Recent Advances in Spontaneous Raman Spectroscopic Imaging: Instrumentation and Applications

Page: [6188 - 6207] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Background: Spectroscopic imaging based on the spontaneous Raman scattering effects can provide unique fingerprint information in relation to the vibration bands of molecules. Due to its advantages of high chemical specificity, non-invasive detection capability, low sensitivity to water, and no special sample pretreatment, Raman Spectroscopic Imaging (RSI) has become an invaluable tool in the field of biomedicine and medicinal chemistry.

Methods: There are three methods to implement RSI, including point scanning, line scanning and wide-field RSI. Point-scanning can achieve two-and three-dimensional imaging of target samples. High spectral resolution, full spectral range and confocal features render this technique highly attractive. However, point scanning based RSI is a time-consuming process that can take several hours to map a small area. Line scanning RSI is an extension of point scanning method, with an imaging speed being 300-600 times faster. In the wide-field RSI, the laser illuminates the entire region of interest directly and all the images then collected for analysis. In general, it enables more accurate chemical imaging at faster speeds.

Results: This review focuses on the recent advances in RSI, with particular emphasis on the latest developments on instrumentation and the related applications in biomedicine and medicinal chemistry. Finally, we prospect the development trend of RSI as well as its potential to translation from bench to bedside.

Conclusion: RSI is a powerful technique that provides unique chemical information, with a great potential in the fields of biomedicine and medicinal chemistry.

Keywords: Raman spectroscopic imaging, spontaneous Raman scattering, point scanning, line scanning, wide-field imaging, medicinal chemistry, biomedical applications.

[1]
Stewart, S.; Priore, R.J.; Nelson, M.P.; Treado, P.J. Raman imaging. Annu. Rev. of Analytical Chemistry, 2012, 5, 337-360.
[http://dx.doi.org/10.1146/annurev-anchem-062011-143152]
[2]
Raman, C.V.; Krishnan, K.S. A new type of secondary radiation. Nature, 1928, 121, 501-502.
[http://dx.doi.org/10.1038/121501c0]
[3]
Jermyn, M.; Desroches, J.; Aubertin, K.; St-Arnaud, K.; Madore, W.J.; De Montigny, E.; Guiot, M.C.; Trudel, D.; Wilson, B.C.; Petrecca, K.; Leblond, F. A review of Raman spectroscopy advances with an emphasis on clinical translation challenges in oncology. Phys. Med. Biol., 2016, 61(23), R370-R400.
[http://dx.doi.org/10.1088/0031-9155/61/23/R370] [PMID: 27804917]
[4]
Opilik, L.; Schmid, T.; Zenobi, R. Modern raman imaging: vibrational spectroscopy on the micrometer and nanometer scales. Annu. Rev. of Analytical Chemistry, 2013, 6, 379-398.
[http://dx.doi.org/10.1146/annurev-anchem-062012-092646]]
[5]
Balogh, A.; Domokos, A.; Farkas, B.; Farkas, A.; Rapi, Z.; Kiss, D.; Nyiri, Z.; Eke, Z.; Szarka, G.; Orkenyi, R.; Matravolgyi, B.; Faigl, F.; Marosi, G.; Nagy, Z.K. Continuous end-to-end production of solid drug dosage forms: coupling flow synthesis and formulation by electrospinning. Chem. Eng. J., 2018, 350, 290-299.
[http://dx.doi.org/10.1016/j.cej.2018.05.188]
[6]
Salavagione, H.J.; Sherwood, J.; De Bruyn, M.; Budarin, V.L.; Ellis, G.J.; Clark, J.H.; Shuttleworth, P.S. Identification of high performance solvents for the sustainable processing of graphene. Green Chem., 2017, 19(11), 2550-2560.
[http://dx.doi.org/10.1039/C7GC00112F]
[7]
Lombardo, D.; Calandra, P.; Bellocco, E.; Laganà, G.; Barreca, D.; Magazù, S.; Wanderlingh, U.; Kiselev, M.A. Effect of anionic and cationic polyamidoamine (PAMAM) dendrimers on a model lipid membrane. Biochim. Biophys. Acta, 2016, 1858(11), 2769-2777.
[http://dx.doi.org/10.1016/j.bbamem.2016.08.001] [PMID: 27521487]
[8]
Svorcik, V.; Makajova, Z.; Kasalkova, N.S.; Kolska, Z.; Zakova, P.; Karpiskova, J.; Stibor, I.; Slepicka, P. Cytocompatibility of polymers grafted by activated carbon nano-particles. Carbon, 2014, 69, 361-371.
[http://dx.doi.org/10.1016/j.carbon.2013.12.037]
[9]
Vaculíková, L.; Plevová, E.; Ritz, M. Characterization of montmorillonites by infrared and raman spectroscopy for preparation of polymer-clay nanocomposites. J. Nanosci. Nanotechnol., 2019, 19(5), 2775-2781.
[http://dx.doi.org/10.1166/jnn.2019.15877] [PMID: 30501779]
[10]
Wang, W.T.; Zhang, H.; Yuan, Y.; Guo, Y.; He, S.X. Research progress of raman spectroscopy in drug analysis. AAPS PharmSciTech, 2018, 19(7), 2921-2928.
[http://dx.doi.org/10.1208/s12249-018-1135-8] [PMID: 30091063]
[11]
Chen, D.D.; Xie, X.F.; Ao, H.; Liu, J.L.; Peng, C. Raman spectroscopy in quality control of Chinese herbal medicine. J. Chin. Med. Assoc., 2017, 80(5), 288-296.
[http://dx.doi.org/10.1016/j.jcma.2016.11.009] [PMID: 28325576]
[12]
Chen, L.; Yuan, M.Y.; Ming, J.; Liu, Y.M.; Huang, B.S.; Chen, K.L. Quantitative models of Raman spectroscopy for five kinds of traditional Chinese medicine containing CaCO3 based on an improved siPLS. Zhongguo Zhongyao Zazhi, 2015, 40(18), 3608-3615.
[PMID: 26983209]
[13]
Ling, X.; Wu, M.L.; Liao, Y.; Zhou, Y.C. Nondestructive techniques in the research and preservation of cultural relics. Guangpuxue Yu Guangpu Fenxi, 2018, 38(7), 2026-2031.
[http://dx.doi.org/10.3964/j.issn.1000-0593(2018)07-2026-06]]
[14]
Futreal, P.A.; Coin, L.; Marshall, M.; Down, T.; Hubbard, T.; Wooster, R.; Rahman, N.; Stratton, M.R. A census of human cancer genes. Nat. Rev. Cancer, 2004, 4(3), 177-183.
[http://dx.doi.org/10.1038/nrc1299] [PMID: 14993899]
[15]
Olsen, O.; Gøtzsche, P.C. Cochrane review on screening for breast cancer with mammography. Lancet, 2001, 358(9290), 1340-1342.
[http://dx.doi.org/10.1016/S0140-6736(01)06449-2] [PMID: 11684218]
[16]
Armstrong, K.; Moye, E.; Williams, S.; Berlin, J.A.; Reynolds, E.E. Screening mammography in women 40 to 49 years of age: a systematic review for the American College of Physicians. Ann. Intern. Med., 2007, 146(7), 516-526.
[http://dx.doi.org/10.7326/0003-4819-146-7-200704030-00008] [PMID: 17404354]
[17]
Hrung, J.M.; Sonnad, S.S.; Schwartz, J.S.; Langlotz, C.P. Accuracy of MR imaging in the work-up of suspicious breast lesions: a diagnostic meta-analysis. Acad. Radiol., 1999, 6(7), 387-397.
[http://dx.doi.org/10.1016/S1076-6332(99)80189-5] [PMID: 10410164]
[18]
Morrow, M. Magnetic resonance imaging in breast cancer: one step forward, two steps back? JAMA, 2004, 292(22), 2779-2780.
[http://dx.doi.org/10.1001/jama.292.22.2779] [PMID: 15585740]
[19]
Polan, R.L.; Klein, B.D.; Richman, R.H. Scintimammography in patients with minimal mammographic or clinical findings. Radiographics, 2001, 21(3), 641-653.
[http://dx.doi.org/10.1148/radiographics.21.3.g01ma26641] [PMID: 11353112]
[20]
Haller, J.; Hyde, D.; Deliolanis, N.; de Kleine, R.; Niedre, M.; Ntziachristos, V. Visualization of pulmonary inflammation using noninvasive fluorescence molecular imaging. J. Appl. Physiol., 2008, 104(3), 795-802.
[http://dx.doi.org/10.1152/japplphysiol.00959.2007] [PMID: 18202169]
[21]
Kuebler, W.M.; Parthasarathi, K.; Lindert, J.; Bhattacharya, J. Real-time lung microscopy. J. Appl. Physiol., 2007, 102(3), 1255-1264.
[http://dx.doi.org/10.1152/japplphysiol.00786.2006] [PMID: 17095639]
[22]
Abraham, T.; Hirota, J.A.; Wadsworth, S.; Knight, D.A. Minimally invasive multiphoton and harmonic generation imaging of extracellular matrix structures in lung airway and related diseases. Pulm. Pharmacol. Ther., 2011, 24(5), 487-496.
[http://dx.doi.org/10.1016/j.pupt.2011.03.008] [PMID: 21497667]
[23]
Nava, R.G.; Li, W.; Gelman, A.E.; Krupnick, A.S.; Miller, M.J.; Kreisel, D. Two-photon microscopy in pulmonary research. Semin. Immunopathol., 2010, 32(3), 297-304.
[http://dx.doi.org/10.1007/s00281-010-0209-9] [PMID: 20589501]
[24]
Dou, S.; Liu, J.; Yang, L. Dual-modality optical projection tomography reconstruction method from fewer views. J. Biophotonics, 2019, 12(4),e201800407.
[http://dx.doi.org/10.1002/jbio.201800407] [PMID: 30578626]
[25]
Davis, S.P.X.; Wisniewski, L.; Kumar, S.; Correia, T.; Arridge, S.R.; Frankel, P.; McGinty, J.; French, P.M.W. Slice-illuminated optical projection tomography. Opt. Lett., 2018, 43(22), 5555-5558.
[http://dx.doi.org/10.1364/OL.43.005555] [PMID: 30439894]
[26]
Chen, F.; Li, K.; Hart-Smith, G.; Xu, Y.D.; Jiang, Y.; Lu, H.; Fok, S.; Macmillian, A.; Pandzic, E.; Stenzel, M. Light-sheet microscopy as a tool to understanding the behaviour of polyion complex micelles for drug delivery. Chem. Commun. (Camb.), 2018, 54(89), 12618-12621.
[http://dx.doi.org/10.1039/C8CC04986F] [PMID: 30349928]
[27]
Logan, S.L.; Dudley, C.; Baker, R.P.; Taormina, M.J.; Hay, E.A.; Parthasarathy, R. Automated high-throughput light-sheet fluorescence microscopy of larval zebrafish. PLoS One, 2018, 13(11),e0198705.
[http://dx.doi.org/10.1371/journal.pone.0198705] [PMID: 30427839]
[28]
Opilik, L.; Schmid, T.; Zenobi, R. Modern Raman imaging: vibrational spectroscopy on the micrometer and nanometer scales. Annu. Rev. of Analytical Chemistry, 2013, 6, 379-398.
[http://dx.doi.org/10.1146/annurev-anchem-062012-092646]]
[29]
Delhaye, M.; Dhamelincourt, P. Raman microprobe and microscope with laser excitation. J. Raman Spectrosc., 1975, 3(1), 33-43.
[http://dx.doi.org/10.1002/jrs.1250030105]
[30]
Clark, D.; Heson, M.; Laplant, F.; Sasic, S.; Zhang, L. Pharmaceutical applications of chemical mapping and imaging. Applications of Vibrational Spectroscopy in Pharmaceutical Research and Development, 2007, 3, 309-335.
[31]
Schlücker, S.; Schaeberle, M.D.; Huffman, S.W.; Levin, I.W. Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies. Anal. Chem., 2003, 75(16), 4312-4318.
[http://dx.doi.org/10.1021/ac034169h] [PMID: 14632151]
[32]
Puppels, G.J.; Grond, M.; Greve, J. Direct imaging Raman microscope based on tunable wavelength excitation and narrow-band emission detection. Appl. Spectrosc., 1993, 47(8), 1256-1267.
[http://dx.doi.org/10.1366/0003702934068017]
[33]
Braeutigam, K.; Bocklitz, T.; Silge, A.; Dierker, C.; Ossig, R.; Schnekenburger, J.; Cialla, D.; Roesch, P.; Popp, J. Comparative two- and three-dimensional analysis of nanoparticle localization in different cell types by raman spectroscopic imaging. J. Mol. Struct., 2014, 1073, 44-50.
[http://dx.doi.org/10.1016/j.molstruc.2014.05.013]
[34]
Tres, F.; Treacher, K.; Booth, J.; Hughes, L.P.; Wren, S.A.C.; Aylott, J.W.; Burley, J.C. Real time Raman imaging to understand dissolution performance of amorphous solid dispersions. J. Control. Release, 2014, 188, 53-60.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.061] [PMID: 24910191]
[35]
Qi, J.; Shih, W-C. Performance of line-scan raman microscopy for high-throughput chemical imaging of cell population. Appl. Opt., 2014, 53(13), 2881-2885.
[http://dx.doi.org/10.1364/AO.53.002881] [PMID: 24921875]
[36]
Deng, S.; Liu, L.; Liu, Z.; Shen, Z.; Li, G.; He, Y. Line-scanning raman imaging spectroscopy for detection of fingerprints. Appl. Opt., 2012, 51(17), 3701-3706.
[http://dx.doi.org/10.1364/AO.51.003701] [PMID: 22695646]
[37]
Jestel, N.L.; Shaver, J.M.; Morris, M.D. Hyperspectral raman line imaging of an aluminosilicate glass. Appl. Spectrosc., 1998, 52(1), 64-69.
[http://dx.doi.org/10.1366/0003702981942339]
[38]
Markwort, L.; Kip, B. Micro-raman imaging of heterogeneous polymer systems: general applications and limitations. J. Appl. Polym. Sci., 1996, 61(2), 231-254.
[http://dx.doi.org/10.1002/(SICI)1097-4628(19960711)61: 2<231::AID-APP6>3.0.CO;2-Q]
[39]
Bowden, M.; Gardiner, D.J.; Rice, G.; Gerrard, D.L. Line-scanned micro raman spectroscopy using a cooled CCD imaging detector. J. Raman Spectrosc., 1990, 21, 37-41.
[http://dx.doi.org/10.1002/jrs.1250210108]
[40]
Turner, J.F., II; Treado, P.J. LCTF raman chemical imaging in the near-infrared. Proceedings of the SPIE, 1997, pp. 280-283.
[http://dx.doi.org/10.1117/12.280345]
[41]
Treado, P.J.; Nelson, M.P. Raman imaging. Handbook of Raman Spectroscopy from the Research Laboratory to the Process Line , 2001; 28, pp. 191-249.
[42]
Morris, H.R.; Hoyt, C.C.; Treado, P.J. Imaging spectrometers for fluorescence and raman microscopy: acousto-optic and liquid crystal tunable filters. Appl. Spectrosc., 1994, 48(7), 857-866.
[http://dx.doi.org/10.1366/0003702944029820]
[43]
Morris, H.R.; Hoyt, C.C.; Miller, P.; Treado, P.J. Liquid crystal tunable filter raman chemical imaging. Appl. Spectrosc., 1996, 50(6), 805-811.
[http://dx.doi.org/10.1366/0003702963905655]
[44]
Schaeberle, M.D.; Karakatsanis, C.G.; Lau, C.J.; Treado, P.J. Raman chemical imaging: noninvasive visualization of polymer blend architecture. Anal. Chem., 1995, 67(23), 4316-4321.
[http://dx.doi.org/10.1021/ac00119a018]
[45]
Treado, P.J.; Levin, I.W.; Lewis, E.N. High-fidelity raman imaging spectrometry: a rapid method using an acousto-optic tunable filter. Appl. Spectrosc., 1992, 46(8), 1211-1216.
[http://dx.doi.org/10.1366/0003702924123980]
[46]
Goldstein, S.R.; Kidder, L.H.; Herne, T.M.; Levin, I.W.; Lewis, E.N. The design and implementation of a high-fidelity raman imaging microscope. J. Microsc., 1996, 184(Pt 1), 35-45.
[http://dx.doi.org/10.1046/j.1365-2818.1996.1130670.x] [PMID: 8923757]
[47]
Batchelder, D.N.; Cheng, C.; Muller, W.; Smith, B.J.E. A compact raman microprobe/microscope: analysis of polydiacetylene langmuir and langmuir-blodgett films. Makromolekulare Chemie-Macromolecular Symposia, 1991, 46, 171-179.
[http://dx.doi.org/10.1002/masy.19910460121]
[48]
Nelson, M.; McLestar, M.; Aust, J.; Myrick, M. Distributed sensing of fiber-optic arrays. Presented at Pittsburgh Conf. Expo. Anal. Chem. Appl. Spectrosc., 1996.
[49]
Nelson, M.P.; Myrick, M.L. Single-frame chemical imaging: dimension reduction fiber-optic array improvements and application to laser-induced breakdown spectroscopy. Appl. Spectrosc., 1999, 53(7), 751-759.
[http://dx.doi.org/10.1366/0003702991947450]
[50]
Nelson, M.P.; Bell, W.C.; McLester, M.L.; Myrick, M.L. Single-shot multiwavelength imaging of laser plumes. Appl. Spectrosc., 1998, 52(2), 179-186.
[http://dx.doi.org/10.1366/0003702981943383]
[51]
Nelson, M.P.; Myrick, M.L. Fabrication and evaluation of a dimension-reduction fiberoptic system for chemical imaging applications. Rev. Sci. Instrum., 1999, 70(6), 2836-2844.
[http://dx.doi.org/10.1063/1.1149804]
[52]
Ma, J.Y.; Ben-Amotz, D. Rapid micro-raman imaging using fiber-bundle image compression. Appl. Spectrosc., 1997, 51(12), 1845-1848.
[http://dx.doi.org/10.1366/0003702971939668]
[53]
St-Arnaud, K.; Aubertin, K.; Strupler, M.; Jermyn, M.; Petrecca, K.; Trudel, D.; Leblond, F. Wide-field spontaneous raman spectroscopy imaging system for biological tissue interrogation. Opt. Lett., 2016, 41(20), 4692-4695.
[http://dx.doi.org/10.1364/OL.41.004692] [PMID: 28005869]
[54]
Doronina-Amitonova, L.V.; Fedotov, I.V.; Fedotov, A.B.; Zheltikov, A.M. High-resolution wide-field raman imaging through a fiber bundle. Appl. Phys. Lett., 2013, 102(16),161113.
[http://dx.doi.org/10.1063/1.4801847]
[55]
Treado, P.J.; Morris, M.D. Multichannel hadamard transform raman microscopy. Appl. Spectrosc., 1990, 44(1), 1-4.
[http://dx.doi.org/10.1366/0003702904085714]
[56]
Li, H.; Luo, W.; Li, G.; Zhang, G.; Zhang, P.; Li, C.; Gu, Y. A practical wide-field raman imaging method with high spectral and spatial resolution. Rev. Sci. Instrum., 2018, 89(8), 08310.
[http://dx.doi.org/10.1063/1.5041529] [PMID: 30184661]
[57]
Widjaja, E.; Seah, R.K.H. Application of raman microscopy and band-target entropy minimization to identify minor components in model pharmaceutical tablets. J. Pharm. Biomed. Anal., 2008, 46(2), 274-281.
[http://dx.doi.org/10.1016/j.jpba.2007.09.023] [PMID: 17980994]
[58]
Nelson, M.; Treado, P. Raman imaging instrumentation. Raman, Infrared, and Near-Infrared Chemical Imaging, 2010, 2, 23-54.
[http://dx.doi.org/10.1002/9780470768150.ch2]
[59]
Lin, W.Q.; Jiang, J.H.; Yang, H.F.; Ozaki, Y.; Shen, G.L.; Yu, R.Q. Characterization of chloramphenicol palmitate drug polymorphs by raman mapping with multivariate image segmentation using a spatial directed agglomeration clustering method. Anal. Chem., 2006, 78(17), 6003-6011.
[http://dx.doi.org/10.1021/ac0520902] [PMID: 16944877]
[60]
Henson, M.J.; Zhang, L. Drug characterization in low dosage pharmaceutical tablets using raman microscopic mapping. Appl. Spectrosc., 2006, 60(11), 1247-1255.
[http://dx.doi.org/10.1366/000370206778998987] [PMID: 17132441]
[61]
Skorda, D.; Kontoyannis, C.G. Identification and quantitative determination of atorvastatin calcium polymorph in tablets using FT-raman spectroscopy. Talanta, 2008, 74(4), 1066-1070.
[http://dx.doi.org/10.1016/j.talanta.2007.07.030] [PMID: 18371751]
[62]
Smith, J.P.; Smith, F.C.; Ottaway, J.; Krull-Davatzes, A.E.; Simonson, B.M.; Glass, B.P.; Booksh, K.S. Raman microspectroscopic mapping with multivariate curve resolution-alternating least squares (MCR-ALS) applied to the high-pressure polymorph of titanium dioxide, TiO2-II. Appl. Spectrosc., 2017, 71(8), 1816-1833.
[http://dx.doi.org/10.1177/0003702816687573] [PMID: 28756705]
[63]
Grishina, S.; Kodera, P.; Uriarte, L.M.; Dubessy, J.; Oreshonkov, A.; Goryainov, S.; Simko, F.; Yakovlev, I.; Roginskii, E.M. Identification of anhydrous CaCl2 and KCaCl3 in natural inclusions by raman spectroscopy. Chem. Geol., 2018, 493, 532-543.
[http://dx.doi.org/10.1016/j.chemgeo.2018.07.017]
[64]
Sasić, S. Chemical imaging of pharmaceutical granules by raman global illumination and near-infrared mapping platforms. Anal. Chim. Acta, 2008, 611(1), 73-79.
[http://dx.doi.org/10.1016/j.aca.2008.01.063] [PMID: 18298970]
[65]
Doub, W.H.; Adams, W.P.; Spencer, J.A.; Buhse, L.F.; Nelson, M.P.; Treado, P.J. Raman chemical imaging for ingredient-specific particle size characterization of aqueous suspension nasal spray formulations: a progress report. Pharm. Res., 2007, 24(5), 934-945.
[http://dx.doi.org/10.1007/s11095-006-9211-2] [PMID: 17372686]
[66]
Priore, R.J.; Olkhovyk, O.; Klueva, O.; Fuhrman, M. Automation of ingredient-specific particle sizing employing raman chemical imaging. RDD Eur., 2009, 2, 275-278.
[67]
Yang, Y.; Wang, X.; Zhao, C.; Tian, G.; Zhang, H.; Xiao, H.; He, L.; Zheng, J. Chemical mapping of essential oils, flavonoids and carotenoids in citrus peels by raman microscopy. J. Food Sci., 2017, 82(12), 2840-2846.
[http://dx.doi.org/10.1111/1750-3841.13952] [PMID: 29115662]
[68]
Belu, A.; Mahoney, C.; Wormuth, K. Chemical imaging of drug eluting coatings: combining surface analysis and confocal raman microscopy. J. Control. Release, 2008, 126(2), 111-121.
[http://dx.doi.org/10.1016/j.jconrel.2007.11.015] [PMID: 18201791]
[69]
Boiret, M.; Rutledge, D.N.; Gorretta, N.; Ginot, Y.M.; Roger, J.M. Application of independent component analysis on raman images of a pharmaceutical drug product: pure spectra determination and spatial distribution of constituents. J. Pharm. Biomed. Anal., 2014, 90, 78-84.
[http://dx.doi.org/10.1016/j.jpba.2013.11.025] [PMID: 24333706]
[70]
Vajna, B.; Pataki, H.; Nagy, Z.; Farkas, I.; Marosi, G. Characterization of melt extruded and conventional isoptin formulations using raman chemical imaging and chemometrics. Int. J. Pharm., 2011, 419(1-2), 107-113.
[http://dx.doi.org/10.1016/j.ijpharm.2011.07.023] [PMID: 21803139]
[71]
Vioglio, P.C.; Chierotti, M.R.; Gobetto, R. Pharmaceutical aspects of salt and cocrystal forms of APIs and characterization challenges. Adv. Drug Deliv. Rev., 2017, 117, 86-110.
[http://dx.doi.org/10.1016/j.addr.2017.07.001] [PMID: 28687273]
[72]
Meng, L.; Ji, X.; Li, Z.; Liu, J.; Li, L.; Yao, H. Mono-hepatocellular carcinoma by raman mapping. Jiguang Yu Guangdianzixue Jinzhan, 2011, 48(2), 56-60.
[73]
Rusciano, G.; Zito, G.; Pesce, G.; Sasso, A. Cell imaging by spontaneous and amplified raman spectroscopies. J. Spectrosc., 2017, 1-9.
[http://dx.doi.org/10.1155/2017/2193656]
[74]
Smith, R.; Wright, K.L.; Ashton, L. Raman spectroscopy: an evolving technique for live cell studies. Analyst (Lond.), 2016, 141(12), 3590-3600.
[http://dx.doi.org/10.1039/C6AN00152A] [PMID: 27072718]
[75]
Draux, F.; Jeannesson, P.; Beljebbar, A.; Tfayli, A.; Fourre, N.; Manfait, M.; Sulé-Suso, J.; Sockalingum, G.D. Raman spectral imaging of single living cancer cells: a preliminary study. Analyst (Lond.), 2009, 134(3), 542-548.
[http://dx.doi.org/10.1039/B812610K] [PMID: 19238292]
[76]
Klein, K.; Gigler, A.M.; Aschenbrenner, T.; Monetti, R.; Bunk, W.; Jamitzky, F.; Morfill, G.; Stark, R.W.; Schlegel, J. Label-free live-cell imaging with confocal raman microscopy. Biophys. J., 2012, 102(2), 360-368.
[http://dx.doi.org/10.1016/j.bpj.2011.12.027] [PMID: 22339873]
[77]
Majzner, K.; Kaczor, A.; Kachamakova-Trojanowska, N.; Fedorowicz, A.; Chlopicki, S.; Baranska, M. 3D confocal raman imaging of endothelial cells and vascular wall: perspectives in analytical spectroscopy of biomedical research. Analyst (Lond.), 2013, 138(2), 603-610.
[http://dx.doi.org/10.1039/C2AN36222H] [PMID: 23172339]
[78]
Andrew Chan, K.L.; Zhang, G.; Tomic-Canic, M.; Stojadinovic, O.; Lee, B.; Flach, C.R.; Mendelsohn, R. A coordinated approach to cutaneous wound healing: vibrational microscopy and molecular biology. J. Cell. Mol. Med., 2008, 12(5B), 2145-2154.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00459.x] [PMID: 19145704]
[79]
Braiman-Wiksman, L.; Solomonik, I.; Spira, R.; Tennenbaum, T. Novel insights into wound healing sequence of events. Toxicol. Pathol., 2007, 35(6), 767-779.
[http://dx.doi.org/10.1080/01926230701584189] [PMID: 17943650]
[80]
Gniadecka, M.; Wulf, H.C.; Mortensen, N.N.; Nielsen, O.F.; Christensen, D.H. Diagnosis of basal cell carcinoma by raman spectroscopy. J. Raman Spectrosc., 1997, 28(2-3), 125-129.
[http://dx.doi.org/10.1002/(SICI)1097-4555(199702)28:2/3<125::AID-JRS65>3.0.CO;2-#]
[81]
Nijssen, A.; Bakker Schut, T.C.; Heule, F.; Caspers, P.J.; Hayes, D.P.; Neumann, M.H.A.; Puppels, G.J. Discriminating basal cell carcinoma from its surrounding tissue by raman spectroscopy. J. Invest. Dermatol., 2002, 119(1), 64-69.
[http://dx.doi.org/10.1046/j.1523-1747.2002.01807.x] [PMID: 12164926]
[82]
Gniadecka, M.; Philipsen, P.A.; Sigurdsson, S.; Wessel, S.; Nielsen, O.F.; Christensen, D.H.; Hercogova, J.; Rossen, K.; Thomsen, H.K.; Gniadecki, R.; Hansen, L.K.; Wulf, H.C. Melanoma diagnosis by raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue. J. Invest. Dermatol., 2004, 122(2), 443-449.
[http://dx.doi.org/10.1046/j.0022-202X.2004.22208.x] [PMID: 15009728]
[83]
Cui, S.; Zhang, S.; Yue, S. Raman spectroscopy and imaging for cancer diagnosis. J. Healthc. Eng., 2018.20188619342
[http://dx.doi.org/10.1155/2018/8619342] [PMID: 29977484]
[84]
Nijssen, A.; Maquelin, K.; Santos, L.F.; Caspers, P.J.; Bakker Schut, T.C.; den Hollander, J.C.; Neumann, M.H.A.; Puppels, G.J. Discriminating basal cell carcinoma from perilesional skin using high wave-number raman spectroscopy. J. Biomed. Opt., 2007, 12(3),034004.
[http://dx.doi.org/10.1117/1.2750287] [PMID: 17614712]
[85]
Piredda, P.; Berning, M.; Boukamp, P.; Volkmer, A. Subcellular raman microspectroscopy imaging of nucleic acids and tryptophan for distinction of normal human skin cells and tumorigenic keratinocytes. Anal. Chem., 2015, 87(13), 6778-6785.
[http://dx.doi.org/10.1021/acs.analchem.5b01009] [PMID: 25984831]
[86]
Bodanese, B.; Silveira, F.L.; Zângaro, R.A.; Pacheco, M.T.T.; Pasqualucci, C.A.; Silveira, L., Jr Discrimination of basal cell carcinoma and melanoma from normal skin biopsies in vitro through raman spectroscopy and principal component analysis. Photomed. Laser Surg., 2012, 30(7), 381-387.
[http://dx.doi.org/10.1089/pho.2011.3191] [PMID: 22693951]
[87]
Bodanese, B.; Silveira, L., Jr; Albertini, R.; Zângaro, R.A.; Pacheco, M.T. Differentiating normal and basal cell carcinoma human skin tissues in vitro using dispersive raman spectroscopy: a comparison between principal components analysis and simplified biochemical models. Photomed. Laser Surg., 2010, 28(Suppl. 1), S119-S127.
[http://dx.doi.org/10.1089/pho.2009.2565] [PMID: 20649423]
[88]
Hartsuiker, L.; Zeijen, N.J.L.; Terstappen, L.W.M.M.; Otto, C. A comparison of breast cancer tumor cells with varying expression of the Her2/neu receptor by raman microspectroscopic imaging. Analyst (Lond.), 2010, 135(12), 3220-3226.
[http://dx.doi.org/10.1039/c0an00524j] [PMID: 20978707]
[89]
Frank, C.J.; Redd, D.C.B.; Gansler, T.S.; McCreery, R.L. Characterization of human breast biopsy specimens with near-IR raman spectroscopy. Anal. Chem., 1994, 66(3), 319-326.
[http://dx.doi.org/10.1021/ac00075a002] [PMID: 8135372]
[90]
Frank, C.J.; McCreery, R.L.; Redd, D.C.B. Raman spectroscopy of normal and diseased human breast tissues. Anal. Chem., 1995, 67(5), 777-783.
[http://dx.doi.org/10.1021/ac00101a001] [PMID: 7762814]
[91]
Haka, A.S.; Shafer-Peltier, K.E.; Fitzmaurice, M.; Crowe, J.; Dasari, R.R.; Feld, M.S. Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using raman spectroscopy. Cancer Res., 2002, 62(18), 5375-5380.
[PMID: 12235010]
[92]
Haka, A.S.; Shafer-Peltier, K.E.; Fitzmaurice, M.; Crowe, J.; Dasari, R.R.; Feld, M.S. Diagnosing breast cancer by using raman spectroscopy. Proc. Natl. Acad. Sci. USA, 2005, 102(35), 12371-12376.
[http://dx.doi.org/10.1073/pnas.0501390102] [PMID: 16116095]
[93]
Brozek-Pluska, B.; Musial, J.; Kordek, R.; Bailo, E.; Dieing, T.; Abramczyk, H. Raman spectroscopy and imaging: applications in human breast cancer diagnosis. Analyst (Lond.), 2012, 137(16), 3773-3780.
[http://dx.doi.org/10.1039/c2an16179f] [PMID: 22754917]
[94]
Manciu, F.S.; Ciubuc, J.D.; Parra, K.; Manciu, M.; Bennet, K.E.; Valenzuela, P.; Sundin, E.M.; Durrer, W.G.; Reza, L.; Francia, G. Label-free raman imaging to monitor breast tumor signatures. Technol. Cancer Res. Treat., 2017, 16(4), 461-469.
[http://dx.doi.org/10.1177/1533034616655953] [PMID: 27381847]
[95]
Maier, J.; Panza, J.; Drauch, A.; Stewart, S. Raman molecular imaging of tissue and cell samples using tunable multiconjugate filter. In Smart Medical and Biomedical Sensor Technology IV, 2006, 6380, 638009.
[http://dx.doi.org/10.1117/12.686243]
[96]
Yosef, H.K.; Krauß, S.D.; Lechtonen, T.; Jütte, H.; Tannapfel, A.; Käfferlein, H.U.; Brüning, T.; Roghmann, F.; Noldus, J.; Mosig, A.; El-Mashtoly, S.F.; Gerwert, K. Noninvasive diagnosis of high-grade urothelial carcinoma in urine by raman spectral imaging. Anal. Chem., 2017, 89(12), 6893-6899.
[http://dx.doi.org/10.1021/acs.analchem.7b01403] [PMID: 28541036]
[97]
Koljenović, S.; Choo-Smith, L.P.; Bakker Schut, T.C.; Kros, J.M.; van den Berge, H.J.; Puppels, G.J. Discriminating vital tumor from necrotic tissue in human glioblastoma tissue samples by raman spectroscopy. Lab. Invest., 2002, 82(10), 1265-1277.
[http://dx.doi.org/10.1097/01.LAB.0000032545.96931.B8] [PMID: 12379761]
[98]
Bergner, N.; Bocklitz, T.; Romeike, B.F.M.; Reichart, R.; Kalff, R.; Krafft, C.; Popp, J. Identification of primary tumors of brain metastases by raman imaging and support vector machines. Chemom. Intell. Lab. Syst., 2012, 117, 224-232.
[http://dx.doi.org/10.1016/j.chemolab.2012.02.008]
[99]
Krafft, C.; Belay, B.; Bergner, N.; Romeike, B.F.M.; Reichart, R.; Kalff, R.; Popp, J. Advances in optical biopsy-correlation of malignancy and cell density of primary brain tumors using raman microspectroscopic imaging. Analyst (Lond.), 2012, 137(23), 5533-5537.
[http://dx.doi.org/10.1039/c2an36083g] [PMID: 23050263]
[100]
Duindam, H.J.; Vrensen, G.F.; Otto, C.; Puppels, G.J.; Greve, J. New approach to assess the cholesterol distribution in the eye lens: confocal raman microspectroscopy and filipin cytochemistry. J. Lipid Res., 1995, 36(5), 1139-1146.
[PMID: 7658162]
[101]
Gellermann, W.; Ermakov, I.V.; McClane, R.W.; Bernstein, P.S. Raman imaging of human macular pigments. Opt. Lett., 2002, 27(10), 833-835.
[http://dx.doi.org/10.1364/OL.27.000833] [PMID: 18007943]
[102]
Bergholt, M.S.; Zheng, W.; Lin, K.; Wang, J.; Xu, H.; Ren, J.L.; Ho, K.Y.; Teh, M.; Yeoh, K.G.; Huang, Z. Characterizing variability of in vivo raman spectroscopic properties of different anatomical sites of normal colorectal tissue towards cancer diagnosis at colonoscopy. Anal. Chem., 2015, 87(2), 960-966.
[http://dx.doi.org/10.1021/ac503287u] [PMID: 25495077]
[103]
Bergholt, M.S.; Zheng, W.; Lin, K.; Ho, K.Y.; Teh, M.; Yeoh, K.G.; So, J.B.Y.; Huang, Z. Characterizing variability in in vivo raman spectra of different anatomical locations in the upper gastrointestinal tract toward cancer detection. J. Biomed. Opt., 2011, 16(3),037003.
[http://dx.doi.org/10.1117/1.3556723] [PMID: 21456876]
[104]
Ding, H.; Dupont, A.W.; Singhal, S.; Scott, L.D.; Guha, S.; Younes, M.; Ye, Y.; Bi, X. Effect of physiological factors on the biochemical properties of colon tissue - an in vivo raman spectroscopy study. J. Raman Spectrosc., 2017, 48(7), 902-909.
[http://dx.doi.org/10.1002/jrs.5140]
[105]
McGregor, H.C.; Short, M.A.; McWilliams, A.; Shaipanich, T.; Ionescu, D.N.; Zhao, J.; Wang, W.; Chen, G.; Lam, S.; Zeng, H. Real-time endoscopic raman spectroscopy for in vivo early lung cancer detection. J. Biophotonics, 2017, 10(1), 98-110.
[http://dx.doi.org/10.1002/jbio.201500204] [PMID: 26748689]
[106]
Lyng, F.M.; Traynor, D.; Ramos, I.R.M.; Bonnier, F.; Byrne, H.J. Raman spectroscopy for screening and diagnosis of cervical cancer. Anal. Bioanal. Chem., 2015, 407(27), 8279-8289.
[http://dx.doi.org/10.1007/s00216-015-8946-1] [PMID: 26277185]
[107]
Mahadevan-Jansen, A.; Mitchell, M.F.; Ramanujam, N.; Utzinger, U.; Richards-Kortum, R. Development of a fiber optic probe to measure NIR raman spectra of cervical tissue in vivo. Photochem. Photobiol., 1998, 68(3), 427-431.
[http://dx.doi.org/dx Effect of physiological factors on the biochemical properties of colon tissue - an in vivo raman spectroscopy study.doi.org/10.1111/j.1751-1097.1998.tb09703.x] [PMID: 9747597]
[108]
Utzinger, U.; Heintzelman, D.L.; Mahadevan-Jansen, A.; Malpica, A.; Follen, M.; Richards-Kortum, R. Near-infrared raman spectroscopy for in vivo detection of cervical precancers. Appl. Spectrosc., 2001, 55(8), 955-959.
[http://dx.doi.org/10.1366/0003702011953018]
[109]
Duraipandian, S.; Zheng, W.; Ng, J.; Low, J.J.H.; Ilancheran, A.; Huang, Z. Simultaneous fingerprint and high-wavenumber confocal raman spectroscopy enhances early detection of cervical precancer in vivo. Anal. Chem., 2012, 84(14), 5913-5919.
[http://dx.doi.org/10.1021/ac300394f] [PMID: 22724621]
[110]
Desroches, J.; Jermyn, M.; Mok, K.; Lemieux-Leduc, C.; Mercier, J.; St-Arnaud, K.; Urmey, K.; Guiot, M.C.; Marple, E.; Petrecca, K.; Leblond, F. Characterization of a raman spectroscopy probe system for intraoperative brain tissue classification. Biomed. Opt. Express, 2015, 6(7), 2380-2397.
[http://dx.doi.org/10.1364/BOE.6.002380] [PMID: 26203368]
[111]
Lui, H.; Zhao, J.; McLean, D.; Zeng, H. Real-time raman spectroscopy for in vivo skin cancer diagnosis. Cancer Res., 2012, 72(10), 2491-2500.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-4061] [PMID: 22434431]