Pesudomance sp. Bacteria Associated with Marine Sponge as a Promising and Sustainable Source of Bioactive Molecules

Page: [964 - 984] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Background: The study was conducted to identify the bacterial strain associated with marine sponge Hyrtiosaff. erectus collected from the Red Sea coastal water and to assess the utilization of their secondary metabolites for human benefit as antioxidant, anti-Alzheimer, anti-viral, anticancer and anti-inflammatory agent.

Methods: After biochemical identification of Pesudomance sp. bacterial strain, the total polyphenol contents, cytotoxic, antioxidant, anti-Alzheimer, anti-viral, anticancer and anti-inflammatory activity of the Pesudomance sp. ethyl acetate extract were investigated by applying different biochemical assays. Polyphenol contents were investigated using spectrophotometric techniques. Antioxidant activity was determined by 1,1-diphenyl-2-picrylhydrazyl radical (DPPH), and 2,2/-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) ABTS radical scavenging activity assays. The cytotoxic effects were investigated by using the human cancerous cell lines.

Results: The anti-Alzheimer, anti-viral, anticancer and anti-inflammatory activities were determined using ELISA. Qualitative phytochemical analysis of the Pesudomance sp. extract demonstrated the presence of a large and diverse group of substances such as alkaloids, carbohydrates, flavonoids, phenols, terpenoids, saponins, and tannins. The strong antioxidant activity of the Pesudomance sp. extract was mainly attributed to the protective role of polyphenols against reactive oxygen. It was also observed that Pesudomance sp. extract possessed significant anti-Alzheimer activity with 94% at 1 mg. The extract showed also high antiviral activity (90%) using reverse transcriptase enzymes inhibition assay. The examination of the anticancer activity by applying two experimental models, i.e., PTK and SHKI cleared out high significant percentages of 76.19 and 83.09 %; respectively.

Conclusion: The anti-inflammatory profiling using TNF, COX1, COX2, IL6 also revealed high antiinflammatory activity with different metabolic pathway of 62.70, 75.444, 79.27 and 54.15 %; respectively. The present study concluded that ethyl acetate extract of Pesudomance sp. possessed strong antioxidant, anti-Alzheimer, and anti-viral, anticancer and anti-inflammatory activities. Further studies are required to purify the bioactive compounds.

Keywords: Pesudomance sp., Hyrtiosaff. erectus marine sponge, bioactive potentials, antioxidant, anti-Alzheimer, anti-viral, anticancer and anti-inflammatory.

Graphical Abstract

[1]
Abdel-Tawab, A.M.; Fayad, W.; Shreadah, M.A.; Nassar, M.I.; Abou-Elzahab, M.M.; Abdel-Mogib, M. GC/MS identification and biological evaluation of the red sea soft coral nephthea molle extracts. RJPBCS, 2018, 9(3), 595-602.
[2]
Shreadah, M.A.; Abd El Moneam, N.M.; Al-Assar, S.A.; Nabiel-Adam, A. The ameliorative role of a marine sponge extract against mixture of persistent organic pollutants induced changes in hematological parameters in mice. EOEB, 2017, 6(2)
[http://dx.doi.org/10.4172/2325-9655.1000143]
[3]
Shreadah, M.A.; El Moneam, N.M.A.; Al-Assar, S.A.; Nabil-Adam, A. Phytochemical and pharmacological screening of Sargassium vulgare from Suez Canal, Egypt. Food Sci. Biotechnol., 2018, 27(4), 963-979.
[http://dx.doi.org/10.1007/s10068-018-0323-3] [PMID: 30263825]
[4]
Shreadah, M.A.; Abd El Moneam, N.M.; Yakout, G.; Abou-Ella, H.M. Bacteria from marine sponges: A source of biologically active compounds. BJSTR, 2018, 10(5), 1-20 b.
[http://dx.doi.org/10.26717/BJSTR.2018.10.002025]
[5]
Shreadah, M.A.; Abd El Moneam, N.M.; Yakout, G.; Abou-Ella, H.M. Bacteria from marine sponges: A source of biologically active compounds. BJSTR, 2018, 10(5), 1-20 c.
[http://dx.doi.org/10.26717/BJSTR.2018.10.002025]
[6]
Shreadah, M.A.; Abd El Moneam, N.M.; Yakout, G.; Abou-Ella, H.M. Isolation, phylogenetic analysis of the microbial community associated with the red sea sponge Ircinia echinata and biological evaluation of their secondary metabolites. BJSTR, 2018, 12(2), 1-19 d.
[http://dx.doi.org/10.26717/BJSTR.2018.12.002218] [PMID: 30370423]
[7]
Shreadah, M.A.; Abd El Moneam, N.M.; Yakout, G.; Abou-Ella, H.M. Sponge associated bacteria: Isolation, phylogenetic analysis and biotechnological potential. BJSTR, 2019, 15(2), 1-17.
[8]
Abd El Moneam, N.M.; Yakout, G.; Abou-Ella, H.M.; Shreadah, M.A. Hepatoprotective activity of chitosan nanocarriers loaded with the ethyl acetate extract of Astenotrophomonas sp. bacteria associated with the red sea sponge Amphimedon ochracea in CCl4 induced hepatotoxicity in rats. ABB, 2017, 8(1), 27-50.
[http://dx.doi.org/10.4236/abb.2017.81003]
[9]
Abd El Moneam, N.M.; Al-Assar, S.A.; Shreadah, M.A.; Nabiel-Adam, A. Isolation, identification and molecular screening of Psudomanas sp. metabolic pathways NRPs and PKS associated with the red sea sponge, hyrtios aff. Erectus, Egypt. JPAM, 2017, 11(3), 1299-1311.
[10]
Abd El Moneam, N.M.; Al-Assar, S.A.; Shreadah, M.A.; Nabiel-Adam, A. Protective role of antioxidant capacity of Hyrtios aff. erectus sponge extract against mixture of Persistent Organic Pollutant (POPs)-induced hepatic toxicity in liver mice: Biomarkers and Ultra-structural study. Environ. Sci. Pollut. Res, 2017c, 24(27), 22061-22072.
[http://dx.doi.org/DOI 10.10071/s 11356-017-9805-8.]
[11]
Abd El Moneam, N.M.; Yacout, G.A.; Aboul-Ela, H.M.; Shreadah, M.A. Hepatoprotective activity of chitosan nanocarriers loaded with the ethyl acetate extract of Astenotrophomonas sp. Bacteria associated with the red sea sponge Amphimedon ochracea In CCl4 induced hepatotoxicity in rats. ABB, 2017, 8(1), 27-50.
[http://dx.doi.org/[http://10.4236/abb.2017.81003]
[12]
Abd El Moneam, N.M.; Al-Assar, S.A.; Shreadah, M.A.; Nabiel-Adam, A. The hepatoprotective effect of Hyrtios aff. erectus sponge isolated from the Red sea extract against the toxicity of Persistent organic pollutants (POPs) from Sediments of Lake Mariout. Biotechnol. Biotechnologic. Equipment., 2018, 32(3), 734-743.
[http://dx.doi.org/10.1080/13102818.2018. 1441747]
[13]
Hegazy, M.E.; Mohamed, T.A.; Elshamy, A.I.; Hassanien, A.A.; Abdel-Azim, N.S.; Shreadah, M.A.; Abdelgawad, I.I.; Elkady, E.M.; Paré, P.W. A new steroid from the Red Sea soft coral Lobophytum lobophytum. Nat. Prod. Res., 2016, 30(3), 340-344 a.
[http://dx.doi.org/10.1080/14786419.2015.1046871] [PMID: 26134487]
[14]
Hegazy, M.E.; Gamal-Eldeen, A.M.; Mohamed, T.A.; Alhammady, M.A.; Hassanien, A.A.; Shreadah, M.A.; Abdelgawad, I.I.; Elkady, E.M.; Paré, P.W. New cytotoxic constituents from the Red Sea soft coral Nephthea sp. Nat. Prod. Res., 2016, 30(11), 1266-1272.
[http://dx.doi.org/10.1080/14786419.2015.1055266] [PMID: 26165402]
[15]
Aboul-Ela, H.M.; Shreadah, M.A.; Abdel-Monem, N.M.; Yakout, G.A.; Van Soest, R.W.M. Isolation, cytotoxic activity and phylogenetic analysis of Bacillus sp. bacteria associated with the red sea sponge Amphimedonochracea. ABB, 2012, 3(7), 815-823.
[http://dx.doi.org/10.4236/abb.2012.37101]
[16]
Okbah, M.A.; Shata, M.A.; Shriadah, M.A. Gochemical forms of trace metals in mangrove sediments- Red Sea (Egypt). Chem. Ecol., 2005, 21, 23-36.
[http://dx.doi.org/10.1080/02757540512331323953]
[17]
Fahmy, M.A.; Shriadah, M.A. AbulSoud, A.; Abdel Rahman, S. M.; Shindy, M. Hydrography and chemical characteristics of the coastal water along the Gulf of Suez. Egyptian J. Aquatic Res., 2005, 31, 1-14.
[18]
Fahmy, M.A.; Abdel Fattah, L.M.; Abdel-Halim, A.M.; Abdel Nabi, M.A.; Abo-El-Khair, E.M.; Ahdy, H.H.; Hemeilly, A.; Abu El-Soud, A.; Shreadah, M.A. Evaluations of the coastal water quality of the Egyptian Red Sea during 2011-2013. JEP, 2016, 7(12), 1810-1834.
[http://dx.doi.org/10.4236/jep.2016.712145]
[19]
Abdel-Halim, A.M.; Aboel-Khair, E.M.; Fahmy, M.A.; Shreadah, M.A. Environmental assessment on the aqaba Gulf Coastal waters, Egypt. Egyptian J. Aqu.Res., 2007, 33(1), 1-14.
[20]
Abdel-Halim, A.M.; Abdel Nabi, M.A.; Abdel Fattah, L.M.; Fahmy, M.A.; Abo-El-Khair, E.M. khaled, A.M.; Abu El-Soud, A.; Shreadah, M. A. Environmental studies on the Aqaba Gulf coastal waters during 2011-2013. JEP, 2016, 7, 1411-1437.
[http://dx.doi.org/10.4236/jep.2016.710121]
[21]
Shriadah, M.A.; Okbah, M.A.; El-Deek, M.S. Trace metals in the water columns of the Red Sea and the Gulf of Aqaba, Egypt. Water Air Soil Pollut., 2004, 153, 115-124.
[http://dx.doi.org/10.1023/B:WATE.0000019938.57041.21]
[22]
Shreadah, M.A.; Said, T.O.; El Zokm, G.M.; Masoud, M.S. Physico-Chemical Characterititics of the Surficial Sediments along the Egyptian Red Sea Coasts. Egyptian J. Aqu. Res., 2008, 34(4), 16-34.
[23]
Shreadah, M.A.; Said, T.O.; Abd El Ghani, S.A.; Ahmed, A.M. Alkyllead and Alkyltin Species in different fishes collected from the Suez Gulf, Egypt. Proceedings of the 2nd International Conference on Aquatic Res Egyptian J. Aqu. Res., 2008b, 34(4), 64-73.
[24]
Shreadah, M.A.; Masoud, M.S.; Said, T.O.; El Zokm, G.M. Application of IR, X-Ray, TGA and DTA to determine the mineral composition of the Sediments and study of reaction kinetics along the Egyptian Red Sea Coasts. Egyptian J. Aqu. Res., 2008, 34(2), 83-95.
[25]
Shreadah, M.A.; Said, T.O.; Abdel Ghani, S.A.; Ahmed, A.M. Distribution of different organotinand organolead compounds in sediment of Suez Gulf. JEP, 2011, 2(5), 545-554.
[http://dx.doi.org/10.4236/jep.2011.25063]
[26]
Aboul Khair, E.M.; Abdel Halim, A.M.; Shriadah, M.A.; Fahmy, M.A. Environmental Conditions of the Suez Gulf and the Red Sea Coastal Waters, Egypt Proceedings of the 8thInternational Conference on the Mediterranean Coastal Environment. MEDCOAST 2007. E. Ozhan (Editor). 13 - 17 November 2007. Alexandria. Egypt, 2007, pp. 517-526.
[27]
Aboul Khair, E.M.; Abdel Halim, A.M.; Fahmy, M.A.; Shreadah, M.A. Environmental Impact Assessment of Northern Red Sea Regions during 2005 - 2007. Egyptian J. Aqu. Res., 2008, 34(2), 20-30.
[28]
Aboul Khair, E.A.; Abdel Fattah, L.M.; Abdel-Halim, A.M.; Abdel Nabi, M.A.; Fahmy, M.A.; Ahdy, H.H.; Hemeilly, A.; Abu El-Soud, A.; Shreadah, M.A. Assessment of the hydrochemical characteristics for the coastal waters of the Suez Gulf during 2011-2013. JEP, 2016, 7, 1497-1521.
[http://dx.doi.org/10.4236/jep.2016.711126]
[29]
Gurguess, S.M.; Shreadah, M.A.; Fahmy, M.A.; Aboul El Kheir, E.M.; Abdel Halim, A. Assessment of water quality in the red sea using in situ measurements and remote sensing data. Egyptian J. Aqu. Res., 2009, 35(2), 1-13.
[30]
Said, T.O.; Shreadah, M.A.; AbdelGhani, S.A.; Ahmed, A.M. Alkyltin and alkayllead compounds in coastal water of Suez Gulf, Egypt. Egyptian J. Aqu. Res., 2010, 36(1), 33-42.
[31]
Abdel Ghani, S.A.; Shobier, A.H.; Said, T.O.; Shreadah, M.A. Organotin compounds in Egyptian Mediterranean sediments. Egyptian J. Aqu. Res., 2010, 36(2), 221-229.
[32]
Masoud, M.S.; Said, T.O. El- Zokm, G. M.; Shreadah, M. A. Speciation of Fe, Mn and Zn in surficial sediments from the Egyptian Red Sea Coasts. Chem. Speciation Biodivers., 2010, 22(4), 257-269.
[33]
Masoud, M.S.; Said, T.O.; El-Zokm, G.M.; Shreadah, M.A. assessment of heavy metals contamination in surface sediments of the Egyptian Red Sea Coasts. Aust. J. Basic Appl. Sci., 2012, 6, 44-58.
[34]
Abdel-Monem, N.M.; Abdel-Azeem, A.M.; El-Ashry, S.H.; Ghareeb, D.A.; Nabil-adam, A. Pretreatment hepatoprotective effect of the marine fungus derived from sponge on hepatic toxicity induced by heavy metals in rats. BioMed Res. Int., 2013, 2013510879
[http://dx.doi.org/10.1155/2013/510879] [PMID: 23484129]
[35]
Taga, M.S.; Miller, E.E.; Pratt, D.E. Chia seeds as a source of natural lipid antioxidants. J. Am. Oil Chem. Soc., 1984, 61(5), 928-931.
[http://dx.doi.org/10.1007/BF02542169]
[36]
Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem., 1999, 64(4), 555-559.
[http://dx.doi.org/10.1016/S0308-8146(98)00102-2]
[37]
Sun, B.; Richardo-Da-Silvia, J.M.; Spranger, I. Critical factors of vanillin assay for catechins and proanthocyanidins. J. Agric. Food Chem., 1998, 46, 4267-4274.
[http://dx.doi.org/10.1021/jf980366j]
[38]
Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal., 2006, 19(6-7), 669-675.
[http://dx.doi.org/10.1016/j.jfca.2006.01.003]
[39]
AOAC. Official Methods analysis of association of offcialanaltical chemists 15th End., Association of official analytical chemists.; Washington DC. USA, 1990.
[40]
Balaji, D.; Thamilvanan, S.; Vinayagam, C.; Balakumar, B.S. Anticancer, antioxidant activity and GC-MS analysis of selectedalgal members of Chlorophyceae. Int. J. Pharm. Sci. Res., 2017, 8(8), 3302-3314.
[41]
Ellinger, B.; Silber, J.; Prashar, A.; Landskron, J.; Weber, J.; Rehermann, S.; Müller, F.J.; Smith, S.; Wrigley, S.; Taskén, K.; Gribbon, P.; Labes, A.; Imhoff, J.F. A phenotypic screening approach to identify anticancer compounds derived from marine fungi. Assay Drug Dev. Technol., 2014, 12(3), 162-175.
[http://dx.doi.org/10.1089/adt.2013.564] [PMID: 24735443]
[42]
Amarowicz, R.; Naczk, M.; Zadernowski, R.; Shahidi, F. Antioxidant activity of condensed tannins of beach pea, Canola hulls, evening primrose, and faba bean. J. Food Lipids, 2000, 7, 195-205.
[http://dx.doi.org/10.1111/j.1745-4522.2000.tb00171.x]
[43]
Chakraborty, K.; Lipton, A.P.; Paul Raj, R.; Vijayan, K.K. Antibacterial labdane diterpenoids of Ulva fasciata Delile from southwestern coast of the Indian Peninsula. Food Chem., 2010, 119, 1399-1408.
[http://dx.doi.org/10.1016/j.foodchem.2009.09.019]
[44]
Moyo, S.J.; Aboud, S.; Kasubi, M.; Lyamuya, E.F.; Maselle, S.Y. Antimicrobial resistance among producers and non-producers of extended spectrum beta-lactamases in urinary isolates at a tertiary Hospital in Tanzania. BMC Res. Notes, 2010, 3, 348.
[http://dx.doi.org/10.1186/1756-0500-3-348] [PMID: 21184671]
[45]
Fonteh, P.N.; Keter, F.K.; Meyer, D. New bis(thiosemicarbazonate) gold(III) complexes inhibit HIV replication at cytostatic concentrations: potential for incorporation into virostatic cocktails. J. Inorg. Biochem., 2011, 105(9), 1173-1180.
[http://dx.doi.org/10.1016/j.jinorgbio.2011.05.011] [PMID: 21708102]
[46]
Dupont, C.L.; Larsson, J.; Yooseph, S.; Ininbergs, K.; Goll, J.; Asplund-Samuelsson, J.; McCrow, J.P.; Celepli, N.; Allen, L.Z.; Ekman, M.; Lucas, A.J.; Hagström, Å.; Thiagarajan, M.; Brindefalk, B.; Richter, A.R.; Andersson, A.F.; Tenney, A.; Lundin, D.; Tovchigrechko, A.; Nylander, J.A.A.; Brami, D.; Badger, J.H.; Allen, A.E.; Rusch, D.B.; Hoffman, J.; Norrby, E.; Friedman, R.; Pinhassi, J.; Venter, J.C.; Bergman, B. Functional tradeoffs underpin salinity-driven divergence in microbial community composition. PLoS One, 2014, 9(2)e89549
[http://dx.doi.org/10.1371/journal.pone.0089549] [PMID: 24586863]
[47]
Leal, M.C.; Sheridan, C.; Osinga, R.; Dionísio, G.; Rocha, R.J.M.; Silva, B.; Rosa, R.; Calado, R. Marine microorganism-invertebrate assemblages: perspectives to solve the “supply problem” in the initial steps of drug discovery. Mar. Drugs, 2014, 12(7), 3929-3952.
[http://dx.doi.org/10.3390/md12073929] [PMID: 24983638]
[48]
Rastogi, S.K.; Pal, P.; Aston, D.E.; Bitterwolf, T.E.; Branen, A.L. 8-aminoquinoline functionalized silica nanoparticles: A fluorescent nanosensor for detection of divalent zinc in aqueous and in yeast cell suspension. ACS Appl. Mater. Interfaces, 2011, 3(5), 1731-1739.
[http://dx.doi.org/10.1021/am2002394] [PMID: 21510674]
[49]
Abdelmohsen, U.R.; Yang, C.; Horn, H.; Hajjar, D.; Ravasi, T.; Hentschel, U. Actinomycetes from Red Sea sponges: Sources for chemical and phylogenetic diversity. Mar. Drugs, 2014, 12(5), 2771-2789.
[http://dx.doi.org/10.3390/md12052771] [PMID: 24824024]
[50]
Mayer, A.M.S.; Rodríguez, A.D.; Taglialatela-Scafati, O.; Fusetani, N. Marine pharmacology in 2012–2013: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs, 2017, 15(9), 273.
[http://dx.doi.org/10.3390/md15090273] [PMID: 28850074]
[52]
Calado, R.; Leal, M.C.; Gaspar, H.; Santos, S.; Marques, A.; Nunes, M.L.; Vieira, H. How to succeed in marketing marine natural products for pharmaceutical, cosmetics & nutraceutical markets, 2018.https://hdl.handle.net/10.1007/978-3-319-69075-9_9
[53]
Munawwar, A.; Singh, S. Human herpes viruses as co pathogens of HIV infection, their role in hiv transmission, and disease progression. J. Lab. Physicians, 2016, 8(1), 5-18.
[http://dx.doi.org/10.4103/0974-2727.176228] [PMID: 27013807]
[54]
Loya, S.; Rudi, A.; Kashman, Y.; Hizi, A. Mode of inhibition of HIV-1 reverse transcriptase by polyacetylenetriol, a novel inhibitor of RNA- and DNA-directed DNA polymerases. Biochem. J., 2002, 362(Pt 3), 685-692.
[http://dx.doi.org/10.1042/bj3620685] [PMID: 11879196]
[55]
Uzair, B.; Mahmood, Z.; Tabassum, S. Antiviral activity of natural products extracted from marine organisms. Bioimpacts, 2011, 1(4), 203-211.
[http://dx.doi.org/10.5681/bi.2011.029] [PMID: 23678429]
[56]
Vasconcelos, A.A.; Pomin, V.H. Marine Carbohydrate-Based Compounds with Medicinal Properties. Mar. Drugs, 2018, 16(7), 233.
[http://dx.doi.org/10.3390/md16070233] [PMID: 29987239]
[57]
Xie, Y.; Yang, W.; Chen, X.; Xiao, J. Inhibition of flavonoids on acetylcholine esterase: Binding and structure-activity relationship. Food Funct., 2014, 5(10), 2582-2589.
[http://dx.doi.org/10.1039/C4FO00287C] [PMID: 25143139]
[58]
Chen, S.T.; Siddarth, P.; Ercoli, L.M.; Merrill, D.A.; Torres-Gil, F.; Small, G.W. Modifiable risk factors for Alzheimer disease and subjective memory impairment across age groups. PLoS One, 2014, 9(6)e98630
[http://dx.doi.org/10.1371/journal.pone.0098630] [PMID: 24896243]
[59]
Howes, M.J.; Perry, E. The role of phytochemicals in the treatment and prevention of dementia. Drugs Aging, 2011, 28(6), 439-468.
[http://dx.doi.org/10.2165/11591310-000000000-00000] [PMID: 21639405]
[60]
Uriarte-Pueyo, I.; Calvo, M.I. Flavonoids as acetylcholinesterase inhibitors. Curr. Med. Chem., 2011, 18(34), 5289-5302.
[http://dx.doi.org/10.2174/092986711798184325] [PMID: 22087826]
[61]
Gauthier, S.; Leuzy, A.; Racine, E.; Rosa-Neto, P. Diagnosis and management of Alzheimer’s disease: past, present and future ethical issues. Prog. Neurobiol., 2013, 110, 102-113.
[http://dx.doi.org/10.1016/j.pneurobio.2013.01.003] [PMID: 23578568]
[62]
Bhatnagar, I.; Kim, S.K. Immense essence of excellence: Marine microbial bioactive compounds. Mar. Drugs, 2010, 8(10), 2673-2701.
[http://dx.doi.org/10.3390/md8102673] [PMID: 21116414]
[63]
Nong, E.; Lee, W.; Merriam, J.E.; Allikmets, R.; Tsang, S.H. Disease progression in autosomal dominant cone-rod dystrophy caused by a novel mutation (D100G) in the GUCA1A gene. Doc. Ophthalmol., 2014, 128(1), 59-67.
[http://dx.doi.org/10.1007/s10633-013-9420-z] [PMID: 24352742]
[64]
Li, X.; Xia, Z.; Tang, J.; Wu, J.; Tong, J.; Li, M.; Ju, J.; Chen, H.; Wang, L. Identification and biological evaluation of secondary metabolites from marine derived fungi-Aspergillus sp. SCSIOW3, cultivated in the presence of epigenetic modifying agents. Molecules, 2017, 22(8), 1302.
[http://dx.doi.org/10.3390/molecules22081302] [PMID: 28777319]
[65]
Kebede, B.; Wrigley, S.K.; Prashar, A.; Rahlff, J.; Wolf, M.; Reinshagen, J.; Gribbon, P.; Imhoff, J.F.; Silber, J.; Labes, A.; Ellinger, B. Establishing the secondary metabolite profile of the marine fungus: Tolypocladium geodes sp. MF458 and subsequent optimisation of bioactive secondary metabolite production. Mar. Drugs, 2017, 15(4), 84.
[http://dx.doi.org/10.3390/md15040084] [PMID: 28333084]
[66]
Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem., 2015, 30(1), 11-26.
[http://dx.doi.org/10.1007/s12291-014-0446-0] [PMID: 25646037]
[67]
Ahmadinejad, F.; Geir Møller, S.; Hashemzadeh-Chaleshtori, M.; Bidkhori, G.; Jami, M.S. Molecular mechanisms behind free radical scavengers function against oxidative stress. Antioxidants, 2017, 6(3), 51.
[http://dx.doi.org/10.3390/antiox6030051] [PMID: 28698499]
[68]
Tan, B.L.; Norhaizan, M.E.; Liew, W.P.P.; Sulaiman Rahman, H. Antioxidant and oxidative stress: A mutual interplay in age-related diseases. Front. Pharmacol., 2018, 9, 1162.
[http://dx.doi.org/10.3389/fphar.2018.01162] [PMID: 30405405]
[69]
Alves, C.; Silva, J.; Pinteus, S.; Gaspar, H.; Alpoim, M.C.; Botana, L.M.; Pedrosa, R. From marine origin to therapeutics: The antitumor potential of marine algae-derived compounds. Front. Pharmacol., 2018, 9, 777.
[http://dx.doi.org/10.3389/fphar.2018.00777]
[70]
Ricciotti, E.; FitzGerald, G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol., 2011, 31(5), 986-1000.
[http://dx.doi.org/10.1161/ATVBAHA.110.207449] [PMID: 21508345]
[71]
González-Rodríguez, L.G.; Aparicio, A.; López-Sobaler, A.M.; Ortega, R.M. Omega 3 and omega 6 fatty acids intake and dietary sources in a representative sample of Spanish adults. Int. J. Vitam. Nutr. Res., 2013, 83(1), 36-47.
[http://dx.doi.org/10.1024/0300-9831/a000143] [PMID: 24220163]
[72]
Calder, P.C. Omega-3 fatty acids and inflammatory processes. Nutrients, 2010, 2(3), 355-374.
[http://dx.doi.org/10.3390/nu2030355] [PMID: 22254027]
[73]
Leyva-López, N.; Gutierrez-Grijalva, E.P.; Ambriz-Perez, D.L.; Heredia, J.B. Flavonoids as cytokine modulators: A Possible therapy for inflammation-related diseases. Int. J. Mol. Sci., 2016, 17(6), 921.
[http://dx.doi.org/10.3390/ijms17060921] [PMID: 27294919]
[74]
Upadhyay, S.; Dixit, M. Role of polyphenols and other phytochemicals on molecular signaling. Med. Cellul. Longevity, 2015. 2015 Article ID, 504253, 1-15.
[http://dx.doi.org/10.1155/2015/504253]
[75]
Hawas, Y.E.; Khan, Md. B.; Basu, N. Evaluating and enhancing the operational performance of public bus systems using GIS-based data envelopment analysis. J. Public Transp., 2012, 15(2), 19-44.
[http://dx.doi.org/10.5038/2375-0901.15.2.2]