Synthesis and Characterization of ROSA Dye - A Rhodamine B-type Fluorophore, Suitable for Bioconjugation and Fluorescence Studies in Live Cells

Page: [758 - 767] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Herein we report the multigram-scale synthesis, characterization and application of a rhodamine B-based fluorophore (ROSA) suitable for fluorescent studies in biological applications. This fluorophore is devoid of rhodamine spirolactone formation and furthermore characterized by a high molar extinction coefficient (ϵ=87250 ± 1630 M-1cm-1) and quantum yield (φ) of 0.589 ± 0.070 in water. Reported here is also the application of ROSA towards synthesis of a ROSA-PEG-GRGDS-NH2 fluorescent probe suitable for live cell imaging of αvβ3 integrins for in vitro assays.

Objectives: The main objective of this study is to efficiently prepare rhodamine B derivative, devoid of spirolactone formation that would be suitable for bioconjugation and subsequent bioimaging.

Methods: Rhodamine B was transformed into rhodamine B succinimide ester (RhoB-OSu) using N-hydroxysuccinimide. RhoB-OSu was further coupled to sarcosine to obtain rhodamine Bsarcosine dye (ROSA) in good yield. The ROSA dye was then coupled to a αvβ3 integrin binding sequence using standard solid-phase conditions. Resulting ROSA-PEG-GRGDS-NH2 probe was used to image integrins on cancer cells.

Results: The rhodamine B-sarcosine dye (ROSA) was obtained in multigram scale in good total yield of 47%. Unlike rhodamine B, the ROSA dye does not undergo pH-dependent spirolactone/spirolactam formation as compared with rhodamine B-glycine. It is also characterized by excellent quantum yield (φ) of 0.589 ± 0.070 in water and high molar extinction coefficient of 87250 ± 1630 M-1cm-1. ROSA coupling to the RGD-like peptide was proved to be efficient and straightforward. Imaging using standard filters on multimode plate reader and confocal microscope was performed. The αvβ3 integrins present on the surface of live WM-266-4 (melanoma) and MCF- 7 (breast cancer) cells were successfully imaged.

Conclusion: We successfully derivatized rhodamine B to create an inexpensive, stable and convenient to use fluorescent probe. The obtained derivative has excellent photochemical properties and it is suitable for bioconjugation and many imaging applications.

Keywords: Fluorescent probe, rhodamine, imaging, rhodamine B derivative, integrins, cancer cells.

Graphical Abstract

[1]
Beija, M.; Afonso, C.A.M.; Martinho, J.M.G. Synthesis and applications of Rhodamine derivatives as fluorescent probes. Chem. Soc. Rev., 2009, 38(8), 2410-2433.
[http://dx.doi.org/10.1039/b901612k] [PMID: 19623358]
[2]
Mottram, L.F.; Forbes, S.; Ackley, B.D.; Peterson, B.R. Hydrophobic analogues of rhodamine B and rhodamine 101: Potent fluorescent probes of mitochondria in living C. elegans. Beilstein J. Org. Chem., 2012, 8, 2156-2165.
[http://dx.doi.org/10.3762/bjoc.8.243] [PMID: 23365627]
[3]
Kelkar, S.S.; Reineke, T.M. Theranostics: combining imaging and therapy. Bioconjug. Chem., 2011, 22(10), 1879-1903.
[http://dx.doi.org/10.1021/bc200151q] [PMID: 21830812]
[4]
Rosenthal, I.; Peretz, P.; Muszkat, K.A. Thermochromic and hyperchromic effects in rhodamine B solutions. J. Phys. Chem., 1979, 83(3), 350-353.
[http://dx.doi.org/10.1021/j100466a010]
[5]
Valeur, E.; Bradley, M. Amide bond formation: beyond the myth of coupling reagents. Chem. Soc. Rev., 2009, 38(2), 606-631.
[http://dx.doi.org/10.1039/B701677H] [PMID: 19169468]
[6]
Nguyen, T.; Francis, M.B. Practical synthetic Route to functionalized rhodamine dyes. Org. Lett., 2003, 5(18), 3245-3248.
[http://dx.doi.org/10.1021/ol035135z] [PMID: 12943398]
[7]
Birtalan, E.; Rudat, B.; Kölmel, D.K.; Fritz, D.; Vollrath, S.B.L.; Schepers, U.; Bräse, S. Investigating rhodamine B-labeled peptoids: scopes and limitations of its applications. Biopolymers, 2011, 96(5), 694-701.
[http://dx.doi.org/10.1002/bip.21617] [PMID: 22180914]
[8]
Cincotta, L.; Foley, J. 3,6-Di(Alkyl/Phenyl)Amino-9- Carboxamidophenyl-Xanthenes. U.S. Pat. No., 4,290,955 1981,
[9]
Mayer, U.; Oberlinner, A. Rhodamine Dyes. U.S. Patent 4,647,675, 1987.
[10]
Arnost, M.J.; Meneghine, F.A.; Palumbo, P.S.; Stroud, S.G. Fluorescent conjugates and biological diagnostic assay. U.S. Patent 7,034,225, 1990
[11]
Grechishnikova, I.V.; Johansson, L.B.; Molotkovsky, J.G. Synthesis of new bifluorophoric probes adapted to studies of donor-donor electronic energy transfer in lipid systems. Chem. Phys. Lipids, 1996, 81(1), 87-98.
[http://dx.doi.org/10.1016/0009-3084(96)02537-6] [PMID: 8907247]
[12]
Dujols, V.; Ford, F.; Czarnik, A.W. A long-wavelength fluorescent chemodosimeter selective for Cu(II) Ion in water. J. Am. Chem. Soc., 1997, 119(31), 7386-7387.
[http://dx.doi.org/10.1021/ja971221g]
[13]
Menges, F. Spectragryph - optical spectroscopy software, Version 1.2.8.
[14]
Collins, J.M.; Porter, K.A.; Singh, S.K.; Vanier, G.S. High-efficiency solid phase peptide synthesis (HE-SPPS). Org. Lett., 2014, 16(3), 940-943.
[http://dx.doi.org/10.1021/ol4036825] [PMID: 24456219]
[15]
Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; Tinevez, J.Y.; White, D.J.; Hartenstein, V.; Eliceiri, K.; Tomancak, P.; Cardona, A. Fiji: an open-source platform for biological-image analysis. Nat. Methods, 2012, 9(7), 676-682.
[http://dx.doi.org/10.1038/nmeth.2019] [PMID: 22743772]
[16]
Anderson, G.W.; Zimmerman, J.E.; Callahan, F.M. The use of esters of N-Hydroxysuccinimide in peptide synthesis. J. Am. Chem. Soc., 1964, 86(9), 1839-1842.
[http://dx.doi.org/10.1021/ja01063a037]
[17]
Meng, Q.; Yu, M.; Zhang, H.; Ren, J.; Huang, D. Synthesis and application of N -Hydroxysuccinimidyl Rhodamine B ester as an amine-reactive fluorescent probe. Dyes Pigments, 2007, 73, 254-260.
[http://dx.doi.org/10.1016/j.dyepig.2005.12.008]
[18]
Kubin, R.F.; Fletcher, A.N. Fluorescence quantum yields of some rhodamine dyes. J. Lumin., 1982, 27(4), 455-462.
[http://dx.doi.org/10.1016/0022-2313(82)90045-X]
[19]
Casey, K.G.; Quitevis, E.L. Effect of solvent polarity on nonradiative processes in xanthene dyes: Rhodamine B in normal alcohols. J. Phys. Chem., 1988, 92(23), 6590-6594.
[http://dx.doi.org/10.1021/j100334a023]
[20]
Snare, M.J.; Treloar, F.E.; Ghiggino, K.P.; Thistlethwaite, P.J. The photophysics of Rhodamine B. J. Photochem., 1982, 18(4), 335-346.
[http://dx.doi.org/10.1016/0047-2670(82)87023-8]
[21]
Ruoslahti, E.; Pierschbacher, M.D. New perspectives in cell adhesion: RGD and integrins. Science, 1987, 238(4826), 491-497.
[http://dx.doi.org/10.1126/science.2821619] [PMID: 2821619]
[22]
Friedlander, M.; Theesfeld, C.L.; Sugita, M.; Fruttiger, M.; Thomas, M.A.; Chang, S.; Cheresh, D.A. Involvement of integrins alpha v beta 3 and alpha v beta 5 in ocular neovascular diseases. Proc. Natl. Acad. Sci. USA, 1996, 93(18), 9764-9769.
[http://dx.doi.org/10.1073/pnas.93.18.9764] [PMID: 8790405]
[23]
Gaertner, F.C.; Kessler, H.; Wester, H-J.; Schwaiger, M.; Beer, A.J. Radiolabelled RGD peptides for imaging and therapy. Eur. J. Nucl. Med. Mol. Imaging, 2012, 39(Suppl. 1), S126-S138.
[http://dx.doi.org/10.1007/s00259-011-2028-1]
[24]
Aguzzi, M.S.; Giampietri, C.; De Marchis, F.; Padula, F.; Gaeta, R.; Ragone, G.; Capogrossi, M.C.; Facchiano, A. RGDS peptide induces caspase 8 and caspase 9 activation in human endothelial cells. Blood, 2004, 103(11), 4180-4187.
[http://dx.doi.org/10.1182/blood-2003-06-2144] [PMID: 14982875]
[25]
Buckley, C.D.; Pilling, D.; Henriquez, N.V.; Parsonage, G.; Threlfall, K.; Scheel-Toellner, D.; Simmons, D.L.; Akbar, A.N.; Lord, J.M.; Salmon, M. RGD peptides induce apoptosis by direct caspase-3 activation. Nature, 1999, 397(6719), 534-539.
[http://dx.doi.org/10.1038/17409] [PMID: 10028971]
[26]
Kanemoto, T.; Martin, G.R.; Hamilton, T.C.; Fridman, R. Effects of synthetic peptides and protease inhibitors on the interaction of a human ovarian cancer cell line (NIH:OVCAR-3) with a reconstituted basement membrane (Matrigel). Invasion Metastasis, 1991, 11(2), 84-92.
[PMID: 1917387]
[27]
Stickel, S.K.; Wang, Y.L. Synthetic peptide GRGDS induces dissociation of alpha-actinin and vinculin from the sites of focal contacts. J. Cell Biol., 1988, 107(3), 1231-1239.
[http://dx.doi.org/10.1083/jcb.107.3.1231] [PMID: 3138248]
[28]
Senger, D.R.; Perruzzi, C.A. Cell migration promoted by a potent GRGDS-containing thrombin-cleavage fragment of osteopontin. Biochim. Biophys. Acta, 1996, 1314(1-2), 13-24.
[http://dx.doi.org/10.1016/S0167-4889(96)00067-5] [PMID: 8972713]
[29]
Zuckermann, R.N.; Kerr, J.M.; Moosf, W.H.; Kent, S.B.H. Efficient method for the preparation of peptoids [Oligo(N-Substituted Glycines)] by submonomer solid-phase synthesis. J. Am. Chem. Soc., 1992, 114(26), 10646-10647.
[http://dx.doi.org/10.1021/ja00052a076]
[30]
Stawikowski, M.; Stawikowska, R.; Jaśkiewicz, A.; Zabłotna, E.; Rolka, K. Examples of peptide-peptoid hybrid serine protease inhibitors based on the trypsin inhibitor SFTI-1 with complete protease resistance at the P1-P1′ reactive site. ChemBioChem, 2005, 6(6), 1057-1061.
[http://dx.doi.org/10.1002/cbic.200400412] [PMID: 15883970]
[31]
Stawikowski, M.J. Peptoids and Peptide–Peptoid Hybrid Biopolymers as Peptidomimetics.In: Peptide Modifications to Increase Metabolic Stability and Activity. Methods in Molecular Biology (Methods and Protocols); Cudic, P., Ed.; Humana Press: Totowa, NJ, 2013, Vol. 1081, .
[http://dx.doi.org/10.1007/978-1-62703-652-8_4]
[32]
Krieger, E.; Vriend, G. New ways to boost molecular dynamics simulations. J. Comput. Chem., 2015, 36(13), 996-1007.
[http://dx.doi.org/10.1002/jcc.23899] [PMID: 25824339]
[33]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]