phosphodiesterases and major depressive disorder. Curr. Neuropharmacol., 2011, 9(4), 715-727.
[http://dx.doi.org/10.2174/157015911798376271] [PMID: 22654729]
[28]
Heckman, P.R.A.; Wouters, C.; Prickaerts, J. Phosphodiesterase inhibitors as a target for cognition enhancement in aging and Alzheimer’s disease: a translational overview. Curr. Pharm. Des., 2015, 21(3), 317-331.
[http://dx.doi.org/10.2174/1381612820666140826114601] [PMID: 25159073]
[29]
García-Osta, A.; Cuadrado-Tejedor, M.; García-Barroso, C.; Oyarzábal, J.; Franco, R. Phosphodiesterases as therapeutic targets for Alzheimer’s disease. ACS Chem. Neurosci., 2012, 3(11), 832-844.
[http://dx.doi.org/10.1021/cn3000907] [PMID: 23173065]
[30]
Mann, D.M.; Yates, P.O. Neurotransmitter deficits in Alzheimer’s disease and in other dementing disorders. Hum. Neurobiol., 1986, 5(3), 147-158.
[PMID: 2876973]
[31]
Carreiras, M.C.; Mendes, E.; Perry, M.J.; Francisco, A.P.; Marco-Contelles, J. The multifactorial nature of Alzheimer’s disease for developing potential therapeutics. Curr. Top. Med. Chem., 2013, 13(15), 1745-1770.
[http://dx.doi.org/10.2174/15680266113139990135] [PMID: 23931435]
[32]
Khanfar, M.A.; Affini, A.; Lutsenko, K.; Nikolic, K.; Butini, S.; Stark, H. Multiple targeting approaches on histamine H3 receptor antagonists. Front. Neurosci., 2016, 10, 201.
[http://dx.doi.org/10.3389/fnins.2016.00201] [PMID: 27303254]
[33]
Jankowska, A.; Wesołowska, A.; Pawłowski, M.; Chłoń-Rzepa, G. Multi-target-directed ligands affecting serotonergic neurotransmission for alzheimer’s disease therapy: advances in chemical and biological research. Curr. Med. Chem., 2018, 25(17), 2045-2067.
[http://dx.doi.org/10.2174/0929867324666170529122802] [PMID: 28554324]
[34]
Lugnier, C. Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol. Ther., 2006, 109(3), 366-398.
[http://dx.doi.org/10.1016/j.pharmthera.2005.07.003] [PMID: 16102838]
[35]
Scott Bitner, R. Cyclic AMP response element-binding protein (CREB) phosphorylation: a mechanistic marker in the development of memory enhancing Alzheimer’s disease therapeutics. Biochem. Pharmacol., 2012, 83(6), 705-714.
[http://dx.doi.org/10.1016/j.bcp.2011.11.009] [PMID: 22119240]
[36]
Jankowska, A.; Świerczek, A.; Chłoń-Rzepa, G.; Pawłowski, M.; Wyska, E. PDE7-selective and dual inhibitors: advances in chemical and biological research. Curr. Med. Chem., 2017, 24(7), 673-700.
[http://dx.doi.org/10.2174/0929867324666170116125159] [PMID: 28093982]
[37]
Bollen, E.; Puzzo, D.; Rutten, K.; Privitera, L.; De Vry, J.; Vanmierlo, T.; Kenis, G.; Palmeri, A.; D’Hooge, R.; Balschun, D.; Steinbusch, H.M.W.; Blokland, A.; Prickaerts, J. Improved long-term memory via enhancing cGMP-PKG signaling requires cAMP-PKA signaling. Neuropsychopharmacology, 2014, 39(11), 2497-2505.
[http://dx.doi.org/10.1038/npp.2014.106] [PMID: 24813825]
[38]
Lakics, V.; Karran, E.H.; Boess, F.G. Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology, 2010, 59(6), 367-374.
[http://dx.doi.org/10.1016/j.neuropharm.2010.05.004] [PMID: 20493887]
[39]
Knott, E.P.; Assi, M.; Rao, S.N.R.; Ghosh, M.; Pearse, D.D. Phosphodiesterase inhibitors as a therapeutic approach to neuroprotection and repair. Int. J. Mol. Sci., 2017, 18(4), 696.
[http://dx.doi.org/10.3390/ijms18040696] [PMID: 28338622]
[40]
Martinez, A.; Gil, C. cAMP-specific phosphodiesterase inhibitors: promising drugs for inflammatory and neurological diseases. Expert Opin. Ther. Pat., 2014, 24(12), 1311-1321.
[http://dx.doi.org/10.1517/13543776.2014.968127] [PMID: 25284693]
[41]
Reyes-Irisarri, E.; Markerink-Van Ittersum, M.; Mengod, G.; de Vente, J. Expression of the cGMP-specific phosphodiesterases 2 and 9 in normal and Alzheimer’s disease human brains. Eur. J. Neurosci., 2007, 25(11), 3332-3338.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05589.x] [PMID: 17553001]
[42]
Jankowska, A.; Świerczek, A.; Wyska, E.; Gawalska, A.; Bucki, A.; Pawłowski, M.; Chłoń-Rzepa, G. Advances in discovery of PDE10A inhibitors for CNS-related disorders. part 1: overview of the chemical and biological research. Curr. Drug Targets, 2019, 20(1), 122-143.
[http://dx.doi.org/10.2174/1389450119666180808105056] [PMID: 30091414]
[43]
Kelly, M.P. A Role for phosphodiesterase 11A (PDE11A) in the formation of social memories and the stabilization of mood. Adv. Neurobiol., 2017, 17, 201-230.
[http://dx.doi.org/10.1007/978-3-319-58811-7_8] [PMID: 28956334]
[44]
Lombardo, S.; Maskos, U. Role of the nicotinic acetylcholine receptor in Alzheimer’s disease pathology and treatment Neuropharmacology, 2015, 96(Pt B), 255-262.
[http://dx.doi.org/10.1016/j.neuropharm.2014.11.018]
[45]
Wang, R.; Reddy, P.H. Role of Glutamate and NMDA receptors in Alzheimer’s disease. J. Alzheimers Dis., 2017, 57(4), 1041-1048.
[http://dx.doi.org/10.3233/JAD-160763] [PMID: 27662322]
[46]
Butzlaff, M.; Ponimaskin, E. The role of serotonin receptors in alzheimer’s disease. Opera Med. Physiol., 2016, 1(1), 91-100.
[47]
Yu, J.T.; Wang, N.D.; Ma, T.; Jiang, H.; Guan, J.; Tan, L. Roles of β-adrenergic receptors in Alzheimer’s disease: implications for novel therapeutics. Brain Res. Bull., 2011, 84(2), 111-117.
[http://dx.doi.org/10.1016/j.brainresbull.2010.11.004] [PMID: 21129453]
[48]
Chai, G.S.; Wang, Y.Y.; Yasheng, A.; Zhao, P. Beta 2-adrenergic receptor activation enhances neurogenesis in Alzheimer’s disease mice. Neural Regen. Res., 2016, 11(10), 1617-1624.
[http://dx.doi.org/10.4103/1673-5374.193241] [PMID: 27904493]
[49]
Kubo, M.; Kishi, T.; Matsunaga, S.; Iwata, N. Histamine H3 receptor antagonists for alzheimer’s disease: a systematic review and meta-analysis of randomized placebo-controlled trials. J. Alzheimers Dis., 2015, 48(3), 667-671.
[http://dx.doi.org/10.3233/JAD-150393] [PMID: 26402104]
[50]
Naddafi, F.; Mirshafiey, A. The neglected role of histamine in Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen., 2013, 28(4), 327-336.
[http://dx.doi.org/10.1177/1533317513488925] [PMID: 23677734]
[51]
Kumar, D.; Ganeshpurkar, A.; Kumar, D.; Modi, G.; Gupta, S.K.; Singh, S.K. Secretase inhibitors for the treatment of Alzheimer’s disease: long road ahead. Eur. J. Med. Chem., 2018, 148, 436-452.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.035] [PMID: 29477076]
[52]
Cai, Z. Monoamine oxidase inhibitors: promising therapeutic agents for Alzheimer’s disease. (Review) Mol. Med. Rep., 2014, 9(5), 1533-1541.
[http://dx.doi.org/10.3892/mmr.2014.2040] [PMID: 24626484]
[53]
Medina, M.; Avila, J. Glycogen synthase kinase-3 (GSK-3) inhibitors for the treatment of Alzheimer’s disease. Curr. Pharm. Des., 2010, 16(25), 2790-2798.
[http://dx.doi.org/10.2174/138161210793176581] [PMID: 20698823]
[54]
Perez-Gonzalez, R.; Pascual, C.; Antequera, D.; Bolos, M.; Redondo, M.; Perez, D.I.; Pérez-Grijalba, V.; Krzyzanowska, A.; Sarasa, M.; Gil, C.; Ferrer, I.; Martinez, A.; Carro, E. Phosphodiesterase 7 inhibitor reduced cognitive impairment and pathological hallmarks in a mouse model of Alzheimer’s disease. Neurobiol. Aging, 2013, 34(9), 2133-2145.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.03.011] [PMID: 23582662]
[55]
Stange, H.; Langen, B.; Egerland, U.; Hoefgen, N.; Priebs, M.; Malamas, M.S.; Erdei, J.J.; Ni, Y. Triazine derivatives as inhibitors of phosphodiesterases patent. US20100120762A1 2010.
[56]
Andrés, J.I.; Buijnsters, P.; De Angelis, M.; Langlois, X.; Rombouts, F.; Trabanco, A.A.; Vanhoof, G. Discovery of a new series of [1,2,4]triazolo[4,3-a]quinoxalines as dual phosphodiesterase 2/phosphodiesterase 10 (PDE2/PDE10) inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(3), 785-790.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.077] [PMID: 23260348]
[57]
Redrobe, J.P.; Rasmussen, L.K.; Christoffersen, C.T.; Bundgaard, C.; Jørgensen, M. Characterisation of Lu AF33241: a novel, brain-penetrant, dual inhibitor of phosphodiesterase (PDE) 2A and PDE10A. Eur. J. Pharmacol., 2015, 761, 79-85.
[http://dx.doi.org/10.1016/j.ejphar.2015.04.040] [PMID: 25941078]
[58]
Lankau, H.J.; Langen, B.; Grunwald, C.; Hoefgen, N.; Stange, H.; Dost, R.; Egerland, U. (1,2,4)Triazolo[4,3-a]quinoxaline derivatives as inhibitors of phosphodiesterases patent. US20120302564A1 2009.
[59]
Kwon, Y. Luteolin as a potential preventive and therapeutic candidate for Alzheimer’s disease. Exp. Gerontol., 2017, 95, 39-43.
[http://dx.doi.org/10.1016/j.exger.2017.05.014] [PMID: 28528007]
[60]
Sawmiller, D.; Li, S.; Shahaduzzaman, M.; Smith, A.J.; Obregon, D.; Giunta, B.; Borlongan, C.V.; Sanberg, P.R.; Tan, J. Luteolin reduces Alzheimer’s disease pathologies induced by traumatic brain injury. Int. J. Mol. Sci., 2014, 15(1), 895-904.
[http://dx.doi.org/10.3390/ijms15010895] [PMID: 24413756]
[61]
Wang, H.; Wang, H.; Cheng, H.; Che, Z. Ameliorating effect of luteolin on memory impairment in an Alzheimer’s disease model. Mol. Med. Rep., 2016, 13(5), 4215-4220.
[http://dx.doi.org/10.3892/mmr.2016.5052] [PMID: 27035793]
[62]
Choi, S.M.; Kim, B.C.; Cho, Y.H.; Choi, K.H.; Chang, J.; Park, M.S.; Kim, M.K.; Cho, K.H.; Kim, J.K. Effects of flavonoid compounds on β-amyloid-peptide-induced neuronal death in cultured mouse cortical neurons. Chonnam Med. J., 2014, 50(2), 45-51.
[http://dx.doi.org/10.4068/cmj.2014.50.2.45] [PMID: 25229015]
[63]
Seelinger, G.; Merfort, I.; Schempp, C.M. Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta Med., 2008, 74(14), 1667-1677.
[http://dx.doi.org/10.1055/s-0028-1088314] [PMID: 18937165]
[64]
Xia, F.; Wang, C.; Jin, Y.; Liu, Q.; Meng, Q.; Liu, K.; Sun, H. Luteolin protects HUVECs from TNF-α-induced oxidative stress and inflammation via its effects on the Nox4/ROS-NF-κB and MAPK pathways. J. Atheroscler. Thromb., 2014, 21(8), 768-783.
[http://dx.doi.org/10.5551/jat.23697] [PMID: 24621786]
[65]
Schwenkgrub, J.; Zaremba, M.; Joniec-Maciejak, I.; Cudna, A.; Mirowska-Guzel, D.; Kurkowska-Jastrzębska, I. The phosphodiesterase inhibitor, ibudilast, attenuates neuroinflammation in the MPTP model of Parkinson’s disease. PLoS One, 2017, 12(7), e0182019.
[http://dx.doi.org/10.1371/journal.pone.0182019] [PMID: 28753652]
[66]
Sanftner, L.M.; Gibbons, J.A.; Gross, M.I.; Suzuki, B.M.; Gaeta, F.C.; Johnson, K.W. Cross-species comparisons of the pharmacokinetics of ibudilast. Xenobiotica, 2009, 39(12), 964-977.
[http://dx.doi.org/10.3109/00498250903254340] [PMID: 19925385]
[67]
Mizuno, T.; Kurotani, T.; Komatsu, Y.; Kawanokuchi, J.; Kato, H.; Mitsuma, N.; Suzumura, A. Neuroprotective role of phosphodiesterase inhibitor ibudilast on neuronal cell death induced by activated microglia. Neuropharmacology, 2004, 46(3), 404-411.
[http://dx.doi.org/10.1016/j.neuropharm.2003.09.009] [PMID: 14975696]
[68]
Wang, H.; Mei, Zl.; Zhong, K.L.; Hu, M.; Long, Y.; Miao, M.X.; Li, N.; Yan, T.H.; Hong, H. Pretreatment with antiasthmatic drug ibudilast ameliorates Aβ 1-42-induced memory impairment and neurotoxicity in mice. Pharmacol. Biochem. Behav., 2014, 124, 373-379.
[http://dx.doi.org/10.1016/j.pbb.2014.07.006] [PMID: 25038445]
[69]
Cho, Y.; Crichlow, G.V.; Vermeire, J.J.; Leng, L.; Du, X.; Hodsdon, M.E.; Bucala, R.; Cappello, M.; Gross, M.; Gaeta, F.; Johnson, K.; Lolis, E.J. Allosteric inhibition of macrophage migration inhibitory factor revealed by ibudilast. Proc. Natl. Acad. Sci. USA, 2010, 107(25), 11313-11318.
[http://dx.doi.org/10.1073/pnas.1002716107] [PMID: 20534506]
[70]
Li, S.Q.; Yu, Y.; Han, J.Z.; Wang, D.; Liu, J.; Qian, F.; Fan, G.H.; Bucala, R.; Ye, R.D. Deficiency of macrophage migration inhibitory factor attenuates tau hyperphosphorylation in mouse models of Alzheimer’s disease. J. Neuroinflammation, 2015, 12, 177.
[http://dx.doi.org/10.1186/s12974-015-0396-3] [PMID: 26382037]
[71]
Bacher, M.; Deuster, O.; Aljabari, B.; Egensperger, R.; Neff, F.; Jessen, F.; Popp, J.; Noelker, C.; Reese, J.P.; Al-Abed, Y.; Dodel, R. The role of macrophage migration inhibitory factor in Alzheimer’s disease. Mol. Med., 2010, 16(3-4), 116-121.
[http://dx.doi.org/10.2119/molmed.2009.00123] [PMID: 20200619]
[72]
Rolan, P.; Gibbons, J.A.; He, L.; Chang, E.; Jones, D.; Gross, M.I.; Davidson, J.B.; Sanftner, L.M.; Johnson, K.W. Ibudilast in healthy volunteers: safety, tolerability and pharmacokinetics with single and multiple doses. Br. J. Clin. Pharmacol., 2008, 66(6), 792-801.
[http://dx.doi.org/10.1111/j.1365-2125.2008.03270.x] [PMID: 19032723]
[73]
ACTRIMS 2018 Forum. Sprint-ms/nn 102 phase ii trial of ibudilast in progressive ms: top-line results, 2018. Availabe at: https://actrims.confex.com/actrims/2018/meetingapp. cgi/Paper/2678 (Accessed Date: 30 April, 2019)
[74]
Tabatabai, S.A.; Rezaee Zavareh, E.; Reyhanfard, H.; Alinezhad, B.; Shafaghi, B.; Sheikhha, M.; Shafiee, A.; Faizi, M. Evaluation of anxiolytic, sedative-hypnotic and amnesic effects of novel 2-phenoxy phenyl-1,3,4-oxadizole derivatives using experimental models. Iran. J. Pharm. Res., 2015, 14(Suppl.), 51-57.
[PMID: 26185505]
[75]
Mierzejewski, P.; Kolaczkowski, M.; Marcinkowska, M.; Wesolowska, A.; Samochowiec, J.; Pawlowski, M.; Bienkowski, P. Antipsychotic-like effects of zolpidem in Wistar rats. Eur. J. Pharmacol., 2016, 773, 51-58.
[http://dx.doi.org/10.1016/j.ejphar.2016.01.009] [PMID: 26825544]
[76]
U.S. National Library of Medicine. ClinicalTrials.gov. Available from: https://clinicaltrials.gov/ (Accessed Date: April 30, 2019)
[77]
Desire, L.; Marcade, M.; Peillon, H.; Drouin, D.; Sol, O.; Pando, M. Clinical trials of EHT 0202, a neuroprotective and procognitive alpha-secretase stimulator for Alzheimer’s disease. Alzheimer’s Dement. J. Alzheimer’s Assoc., 2009, 5(4), 255-P256.
[http://dx.doi.org/10.1016/j.jalz.2009.04.276]
[78]
Doble, B.W.; Woodgett, J.R. GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell Sci., 2003, 116(Pt 7), 1175-1186.
[http://dx.doi.org/10.1242/jcs.00384] [PMID: 12615961]
[79]
Eldar-Finkelman, H.; Martinez, A. GSK-3 inhibitors: preclinical and clinical focus on CNS. Front. Mol. Neurosci., 2011, 4, 32.
[http://dx.doi.org/10.3389/fnmol.2011.00032] [PMID: 22065134]
[80]
Phiel, C.J.; Wilson, C.A.; Lee, V.M.; Klein, P.S. GSK-3alpha regulates production of Alzheimer’s disease amyloid-beta peptides. Nature, 2003, 423(6938), 435-439.
[http://dx.doi.org/10.1038/nature01640] [PMID: 12761548]
[81]
Rockenstein, E.; Torrance, M.; Adame, A.; Mante, M.; Bar-on, P.; Rose, J.B.; Crews, L.; Masliah, E. Neuroprotective effects of regulators of the glycogen synthase kinase-3beta signaling pathway in a transgenic model of Alzheimer’s disease are associated with reduced amyloid precursor protein phosphorylation. J. Neurosci., 2007, 27(8), 1981-1991.
[http://dx.doi.org/10.1523/JNEUROSCI.4321-06.2007] [PMID: 17314294]
[82]
Koh, S.H.; Noh, M.Y.; Kim, S.H. Amyloid-beta-induced neurotoxicity is reduced by inhibition of glycogen synthase kinase-3. Brain Res., 2008, 1188, 254-262.
[http://dx.doi.org/10.1016/j.brainres.2007.10.064] [PMID: 18031715]
[83]
Martinez, A.; Castro, A.; Dorronsoro, I.; Alonso, M. Glycogen synthase kinase 3 (GSK-3) inhibitors as new promising drugs for diabetes, neurodegeneration, cancer, and inflammation. Med. Res. Rev., 2002, 22(4), 373-384.
[http://dx.doi.org/10.1002/med.10011] [PMID: 12111750]
[84]
Lovestone, S.; Boada, M.; Dubois, B.; Hüll, M.; Rinne, J.O.; Huppertz, H.J.; Calero, M.; Andrés, M.V.; Gómez-Carrillo, B.; León, T.; del Ser, T. RGO investigators. A phase II trial of tideglusib in Alzheimer’s disease. J. Alzheimers Dis., 2015, 45(1), 75-88.
[http://dx.doi.org/10.3233/JAD-141959] [PMID: 25537011]
[85]
Palomo, V.; Perez, D.I.; Perez, C.; Morales-Garcia, J.A.; Soteras, I.; Alonso-Gil, S.; Encinas, A.; Castro, A.; Campillo, N.E.; Perez-Castillo, A.; Gil, C.; Martinez, A. 5-imino-1,2,4-thiadiazoles: first small molecules as substrate competitive inhibitors of glycogen synthase kinase 3. J. Med. Chem., 2012, 55(4), 1645-1661.
[http://dx.doi.org/10.1021/jm201463v] [PMID: 22257026]
[86]
Lipina, T.V.; Palomo, V.; Gil, C.; Martinez, A.; Roder, J.C. Dual inhibitor of PDE7 and GSK-3-VP1.15 acts as antipsychotic and cognitive enhancer in C57BL/6J mice. Neuropharmacology, 2013, 64, 205-214.
[http://dx.doi.org/10.1016/j.neuropharm.2012.06.032] [PMID: 22749842]
[87]
Susín, C.; Morales-Garcia, J.A.; Aguilar-Morante, D.; Palomo, V.; Sanz-Sancristobal, M.; Alonso-Gil, S.; Gil, C.; Santos, A.; Martinez, A.; Perez-Castillo, A. The new iminothiadiazole derivative VP1.14 ameliorates hippocampal damage after an excitotoxic injury. J. Neurochem., 2012, 122(6), 1193-1202.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07866.x] [PMID: 22774807]
[88]
Cuadrado-Tejedor, M.; Garcia-Barroso, C.; Sánchez-Arias, J.A.; Rabal, O.; Pérez-González, M.; Mederos, S.; Ugarte, A.; Franco, R.; Segura, V.; Perea, G.; Oyarzabal, J.; Garcia-Osta, A. A first-in-class small-molecule that acts as a dual inhibitor of HDAC and PDE5 and that rescues hippocampal synaptic impairment in Alzheimer’s Disease mice. Neuropsychopharmacology, 2017, 42(2), 524-539.
[http://dx.doi.org/10.1038/npp.2016.163] [PMID: 27550730]
[89]
Cuadrado-Tejedor, M.; Garcia-Barroso, C.; Sanzhez-Arias, J.; Mederos, S.; Rabal, O.; Ugarte, A.; Franco, R.; Pascual-Lucas, M.; Segura, V.; Perea, G.; Oyarzabal, J.; Garcia-Osta, A. Concomitant histone deacetylase and phosphodiesterase 5 inhibition synergistically prevents the disruption in synaptic plasticity and it reverses cognitive impairment in a mouse model of Alzheimer’s disease. Clin. Epigenetics, 2015, 7, 108.
[http://dx.doi.org/10.1186/s13148-015-0142-9] [PMID: 26457123]
[90]
Rabal, O.; Sánchez-Arias, J.A.; Cuadrado-Tejedor, M.; de Miguel, I.; Pérez-González, M.; García-Barroso, C.; Ugarte, A.; Estella-Hermoso de Mendoza, A.; Sáez, E.; Espelosin, M.; Ursua, S.; Haizhong, T.; Wei, W.; Musheng, X.; Garcia-Osta, A.; Oyarzabal, J. Design, synthesis, biological evaluation and in vivo testing of dual phosphodiesterase 5 (PDE5) and histone deacetylase 6 (HDAC6)-selective inhibitors for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2018, 150, 506-524.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.005] [PMID: 29549837]
[91]
Wilkinson, D.; Windfeld, K.; Colding-Jørgensen, E. Safety and efficacy of idalopirdine, a 5-HT6 receptor antagonist, in patients with moderate Alzheimer’s disease (LADDER): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol., 2014, 13(11), 1092-1099.
[http://dx.doi.org/10.1016/S1474-4422(14)70198-X] [PMID: 25297016]
[92]
Więckowska, A.; Kołaczkowski, M.; Bucki, A.; Godyń, J.; Marcinkowska, M.; Więckowski, K.; Zaręba, P.; Siwek, A.; Kazek, G.; Głuch-Lutwin, M.; Mierzejewski, P.; Bienkowski, P.; Sienkiewicz-Jarosz, H.; Knez, D.; Wichur, T.; Gobec, S.; Malawska, B. Novel multi-target-directed ligands for Alzheimer’s disease: combining cholinesterase inhibitors and 5-HT6 receptor antagonists. Design, synthesis and biological evaluation. Eur. J. Med. Chem., 2016, 124, 63-81.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.016] [PMID: 27560283]
[93]
Schiedel, M.; Fallarero, A.; Luise, C.; Sippl, W.; Vuorela, P.; Jung, M. Synthesis and biological evaluation of 8-hydroxy-2,7-naphthyridin-2-ium salts as novel inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). MedChemComm, 2017, 8(2), 465-470.
[http://dx.doi.org/10.1039/C6MD00647G] [PMID: 30108764]
[94]
Rochais, C.; Lecoutey, C.; Gaven, F.; Giannoni, P.; Hamidouche, K.; Hedou, D.; Dubost, E.; Genest, D.; Yahiaoui, S.; Freret, T.; Bouet, V.; Dauphin, F.; Sopkova de Oliveira Santos, J.; Ballandonne, C.; Corvaisier, S.; Malzert-Fréon, A.; Legay, R.; Boulouard, M.; Claeysen, S.; Dallemagne, P. Novel multitarget-directed ligands (MTDLs) with acetylcholinesterase (AChE) inhibitory and serotonergic subtype 4 receptor (5-HT4R) agonist activities as potential agents against Alzheimer’s disease: the design of donecopride. J. Med. Chem., 2015, 58(7), 3172-3187.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00115] [PMID: 25793650]
[95]
Morini, G.; Comini, M.; Rivara, M.; Rivara, S.; Bordi, F.; Plazzi, P.V.; Flammini, L.; Saccani, F.; Bertoni, S.; Ballabeni, V.; Barocelli, E.; Mor, M. Synthesis and structure-activity relationships for biphenyl H3 receptor antagonists with moderate anti-cholinesterase activity. Bioorg. Med. Chem., 2008, 16(23), 9911-9924.
[http://dx.doi.org/10.1016/j.bmc.2008.10.029] [PMID: 18976927]
[96]
Zhou, L.Y.; Zhu, Y.; Jiang, Y.R.; Zhao, X.J.; Guo, D. Design, synthesis and biological evaluation of dual acetylcholinesterase and phosphodiesterase 5A inhibitors in treatment for Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2017, 27(17), 4180-4184.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.013] [PMID: 28751142]
[97]
Mao, F.; Wang, H.; Ni, W.; Zheng, X.; Wang, M.; Bao, K.; Ling, D.; Li, X.; Xu, Y.; Zhang, H.; Li, J. Design, synthesis, and biological evaluation of orally available first-generation dual-target selective inhibitors of Acetylcholinesterase (AChE) and Phosphodiesterase 5 (PDE5) for the treatment of Alzheimer’s Disease. ACS Chem. Neurosci., 2018, 9(2), 328-345.
[http://dx.doi.org/10.1021/acschemneuro.7b00345] [PMID: 29068218]
[98]
Jiang, Y.; Gao, H.; Turdu, G. Traditional Chinese medicinal herbs as potential AChE inhibitors for anti-Alzheimer’s disease: A review. Bioorg. Chem., 2017, 75, 50-61.
[http://dx.doi.org/10.1016/j.bioorg.2017.09.004] [PMID: 28915465]
[99]
Zhang, Y.D.; Cai, Y.N.; Zhang, Q.; Qi, Z.L.; Gao, Q.Q. [Inhibitory effect of icariin on acetylcholinesterase] Yao Xue Xue Bao, 2012, 47(9), 1141-1146.
[PMID: 23227542]
[100]
Xin, Z.C.; Kim, E.K.; Lin, C.S.; Liu, W.J.; Tian, L.; Yuan, Y.M.; Fu, J. Effects of icariin on cGMP-specific PDE5 and cAMP-specific PDE4 activities. Asian J. Androl., 2003, 5(1), 15-18.
[PMID: 12646997]
[101]
Kong, L.; Liu, J.; Wang, J.; Luo, Q.; Zhang, H.; Liu, B.; Xu, F.; Pang, Q.; Liu, Y.; Dong, J. Icariin inhibits TNF-α/IFN-γ induced inflammatory response via inhibition of the substance P and p38-MAPK signaling pathway in human keratinocytes. Int. Immunopharmacol., 2015, 29(2), 401-407.
[http://dx.doi.org/10.1016/j.intimp.2015.10.023] [PMID: 26507164]
[102]
He, X.L.; Zhou, W.Q.; Bi, M.G.; Du, G.H. Neuroprotective effects of icariin on memory impairment and neurochemical deficits in senescence-accelerated mouse prone 8 (SAMP8) mice. Brain Res., 2010, 1334, 73-83.
[http://dx.doi.org/10.1016/j.brainres.2010.03.084] [PMID: 20380820]
[103]
Urano, T.; Tohda, C. Icariin improves memory impairment in Alzheimer’s disease model mice (5xFAD) and attenuates amyloid β-induced neurite atrophy. Phytother. Res., 2010, 24(11), 1658-1663.
[http://dx.doi.org/10.1002/ptr.3183] [PMID: 21031624]
[104]
Zhang, L.; Shen, C.; Chu, J.; Zhang, R.; Li, Y.; Li, L. Icariin decreases the expression of APP and BACE-1 and reduces the β-amyloid burden in an APP transgenic mouse model of Alzheimer’s disease. Int. J. Biol. Sci., 2014, 10(2), 181-191.
[http://dx.doi.org/10.7150/ijbs.6232] [PMID: 24550686]
[105]
Jin, F.; Gong, Q.H.; Xu, Y.S.; Wang, L.N.; Jin, H.; Li, F.; Li, L.S.; Ma, Y.M.; Shi, J.S. Icariin, a phosphodiesterase-5 inhibitor, improves learning and memory in APP/PS1 transgenic mice by stimulation of NO/cGMP signalling. Int. J. Neuropsychopharmacol., 2014, 17(6), 871-881.
[http://dx.doi.org/10.1017/S1461145713001533] [PMID: 24513083]
[106]
Chen, B.; Niu, S.P.; Wang, Z.Y.; Wang, Z.W.; Deng, J.X.; Zhang, P.X.; Yin, X.F.; Han, N.; Kou, Y.H.; Jiang, B.G. Local administration of icariin contributes to peripheral nerve regeneration and functional recovery. Neural Regen. Res., 2015, 10(1), 84-89.
[http://dx.doi.org/10.4103/1673-5374.150711] [PMID: 25788925]
[107]
Kou, Y.; Wang, Z.; Wu, Z.; Zhang, P.; Zhang, Y.; Yin, X.; Wong, X.; Qiu, G.; Jiang, B. Epimedium extract promotes peripheral nerve regeneration in rats. Evid. Based Complement. Alternat. Med., 2013, 2013, 954798.
[http://dx.doi.org/10.1155/2013/954798] [PMID: 24159356]
[108]
Chen, Xi.; Gu, H.S. Zhang, Lan.; Li, L. Effects of Icariin on MK-801-Induced Schizophrenia Model in Mice. Chinese J. Rehabil. Theory Pract., 2016, 22(4), 395-398.
[109]
Gong, M.J.; Han, B.; Wang, S.M.; Liang, S.W.; Zou, Z.J. Icariin reverses corticosterone-induced depression-like behavior, decrease in hippocampal brain-derived neurotrophic factor (BDNF) and metabolic network disturbances revealed by NMR-based metabonomics in rats. J. Pharm. Biomed. Anal., 2016, 123, 63-73.
[http://dx.doi.org/10.1016/j.jpba.2016.02.001] [PMID: 26874256]
[110]
Liu, B.; Xu, C.; Wu, X.; Liu, F.; Du, Y.; Sun, J.; Tao, J.; Dong, J. Icariin exerts an antidepressant effect in an unpredictable chronic mild stress model of depression in rats and is associated with the regulation of hippocampal neuroinflammation. Neuroscience, 2015, 294, 193-205.
[http://dx.doi.org/10.1016/j.neuroscience.2015.02.053] [PMID: 25791226]
[111]
Darvesh, S. Butyrylcholinesterase as a diagnostic and therapeutic target for Alzheimer’s Disease. Curr. Alzheimer Res., 2016, 13(10), 1173-1177.
[http://dx.doi.org/10.2174/1567205013666160404120542] [PMID: 27040140]
[112]
Lockridge, O. Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol. Ther., 2015, 148, 34-46.
[http://dx.doi.org/10.1016/j.pharmthera.2014.11.011] [PMID: 25448037]
[113]
Darvesh, S.; Hopkins, D.A.; Geula, C. Neurobiology of butyrylcholinesterase. Nat. Rev. Neurosci., 2003, 4(2), 131-138.
[http://dx.doi.org/10.1038/nrn1035] [PMID: 12563284]
[114]
Yu, Y.F.; Huang, Y.D.; Zhang, C.; Wu, X.N.; Zhou, Q.; Wu, D.; Wu, Y.; Luo, H.B. Discovery of novel pyrazolopyrimidinone derivatives as phosphodiesterase 9A inhibitors capable of inhibiting butyrylcholinesterase for treatment of Alzheimer’s Disease. ACS Chem. Neurosci., 2017, 8(11), 2522-2534.
[http://dx.doi.org/10.1021/acschemneuro.7b00268] [PMID: 28783948]
[115]
Rosini, M.; Simoni, E.; Milelli, A.; Minarini, A.; Melchiorre, C. Oxidative stress in Alzheimer’s disease: are we connecting the dots? J. Med. Chem., 2014, 57(7), 2821-2831.
[http://dx.doi.org/10.1021/jm400970m] [PMID: 24131448]
[116]
Maynard, C.J.; Bush, A.I.; Masters, C.L.; Cappai, R.; Li, Q.X. Metals and amyloid-β in Alzheimer’s disease. Int. J. Exp. Pathol., 2005, 86(3), 147-159.
[http://dx.doi.org/10.1111/j.0959-9673.2005.00434.x] [PMID: 15910549]
[117]
Zhang, C.; Zhou, Q.; Wu, X.N.; Huang, Y.D.; Zhou, J.; Lai, Z.; Wu, Y.; Luo, H.B. Discovery of novel PDE9A inhibitors with antioxidant activities for treatment of Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 260-270.
[http://dx.doi.org/10.1080/14756366.2017.1412315] [PMID: 29271265]
[118]
Su, T.; Zhang, T.; Xie, S.; Yan, J.; Wu, Y.; Li, X.; Huang, L.; Luo, H.B. Discovery of novel PDE9 inhibitors capable of inhibiting Aβ aggregation as potential candidates for the treatment of Alzheimer’s disease. Sci. Rep., 2016, 6, 21826.
[http://dx.doi.org/10.1038/srep21826] [PMID: 26911795]
[119]
Bortolotto, J.W.; Melo, G.M. Cognato, Gde.P.; Vianna, M.R.; Bonan, C.D. Modulation of adenosine signaling prevents scopolamine-induced cognitive impairment in zebrafish. Neurobiol. Learn. Mem., 2015, 118, 113-119.
[http://dx.doi.org/10.1016/j.nlm.2014.11.016] [PMID: 25490060]
[120]
Kaster, M.P.; Budni, J.; Gazal, M.; Cunha, M.P.; Santos, A.R.S.; Rodrigues, A.L.S. The antidepressant-like effect of inosine in the FST is associated with both adenosine A1 and A 2A receptors. Purinergic Signal., 2013, 9(3), 481-486.
[http://dx.doi.org/10.1007/s11302-013-9361-8] [PMID: 23613131]
[121]
Suvarna, N.U.; O’Donnell, J.M. Hydrolysis of N-methyl-D-aspartate receptor-stimulated cAMP and cGMP by PDE4 and PDE2 phosphodiesterases in primary neuronal cultures of rat cerebral cortex and hippocampus. J. Pharmacol. Exp. Ther., 2002, 302(1), 249-256.
[http://dx.doi.org/10.1124/jpet.302.1.249] [PMID: 12065724]
[122]
Chapman, T.M.; Goa, K.L. Cilostazol: a review of its use in intermittent claudication. Am. J. Cardiovasc. Drugs, 2003, 3(2), 117-138.
[http://dx.doi.org/10.2165/00129784-200303020-00006] [PMID: 14727939]
[123]
Jong-Seon, P.; Young-Jo, K. The clinical effects of cilostazol on atherosclerotic vascular disease. Korean Circ. J., 2008, 38, 441-445.
[http://dx.doi.org/10.4070/kcj.2008.38.9.441]
[124]
Godinho, J.; de Oliveira, J.N.; Ferreira, E.D.; Zaghi, G.G.; Bacarin, C.C.; de Oliveira, R.M.; Milani, H. Cilostazol but not sildenafil prevents memory impairment after chronic cerebral hypoperfusion in middle-aged rats. Behav. Brain Res., 2015, 283, 61-68.
[http://dx.doi.org/10.1016/j.bbr.2015.01.026] [PMID: 25623419]
[125]
Yanai, S.; Semba, Y.; Ito, H.; Endo, S. Cilostazol improves hippocampus-dependent long-term memory in mice. Psychopharmacology (Berl.), 2014, 231(13), 2681-2693.
[http://dx.doi.org/10.1007/s00213-014-3442-4] [PMID: 24464529]
[126]
Ihara, M.; Nishino, M.; Taguchi, A.; Yamamoto, Y.; Hattori, Y.; Saito, S.; Takahashi, Y.; Tsuji, M.; Kasahara, Y.; Takata, Y.; Okada, M. Cilostazol add-on therapy in patients with mild dementia receiving donepezil: a retrospective study. PLoS One, 2014, 9(2), e89516.
[http://dx.doi.org/10.1371/journal.pone.0089516] [PMID: 24586841]
[127]
Tai, S.Y.; Chen, C.H.; Chien, C.Y.; Yang, Y.H. Cilostazol as an add-on therapy for patients with Alzheimer’s disease in Taiwan: a case control study. BMC Neurol., 2017, 17(1), 40.
[http://dx.doi.org/10.1186/s12883-017-0800-y] [PMID: 28231822]
[128]
Hishikawa, N.; Fukui, Y.; Sato, K.; Ohta, Y.; Yamashita, T.; Abe, K. Comprehensive effects of galantamine and cilostazol combination therapy on patients with Alzheimer’s disease with asymptomatic lacunar infarction. Geriatr. Gerontol. Int., 2017, 17(10), 1384-1391.
[PMID: 27578455]
[129]
Rahman, A. The role of adenosine in Alzheimer’s disease. Curr. Neuropharmacol., 2009, 7(3), 207-216.
[http://dx.doi.org/10.2174/157015909789152119] [PMID: 20190962]
[130]
Cunha, R.A. Neuroprotection by adenosine in the brain: From A(1) receptor activation to A (2A) receptor blockade. Purinergic Signal., 2005, 1(2), 111-134.
[http://dx.doi.org/10.1007/s11302-005-0649-1] [PMID: 18404497]
[131]
Chen, Z.; Xiong, C.; Pancyr, C.; Stockwell, J.; Walz, W.; Cayabyab, F.S. Prolonged adenosine A1 receptor activation in hypoxia and pial vessel disruption focal cortical ischemia facilitates clathrin-mediated AMPA receptor endocytosis and long-lasting synaptic inhibition in rat hippocampal CA3-CA1 synapses: differential regulation of GluA2 and GluA1 subunits by p38 MAPK and JNK. J. Neurosci., 2014, 34(29), 9621-9643.
[http://dx.doi.org/10.1523/JNEUROSCI.3991-13.2014] [PMID: 25031403]
[132]
Chen, Z.; Stockwell, J.; Cayabyab, F.S.; Stockwell, J.; Walz, W.; Cayabyab, F.S. Adenosine A1 receptor-mediated endocytosis of AMPA receptors contributes to impairments in long-term potentiation (LTP) in the middle-aged rat hippocampus. Neurochem. Res., 2016, 41(5), 1085-1097.
[http://dx.doi.org/10.1007/s11064-015-1799-3] [PMID: 26700433]
[133]
Kalash, L.; Val, C.; Azuaje, J.; Loza, M.I.; Svensson, F.; Zoufir, A.; Mervin, L.; Ladds, G.; Brea, J.; Glen, R.; Sotelo, E.; Bender, A. Computer-aided design of multi-target ligands at A1R, A2AR and PDE10A, key proteins in neurodegenerative diseases. J. Cheminform., 2017, 9(1), 67.
[http://dx.doi.org/10.1186/s13321-017-0249-4] [PMID: 29290010]
[134]
Meneses, A.; Adriani, W. 5-HT7 receptor stimulation and blockade: a therapeutic paradox about memory formation and amnesia. Front. Behav. Neurosci., 2014, 8, 207.
[http://dx.doi.org/10.3389/fnbeh.2014.00207] [PMID: 24971055]
[135]
Pérez-Torres, S.; Mengod, G. cAMP-specific phosphodiesterases expression in Alzheimer’s Disease brains. Int. Congr. Ser., 2003, 1251, 127-138.
[http://dx.doi.org/10.1016/S0531-5131(03)00104-3]]
[136]
Heckman, P.R.A.; Blokland, A.; Ramaekers, J.; Prickaerts, J. PDE and cognitive processing: beyond the memory domain. Neurobiol. Learn. Mem., 2015, 119, 108-122.
[http://dx.doi.org/10.1016/j.nlm.2014.10.011] [PMID: 25464010]
[137]
Bonaventure, P.; Aluisio, L.; Shoblock, J.; Boggs, J.D.; Fraser, I.C.; Lord, B.; Lovenberg, T.W.; Galici, R. Pharmacological blockade of serotonin 5-HT7 receptor reverses working memory deficits in rats by normalizing cortical glutamate neurotransmission. PLoS One, 2011, 6(6)e20210
[http://dx.doi.org/10.1371/journal.pone.0020210] [PMID: 21701689]
[138]
Naumenko, V.S.; Popova, N.K.; Lacivita, E.; Leopoldo, M.; Ponimaskin, E.G. Interplay between serotonin 5-HT1A and 5-HT7 receptors in depressive disorders. CNS Neurosci. Ther., 2014, 20(7), 582-590.
[http://dx.doi.org/10.1111/cns.12247] [PMID: 24935787]
[139]
Chłoń-Rzepa, G.; Zagórska, A.; Żmudzki, P.; Bucki, A.; Kołaczkowski, M.; Partyka, A.; Wesołowska, A.; Kazek, G.; Głuch-Lutwin, M.; Siwek, A.; Starowicz, G.; Pawłowski, M. Aminoalkyl derivatives of 8-Alkoxypurine-2,6-diones: multifunctional 5-HT1A/5-HT7 receptor ligands and PDE inhibitors with antidepressant activity. Arch. Pharm. (Weinheim), 2016, 349(12), 889-903.
[http://dx.doi.org/10.1002/ardp.201600260] [PMID: 27869315]
[140]
Zagórska, A.; Bucki, A.; Kołaczkowski, M.; Siwek, A.; Głuch-Lutwin, M.; Starowicz, G.; Kazek, G.; Partyka, A.; Wesołowska, A.; Słoczyńska, K.; Pękala, E.; Pawłowski, M. Synthesis and biological evaluation of 2-fluoro and 3-trifluoromethyl-phenyl-piperazinylalkyl derivatives of 1H-imidazo[2,1-f]purine-2,4(3H,8H)-dione as potential antidepressant agents. J. Enzyme Inhib. Med. Chem., 2016, 31(3), 10-24.
[http://dx.doi.org/10.1080/14756366.2016.1198902] [PMID: 27353547]
[141]
Wager, T.T.; Hou, X.; Verhoest, P.R.; Villalobos, A. Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chem. Neurosci., 2010, 1(6), 435-449.
[http://dx.doi.org/10.1021/cn100008c] [PMID: 22778837]
[142]
Chemaxon Software, 2018. Available at: http://www.chemaxon.com (Accessed Date: 30 April, 2019)