Monocytes as Carriers of Magnetic Nanoparticles for Tracking Inflammation in the Epileptic Rat Brain

Page: [637 - 644] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Inflammation is a hallmark of epileptogenic brain tissue. Previously, we have shown that inflammation in epilepsy can be delineated using systemically-injected fluorescent and magnetite- laden nanoparticles. Suggested mechanisms included distribution of free nanoparticles across a compromised blood-brain barrier or their transfer by monocytes that infiltrate the epileptic brain.

Objective: In the current study, we evaluated monocytes as vehicles that deliver nanoparticles into the epileptic brain. We also assessed the effect of epilepsy on the systemic distribution of nanoparticleloaded monocytes.

Methods: The in vitro uptake of 300-nm nanoparticles labeled with magnetite and BODIPY (for optical imaging) was evaluated using rat monocytes and fluorescence detection. For in vivo studies we used the rat lithium-pilocarpine model of temporal lobe epilepsy. In vivo nanoparticle distribution was evaluated using immunohistochemistry.

Results: 89% of nanoparticle loading into rat monocytes was accomplished within 8 hours, enabling overnight nanoparticle loading ex vivo. The dose-normalized distribution of nanoparticle-loaded monocytes into the hippocampal CA1 and dentate gyrus of rats with spontaneous seizures was 176-fold and 380-fold higher compared to the free nanoparticles (p<0.05). Seizures were associated with greater nanoparticle accumulation within the liver and the spleen (p<0.05).

Conclusion: Nanoparticle-loaded monocytes are attracted to epileptogenic brain tissue and may be used for labeling or targeting it, while significantly reducing the systemic dose of potentially toxic compounds. The effect of seizures on monocyte biodistribution should be further explored to better understand the systemic effects of epilepsy.

Keywords: Magnetic nanoparticles, epilepsy, seizures, inflammation, monocytes, macrophages.

Graphical Abstract

[1]
Fisher, R.S.; Acevedo, C.; Arzimanoglou, A.; Bogacz, A.; Cross, J.H.; Elger, C.E.; Engel, J., Jr; Forsgren, L.; French, J.A.; Glynn, M.; Hesdorffer, D.C.; Lee, B.I.; Mathern, G.W.; Moshé, S.L.; Perucca, E.; Scheffer, I.E.; Tomson, T.; Watanabe, M.; Wiebe, S. ILAE official report: a practical clinical definition of epilepsy. Epilepsia, 2014, 55(4), 475-482.
[http://dx.doi.org/10.1111/epi.12550] [PMID: 24730690]
[2]
Aronica, E.; Bauer, S.; Bozzi, Y.; Caleo, M.; Dingledine, R.; Gorter, J.A.; Henshall, D.C.; Kaufer, D.; Koh, S.; Löscher, W.; Louboutin, J.P.; Mishto, M.; Norwood, B.A.; Palma, E.; Poulter, M.O.; Terrone, G.; Vezzani, A.; Kaminski, R.M. Neuroinflammatory targets and treatments for epilepsy validated in experimental models. Epilepsia, 2017, 58(Suppl. 3), 27-38.
[http://dx.doi.org/10.1111/epi.13783] [PMID: 28675563]
[3]
Han, H.; Mann, A.; Ekstein, D.; Eyal, S. Breaking bad: The structure and function of the blood-brain barrier in epilepsy. AAPS J., 2017, 19(4), 973-988.
[http://dx.doi.org/10.1208/s12248-017-0096-2] [PMID: 28550637]
[4]
Marchi, N.; Granata, T.; Ghosh, C.; Janigro, D. Blood-brain barrier dysfunction and epilepsy: Pathophysiologic role and therapeutic approaches. Epilepsia, 2012, 53(11), 1877-1886.
[http://dx.doi.org/10.1111/j.1528-1167.2012.03637.x] [PMID: 22905812]
[5]
Pitkänen, A.; Löscher, W.; Vezzani, A.; Becker, A.J.; Simonato, M.; Lukasiuk, K.; Gröhn, O.; Bankstahl, J.P.; Friedman, A.; Aronica, E.; Gorter, J.A.; Ravizza, T.; Sisodiya, S.M.; Kokaia, M.; Beck, H. Advances in the development of biomarkers for epilepsy. Lancet Neurol., 2016, 15(8), 843-856.
[http://dx.doi.org/10.1016/S1474-4422(16)00112-5] [PMID: 27302363]
[6]
van Vliet, E.A.; Aronica, E.; Gorter, J.A. Blood-brain barrier dysfunction, seizures and epilepsy. Semin. Cell Dev. Biol., 2015, 38, 26-34.
[http://dx.doi.org/10.1016/j.semcdb.2014.10.003] [PMID: 25444846]
[7]
Vezzani, A.; French, J.; Bartfai, T.; Baram, T.Z. The role of inflammation in epilepsy. Nat. Rev. Neurol., 2011, 7(1), 31-40.
[http://dx.doi.org/10.1038/nrneurol.2010.178] [PMID: 21135885]
[8]
Broekaart, D.W.M.; Anink, J.J.; Baayen, J.C.; Idema, S.; de Vries, H.E.; Aronica, E.; Gorter, J.A.; van Vliet, E.A. Activation of the innate immune system is evident throughout epileptogenesis and is associated with blood-brain barrier dysfunction and seizure progression. Epilepsia, 2018, 59(10), 1931-1944.
[http://dx.doi.org/10.1111/epi.14550] [PMID: 30194729]
[9]
Varvel, N.H.; Neher, J.J.; Bosch, A.; Wang, W.; Ransohoff, R.M.; Miller, R.J.; Dingledine, R. Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus. Proc. Natl. Acad. Sci. USA, 2016, 113(38), E5665-E5674.
[http://dx.doi.org/10.1073/pnas.1604263113] [PMID: 27601660]
[10]
Wang, Y.; Wang, Y.; Sun, R.; Wu, X.; Chu, X.; Zhou, S.; Hu, X.; Gao, L.; Kong, Q. The treatment value of IL-1β monoclonal antibody under the targeting location of alpha-methyl-L-tryptophan and superparamagnetic iron oxide nanoparticles in an acute temporal lobe epilepsy model. J. Transl. Med., 2018, 16(1), 337.
[http://dx.doi.org/10.1186/s12967-018-1712-3] [PMID: 30514296]
[11]
Portnoy, E.; Polyak, B.; Inbar, D.; Kenan, G.; Rai, A.; Wehrli, S.L.; Roberts, T.P.; Bishara, A.; Mann, A.; Shmuel, M.; Rozovsky, K.; Itzhak, G.; Ben-Hur, T.; Magdassi, S.; Ekstein, D.; Eyal, S. Tracking inflammation in the epileptic rat brain by bi-functional fluorescent and magnetic nanoparticles. Nanomedicine (Lond.), 2016, 12(5), 1335-1345.
[http://dx.doi.org/10.1016/j.nano.2016.01.018] [PMID: 26964483]
[12]
Curia, G.; Longo, D.; Biagini, G.; Jones, R.S.; Avoli, M. The pilocarpine model of temporal lobe epilepsy. J. Neurosci. Methods, 2008, 172(2), 143-157.
[http://dx.doi.org/10.1016/j.jneumeth.2008.04.019] [PMID: 18550176]
[13]
Glien, M.; Brandt, C.; Potschka, H.; Voigt, H.; Ebert, U.; Löscher, W. Repeated low-dose treatment of rats with pilocarpine: low mortality but high proportion of rats developing epilepsy. Epilepsy Res., 2001, 46(2), 111-119.
[http://dx.doi.org/10.1016/S0920-1211(01)00272-8] [PMID: 11463512]
[14]
Bozzi, Y.; Caleo, M. Epilepsy, Seizures, and inflammation: role of the C-C motif ligand 2 chemokine. DNA Cell Biol., 2016, 35(6), 257-260.
[http://dx.doi.org/10.1089/dna.2016.3345] [PMID: 27167681]
[15]
Käufer, C.; Chhatbar, C.; Bröer, S.; Waltl, I.; Ghita, L.; Gerhauser, I.; Kalinke, U.; Löscher, W. Chemokine receptors CCR2 and CX3CR1 regulate viral encephalitis-induced hippocampal damage but not seizures. Proc. Natl. Acad. Sci. USA, 2018, 115(38), E8929-E8938.
[http://dx.doi.org/10.1073/pnas.1806754115] [PMID: 30181265]
[16]
Mahad, D.; Callahan, M.K.; Williams, K.A.; Ubogu, E.E.; Kivisäkk, P.; Tucky, B.; Kidd, G.; Kingsbury, G.A.; Chang, A.; Fox, R.J.; Mack, M.; Sniderman, M.B.; Ravid, R.; Staugaitis, S.M.; Stins, M.F.; Ransohoff, R.M. Modulating CCR2 and CCL2 at the blood-brain barrier: relevance for multiple sclerosis pathogenesis. Brain, 2006, 129(Pt 1), 212-223.
[http://dx.doi.org/10.1093/brain/awh655] [PMID: 16230319]
[17]
Sheehan, J.J.; Zhou, C.; Gravanis, I.; Rogove, A.D.; Wu, Y.P.; Bogenhagen, D.F.; Tsirka, S.E. Proteolytic activation of monocyte chemoattractant protein-1 by plasmin underlies excitotoxic neurodegeneration in mice. J. Neurosci., 2007, 27(7), 1738-1745.
[http://dx.doi.org/10.1523/JNEUROSCI.4987-06.2007] [PMID: 17301181]
[18]
Kahles, F.; Findeisen, H.M.; Bruemmer, D. Osteopontin: A novel regulator at the cross roads of inflammation, obesity and diabetes. Mol. Metab., 2014, 3(4), 384-393.
[http://dx.doi.org/10.1016/j.molmet.2014.03.004] [PMID: 24944898]
[19]
Waltl, I.; Käufer, C.; Bröer, S.; Chhatbar, C.; Ghita, L.; Gerhauser, I.; Anjum, M.; Kalinke, U.; Löscher, W. Macrophage depletion by liposome-encapsulated clodronate suppresses seizures but not hippocampal damage after acute viral encephalitis. Neurobiol. Dis., 2018, 110, 192-205.
[http://dx.doi.org/10.1016/j.nbd.2017.12.001] [PMID: 29208406]
[20]
Zattoni, M.; Mura, M.L.; Deprez, F.; Schwendener, R.A.; Engelhardt, B.; Frei, K.; Fritschy, J.M. Brain infiltration of leukocytes contributes to the pathophysiology of temporal lobe epilepsy. J. Neurosci., 2011, 31(11), 4037-4050.
[http://dx.doi.org/10.1523/JNEUROSCI.6210-10.2011] [PMID: 21411646]
[21]
Zhao, L.; Li, N.; Wang, K.; Shi, C.; Zhang, L.; Luan, Y. A review of polypeptide-based polymersomes. Biomaterials, 2014, 35(4), 1284-1301.
[http://dx.doi.org/10.1016/j.biomaterials.2013.10.063] [PMID: 24211077]
[22]
Li, N.; Zhao, L.; Qi, L.; Li, Z.; Luan, Y. Polymer assembly: Promising carriers as co-delivery systems for cancer therapy. Prog. Polym. Sci., 2016, 58, 1-26.
[http://dx.doi.org/10.1016/j.progpolymsci.2015.10.009]
[23]
Tong, H.I.; Kang, W.; Davy, P.M.; Shi, Y.; Sun, S.; Allsopp, R.C.; Lu, Y. Monocyte trafficking, engraftment, and delivery of nanoparticles and an exogenous gene into the acutely inflamed brain tissue - evaluations on monocyte-based delivery system for the central nervous system. PLoS One, 2016, 11(4)e0154022
[http://dx.doi.org/10.1371/journal.pone.0154022] [PMID: 27115998]
[24]
Ajami, B.; Bennett, J.L.; Krieger, C.; McNagny, K.M.; Rossi, F.M. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat. Neurosci., 2011, 14(9), 1142-1149.
[http://dx.doi.org/10.1038/nn.2887] [PMID: 21804537]
[25]
Gonzalez, E.; Rovin, B.H.; Sen, L.; Cooke, G.; Dhanda, R.; Mummidi, S.; Kulkarni, H.; Bamshad, M.J.; Telles, V.; Anderson, S.A.; Walter, E.A.; Stephan, K.T.; Deucher, M.; Mangano, A.; Bologna, R.; Ahuja, S.S.; Dolan, M.J.; Ahuja, S.K. HIV-1 infection and AIDS dementia are influenced by a mutant MCP-1 allele linked to increased monocyte infiltration of tissues and MCP-1 levels. Proc. Natl. Acad. Sci. USA, 2002, 99(21), 13795-13800.
[http://dx.doi.org/10.1073/pnas.202357499] [PMID: 12374865]