[1]
Smith, R.A.; Manassaram-Baptiste, D.; Brooks, D.; Doroshenk, M.; Fedewa, S.; Saslow, D.; Brawley, O.W.; Wender, R. Cancer screening in the United States, 2015: A review of current American cancer society guidelines and current issues in cancer screening. CA Cancer J. Clin., 2015, 65(1), 30-54. [http://dx.doi.org/10.3322/caac.21261]. [PMID: 25581023].
[2]
Fitzmaurice, C.; Akinyemiju, T.F.; Al Lami, F.H.; Alam, T.; Alizadeh-Navaei, R.; Allen, C.; Alsharif, U.; Alvis-Guzman, N.; Amini, E.; Anderson, B.O.; Aremu, O.; Artaman, A.; Asgedom, S.W.; Assadi, R.; Atey, T.M.; Avila-Burgos, L.; Awasthi, A.; Ba Saleem, H.O.; Barac, A.; Bennett, J.R.; Bensenor, I.M.; Bhakta, N.; Brenner, H.; Cahuana-Hurtado, L.; Castañeda-Orjuela, C.A.; Catalá-López, F.; Choi, J.J.; Christopher, D.J.; Chung, S.C.; Curado, M.P.; Dandona, L.; Dandona, R. das Neves, J.; Dey, S.; Dharmaratne, S.D.; Doku, D.T.; Driscoll, T.R.; Dubey, M.; Ebrahimi, H.; Edessa, D.; El-Khatib, Z.; Endries, A.Y.; Fischer, F.; Force, L.M.; Foreman, K.J.; Gebrehiwot, S.W.; Gopalani, S.V.; Grosso, G.; Gupta, R.; Gyawali, B.; Hamadeh, R.R.; Hamidi, S.; Harvey, J.; Hassen, H.Y.; Hay, R.J.; Hay, S.I.; Heibati, B.; Hiluf, M.K.; Horita, N.; Hosgood, H.D.; Ilesanmi, O.S.; Innos, K.; Islami, F.; Jakovljevic, M.B.; Johnson, S.C.; Jonas, J.B.; Kasaeian, A.; Kassa, T.D.; Khader, Y.S.; Khan, E.A.; Khan, G.; Khang, Y.H.; Khosravi, M.H.; Khubchandani, J.; Kopec, J.A.; Kumar, G.A.; Kutz, M.; Lad, D.P.; Lafranconi, A.; Lan, Q.; Legesse, Y.; Leigh, J.; Linn, S.; Lunevicius, R.; Majeed, A.; Malekzadeh, R.; Malta, D.C.; Mantovani, L.G.; McMahon, B.J.; Meier, T.; Melaku, Y.A.; Melku, M.; Memiah, P.; Mendoza, W.; Meretoja, T.J.; Mezgebe, H.B.; Miller, T.R.; Mohammed, S.; Mokdad, A.H.; Moosazadeh, M.; Moraga, P.; Mousavi, S.M.; Nangia, V.; Nguyen, C.T.; Nong, V.M.; Ogbo, F.A.; Olagunju, A.T.; Pa, M.; Park, E.K.; Patel, T.; Pereira, D.M.; Pishgar, F.; Postma, M.J.; Pourmalek, F.; Qorbani, M.; Rafay, A.; Rawaf, S.; Rawaf, D.L.; Roshandel, G.; Safiri, S.; Salimzadeh, H.; Sanabria, J.R.; Santric Milicevic, M.M.; Sartorius, B.; Satpathy, M.; Sepanlou, S.G.; Shackelford, K.A.; Shaikh, M.A.; Sharif-Alhoseini, M.; She, J.; Shin, M.J.; Shiue, I.; Shrime, M.G.; Sinke, A.H.; Sisay, M.; Sligar, A.; Sufiyan, M.B.; Sykes, B.L.; Tabarés-Seisdedos, R.; Tessema, G.A.; Topor-Madry, R.; Tran, T.T.; Tran, B.X.; Ukwaja, K.N.; Vlassov, V.V.; Vollset, S.E.; Weiderpass, E.; Williams, H.C.; Yimer, N.B.; Yonemoto, N.; Younis, M.Z.; Murray, C.J.L.; Naghavi, M. Global burden of disease cancer collaboration. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: A systematic analysis for the global burden of disease study. JAMA Oncol., 2018, 4(11), 1553-1568. [http://dx.doi.org/10.1001/jamaoncol.2018.2706]. [PMID: 29860482].
[3]
Brouhard, G.J.; Rice, L.M. The contribution of αβ-tubulin curvature to microtubule dynamics. J. Cell Biol., 2014, 207(3), 323-334. [http://dx.doi.org/10.1083/jcb.201407095]. [PMID: 25385183].
[4]
McIntosh, J.R.; Hays, T. A brief history of research on mitotic mechanisms. Biology (Basel), 2016, 5(4), E55. [http://dx.doi.org/10.3390/biology5040055]. [PMID: 28009830].
[5]
Petry, S. Mechanisms of mitotic spindle assembly. Annu. Rev. Biochem., 2016, 85, 659-683. [http://dx.doi.org/10.1146/annurev-biochem-060815-014528]. [PMID: 27145846].
[6]
Magiera, M.M.; Singh, P.; Gadadhar, S.; Janke, C. Tubulin posttranslational modifications and emerging links to human disease. Cell, 2018, 173(6), 1323-1327. [http://dx.doi.org/10.1016/j.cell.2018.05.018]. [PMID: 29856952].
[7]
Zhang, Y.; Park, K.Y.; Suazo, K.F.; Distefano, M.D. Recent progress in enzymatic protein labelling techniques and their applications. Chem. Soc. Rev., 2018, 47(24), 9106-9136. [http://dx.doi.org/10.1039/C8CS00537K]. [PMID: 30259933].
[8]
Kaur, R.; Kaur, G.; Gill, R.K.; Soni, R.; Bariwal, J. Recent developments in tubulin polymerization inhibitors: An overview. Eur. J. Med. Chem., 2014, 87, 89-124. [http://dx.doi.org/10.1016/j.ejmech.2014.09.051]. [PMID: 25240869].
[9]
Kavallaris, M. Microtubules and resistance to tubulin-binding agents. Nat. Rev. Cancer, 2010, 10(3), 194-204. [http://dx.doi.org/10.1038/nrc2803]. [PMID: 20147901].
[10]
Banerjee, S.; Hwang, D.J.; Li, W.; Miller, D.D. Current advances of tubulin inhibitors in nanoparticle drug delivery and vascular disruption/angiogenesis. Molecules, 2016, 21(11), 21. [http://dx.doi.org/10.3390/molecules21111468]. [PMID: 27827858].
[11]
Wu, X.; Wang, Q.; Li, W. Recent advances in heterocyclic tubulin inhibitors targeting the colchicine binding site. Anticancer. Agents Med. Chem., 2016, 16(10), 1325-1338. [http://dx.doi.org/10.2174/1871520616666160219161921]. [PMID: 26899186].
[12]
Checchi, P.M.; Nettles, J.H.; Zhou, J.; Snyder, J.P.; Joshi, H.C. Microtubule-interacting drugs for cancer treatment. Trends Pharmacol. Sci., 2003, 24(7), 361-365. [http://dx.doi.org/10.1016/S0165-6147(03)00161-5]. [PMID: 12871669].
[13]
Brossi, A.; Yeh, H.J.; Chrzanowska, M.; Wolff, J.; Hamel, E.; Lin, C.M.; Quin, F.; Suffness, M.; Silverton, J. Colchicine and its analogues: Recent findings. Med. Res. Rev., 1988, 8(1), 77-94. [http://dx.doi.org/10.1002/med.2610080105]. [PMID: 3278182].
[14]
Negi, A.S.; Gautam, Y.; Alam, S.; Chanda, D.; Luqman, S.; Sarkar, J.; Khan, F.; Konwar, R. Natural antitubulin agents: importance of 3,4,5-trimethoxyphenyl fragment. Bioorg. Med. Chem., 2015, 23(3), 373-389. [http://dx.doi.org/10.1016/j.bmc.2014.12.027]. [PMID: 25564377].
[15]
Acharya, B.R.; Chatterjee, A.; Ganguli, A.; Bhattacharya, S.; Chakrabarti, G. Thymoquinone inhibits microtubule polymerization by tubulin binding and causes mitotic arrest following apoptosis in A549 cells. Biochimie, 2014, 97, 78-91. [http://dx.doi.org/10.1016/j.biochi.2013.09.025]. [PMID: 24113316].
[16]
Dybkova, N.; Wagner, S.; Backs, J.; Hund, T.J.; Mohler, P.J.; Sowa, T.; Nikolaev, V.O.; Maier, L.S. Tubulin polymerization disrupts cardiac β-adrenergic regulation of late INa. Cardiovasc. Res., 2014, 103(1), 168-177. [http://dx.doi.org/10.1093/cvr/cvu120]. [PMID: 24812278].
[17]
Herdman, C.A.; Devkota, L.; Lin, C.M.; Niu, H.; Strecker, T.E.; Lopez, R.; Liu, L.; George, C.S.; Tanpure, R.P.; Hamel, E.; Chaplin, D.J.; Mason, R.P.; Trawick, M.L.; Pinney, K.G. Structural interrogation of benzosuberene-based inhibitors of tubulin polymerization. Bioorg. Med. Chem., 2015, 23(24), 7497-7520. [http://dx.doi.org/10.1016/j.bmc.2015.10.012]. [PMID: 26775540].
[18]
Sunil, D.; Kamath, P.R. Indole based tubulin polymerization inhibitors: An update on recent developments. Mini Rev. Med. Chem., 2016, 16(18), 1470-1499. [http://dx.doi.org/10.2174/1389557516666160505115324]. [PMID: 27468786].
[19]
Lee, C.H.; Lin, Y.F.; Chen, Y.C.; Wong, S.M.; Juan, S.H.; Huang, H.M. MPT0B169 and MPT0B002, New tubulin inhibitors, induce growth inhibition, G2/M cell cycle arrest, and apoptosis in human colorectal cancer cells. Pharmacology, 2018, 102(5-6), 262-271. [http://dx.doi.org/10.1159/000492494]. [PMID: 30227438].
[20]
Majcher, U.; Urbaniak, A.; Maj, E.; Moshari, M.; Delgado, M.; Wietrzyk, J.; Bartl, F.; Chambers, T.C.; Tuszynski, J.A.; Huczyński, A. Synthesis, antiproliferative activity and molecular docking of thiocolchicine urethanes. Bioorg. Chem., 2018, 81, 553-566. [http://dx.doi.org/10.1016/j.bioorg.2018.09.004]. [PMID: 30248507].
[21]
Wang, G.; Peng, Z.; Peng, S.; Qiu, J.; Li, Y.; Lan, Y. (E)-N-Aryl-2-oxo-2-(3,4,5-trimethoxyphenyl)acetohydrazonoyl cyanides as tubulin polymerization inhibitors: Structure-based bioisosterism design, synthesis, biological evaluation, molecular docking and in silico ADME prediction. Bioorg. Med. Chem. Lett., 2018, 5, 30732-30735. [http://dx.doi.org/10.1016/j.bmcl.2018.09.004].
[22]
Alswah, M.; Bayoumi, A.H.; Elgamal, K.; Elmorsy, A.; Ihmaid, S.; Ahmed, H.E.A. Design, synthesis and cytotoxic evaluation of novel chalcone derivatives bearing triazolo[4,3-a]-quinoxaline moieties as potent anticancer agents with dual EGFR kinase and tubulin polymerization inhibitory effects. Molecules, 2017, 23(1), 23. [http://dx.doi.org/10.3390/molecules23010048]. [PMID: 29280968].
[23]
Fu, D.J.; Liu, J.F.; Zhao, R.H.; Li, J.H.; Zhang, S.Y.; Zhang, Y.B. Design and antiproliferative evaluation of novel sulfanilamide derivatives as potential tubulin polymerization inhibitors. Molecules, 2017, 22(9), 22. [http://dx.doi.org/10.3390/molecules22091470]. [PMID: 28872607].
[24]
Mandić, B.M.; Simić, M.R.; Vučković, I.M.; Vujisić, L.V.; Novaković, M.M.; Trifunović, S.S.; Nikolić-Mandić, S.D.; Tešević, V.V.; Vajs, V.V.; Milosavljević, S.M. Pyrrolizidine alkaloids and fatty acids from the endemic plant species Rindera umbellata and the effect of lindelofine-N-oxide on tubulin polymerization. Molecules, 2013, 18(9), 10694-10706. [http://dx.doi.org/10.3390/molecules180910694]. [PMID: 24005964].
[25]
Zayed, M.F.; Rateb, H.S.; Ahmed, S.; Khaled, O.A.; Ibrahim, S.R.M. Quinazolinone-amino acid hybrids as dual inhibitors of EGFR kinase and tubulin polymerization. Molecules, 2018, 23(7), 23. [http://dx.doi.org/10.3390/molecules23071699]. [PMID: 30002297].
[26]
Li, L.; Jiang, S.; Li, X.; Liu, Y.; Su, J.; Chen, J. Recent advances in trimethoxyphenyl (TMP) based tubulin inhibitors targeting the colchicine binding site. Eur. J. Med. Chem., 2018, 151, 482-494. [http://dx.doi.org/10.1016/j.ejmech.2018.04.011]. [PMID: 29649743].
[27]
Marzaro, G.; Coluccia, A.; Ferrarese, A.; Brun, P.; Castagliuolo, I.; Conconi, M.T.; La Regina, G.; Bai, R.; Silvestri, R.; Hamel, E.; Chilin, A. Discovery of biarylaminoquinazolines as novel tubulin polymerization inhibitors. J. Med. Chem., 2014, 57(11), 4598-4605. [http://dx.doi.org/10.1021/jm500034j]. [PMID: 24801610].
[28]
O’Boyle, N.M.; Pollock, J.K.; Carr, M.; Knox, A.J.; Nathwani, S.M.; Wang, S.; Caboni, L.; Zisterer, D.M.; Meegan, M.J. β-Lactam estrogen receptor antagonists and a dual-targeting estrogen receptor/tubulin ligand. J. Med. Chem., 2014, 57(22), 9370-9382. [http://dx.doi.org/10.1021/jm500670d]. [PMID: 25369367].
[29]
Wang, X.F.; Guan, F.; Ohkoshi, E.; Guo, W.; Wang, L.; Zhu, D.Q.; Wang, S.B.; Wang, L.T.; Hamel, E.; Yang, D.; Li, L.; Qian, K.; Morris-Natschke, S.L.; Yuan, S.; Lee, K.H.; Xie, L. Optimization of 4-(N-cycloamino)phenylquinazolines as a novel class of tubulin-polymerization inhibitors targeting the colchicine site. J. Med. Chem., 2014, 57(4), 1390-1402. [http://dx.doi.org/10.1021/jm4016526]. [PMID: 24502232].
[30]
Brancale, A.; Silvestri, R. Indole, a core nucleus for potent inhibitors of tubulin polymerization. Med. Res. Rev., 2007, 27(2), 209-238. [http://dx.doi.org/10.1002/med.20080]. [PMID: 16788980].
[31]
Inatsuki, S.; Noguchi, T.; Miyachi, H.; Oda, S.; Iguchi, T.; Kizaki, M.; Hashimoto, Y.; Kobayashi, H. Tubulin-polymerization inhibitors derived from thalidomide. Bioorg. Med. Chem. Lett., 2005, 15(2), 321-325. [http://dx.doi.org/10.1016/j.bmcl.2004.10.072]. [PMID: 15603947].
[32]
Weisenberg, R.C.; Borisy, G.G.; Taylor, E.W. The colchicine-binding protein of mammalian brain and its relation to microtubules. Biochemistry, 1968, 7(12), 4466-4479. [http://dx.doi.org/10.1021/bi00852a043]. [PMID: 5700666].
[33]
Mohri, H. Amino-acid composition of “Tubulin” constituting microtubules of sperm flagella. Nature, 1968, 217(5133), 1053-1054. [http://dx.doi.org/10.1038/2171053a0]. [PMID: 4296139].
[34]
Gigant, B.; Cormier, A.; Dorléans, A.; Ravelli, R.B.; Knossow, M. Microtubule-destabilizing agents: structural and mechanistic insights from the interaction of colchicine and vinblastine with tubulin. Top. Curr. Chem., 2009, 286, 259-278. [http://dx.doi.org/10.1007/128_2008_11]. [PMID: 23563615].
[35]
Bai, R.; Covell, D.G.; Pei, X.F.; Ewell, J.B.; Nguyen, N.Y.; Brossi, A.; Hamel, E. Mapping the binding site of colchicinoids on beta -tubulin. 2-Chloroacetyl-2-demethylthiocolchicine covalently reacts predominantly with cysteine 239 and secondarily with cysteine 354. J. Biol. Chem., 2000, 275(51), 40443-40452. [http://dx.doi.org/10.1074/jbc.M005299200]. [PMID: 11005811].
[36]
Ravelli, R.B.; Gigant, B.; Curmi, P.A.; Jourdain, I.; Lachkar, S.; Sobel, A.; Knossow, M. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature, 2004, 428(6979), 198-202. [http://dx.doi.org/10.1038/nature02393]. [PMID: 15014504].
[37]
Dorléans, A.; Gigant, B.; Ravelli, R.B.; Mailliet, P.; Mikol, V.; Knossow, M. Variations in the colchicine-binding domain provide insight into the structural switch of tubulin. Proc. Natl. Acad. Sci. USA, 2009, 106(33), 13775-13779. [http://dx.doi.org/10.1073/pnas.0904223106]. [PMID: 19666559].
[38]
Barbier, P.; Dorléans, A.; Devred, F.; Sanz, L.; Allegro, D.; Alfonso, C.; Knossow, M.; Peyrot, V.; Andreu, J.M. Stathmin and interfacial microtubule inhibitors recognize a naturally curved conformation of tubulin dimers. J. Biol. Chem., 2010, 285(41), 31672-31681. [http://dx.doi.org/10.1074/jbc.M110.141929]. [PMID: 20675373].
[39]
Prota, A.E.; Danel, F.; Bachmann, F.; Bargsten, K.; Buey, R.M.; Pohlmann, J.; Reinelt, S.; Lane, H.; Steinmetz, M.O. The novel microtubule-destabilizing drug BAL27862 binds to the colchicine site of tubulin with distinct effects on microtubule organization. J. Mol. Biol., 2014, 426(8), 1848-1860. [http://dx.doi.org/10.1016/j.jmb.2014.02.005]. [PMID: 24530796].
[40]
Zhao, W.; Zhou, C.; Guan, Z.Y.; Yin, P.; Chen, F.; Tang, Y.J. Structural insights into the inhibition of tubulin by the antitumor agent 4β-(1,2,4-triazol-3-ylthio)-4-deoxypodophyllotoxin. ACS Chem. Biol., 2017, 12(3), 746-752. [http://dx.doi.org/10.1021/acschembio.6b00842]. [PMID: 28035796].
[41]
Niu, L.; Wang, Y.; Wang, C.; Wang, Y.; Jiang, X.; Ma, L.; Wu, C.; Yu, Y.; Chen, Q. Structure of 4′-demethylepipodophyllotoxin in complex with tubulin provides a rationale for drug design. Biochem. Biophys. Res. Commun., 2017, 493(1), 718-722. [http://dx.doi.org/10.1016/j.bbrc.2017.08.125]. [PMID: 28864414].
[42]
Arnst, K.E.; Wang, Y.; Hwang, D.J.; Xue, Y.; Costello, T.; Hamilton, D.; Chen, Q.; Yang, J.; Park, F.; Dalton, J.T.; Miller, D.D.; Li, W. A potent, metabolically stable tubulin inhibitor targets the colchicine binding site and overcomes taxane resistance. Cancer Res., 2018, 78(1), 265-277. [http://dx.doi.org/10.1158/0008-5472.CAN-17-0577]. [PMID: 29180476].
[43]
Yang, J.; Yan, W.; Yu, Y.; Wang, Y.; Yang, T.; Xue, L.; Yuan, X.; Long, C.; Liu, Z.; Chen, X.; Hu, M.; Zheng, L.; Qiu, Q.; Pei, H.; Li, D.; Wang, F.; Bai, P.; Wen, J.; Ye, H.; Chen, L. The compound millepachine and its derivatives inhibit tubulin polymerization by irreversibly binding to the colchicine-binding site in β-tubulin. J. Biol. Chem., 2018, 293(24), 9461-9472. [http://dx.doi.org/10.1074/jbc.RA117.001658]. [PMID: 29691282].
[45]
Tozer, G.M.; Kanthou, C.; Parkins, C.S.; Hill, S.A. The biology of the combretastatins as tumour vascular targeting agents. Int. J. Exp. Pathol., 2002, 83(1), 21-38. [http://dx.doi.org/10.1046/j.1365-2613.2002.00211.x]. [PMID: 12059907].
[46]
Ohsumi, K.; Hatanaka, T.; Fujita, K.; Nakagawa, R.; Fukuda, Y.; Nihei, Y.; Suga, Y.; Morinaga, Y.; Akiyama, Y.; Tsuji, T. Syntheses and antitumor activity of cis-restricted combretastatins: 5-membered heterocyclic analogues. Bioorg. Med. Chem. Lett., 1998, 8(22), 3153-3158. [http://dx.doi.org/10.1016/S0960-894X(98)00579-4]. [PMID: 9873694].
[47]
Herdman, C.A.; Strecker, T.E.; Tanpure, R.P.; Chen, Z.; Winters, A.; Gerberich, J.; Liu, L.; Hamel, E.; Mason, R.P.; Chaplin, D.J.; Trawick, M.L.; Pinney, K.G. Synthesis and biological evaluation of benzocyclooctene-based and indene-based anticancer agents that function as inhibitors of tubulin polymerization. MedChemComm, 2016, 7(12), 2418-2427. [http://dx.doi.org/10.1039/C6MD00459H]. [PMID: 28217276].
[48]
Wang, L.; Woods, K.W.; Li, Q.; Barr, K.J.; McCroskey, R.W.; Hannick, S.M.; Gherke, L.; Credo, R.B.; Hui, Y.H.; Marsh, K.; Warner, R.; Lee, J.Y.; Zielinski-Mozng, N.; Frost, D.; Rosenberg, S.H.; Sham, H.L. Potent, orally active heterocycle-based combretastatin A-4 analogues: Synthesis, structure-activity relationship, pharmacokinetics, and in vivo antitumor activity evaluation. (vol 45, pg 1704, 2002). J. Med. Chem., 2002, 45, 4946-4946. [http://dx.doi.org/10.1021/jm020332+].
[49]
Nam, N.H.; Kim, Y.; You, Y.J.; Hong, D.H.; Kim, H.M.; Ahn, B.Z. Synthesis and anti-tumor activity of novel combretastatins: combretocyclopentenones and related analogues. Bioorg. Med. Chem. Lett., 2002, 12(15), 1955-1958. [http://dx.doi.org/10.1016/S0960-894X(02)00321-9]. [PMID: 12113817].
[50]
Nam, N.H.; Kim, Y.; You, Y.J.; Hong, D.H.; Kim, H.M.; Ahn, B.Z. Combretoxazolones: synthesis, cytotoxicity and antitumor activity. Bioorg. Med. Chem. Lett., 2001, 11(23), 3073-3076. [http://dx.doi.org/10.1016/S0960-894X(01)00622-9]. [PMID: 11714613].
[51]
Simoni, D.; Grisolia, G.; Giannini, G.; Roberti, M.; Rondanin, R.; Piccagli, L.; Baruchello, R.; Rossi, M.; Romagnoli, R.; Invidiata, F.P.; Grimaudo, S.; Jung, M.K.; Hamel, E.; Gebbia, N.; Crosta, L.; Abbadessa, V.; Di Cristina, A.; Dusonchet, L.; Meli, M.; Tolomeo, M. Heterocyclic and phenyl double-bond-locked combretastatin analogues possessing potent apoptosis-inducing activity in HL60 and in MDR cell lines. J. Med. Chem., 2005, 48(3), 723-736. [http://dx.doi.org/10.1021/jm049622b]. [PMID: 15689156].
[52]
Tron, G.C.; Pagliai, F.; Del Grosso, E.; Genazzani, A.A.; Sorba, G. Synthesis and cytotoxic evaluation of combretafurazans. J. Med. Chem., 2005, 48(9), 3260-3268. [http://dx.doi.org/10.1021/jm049096o]. [PMID: 15857132].
[53]
Xu, J.M.; Zhang, E.; Shi, X.J.; Wang, Y.C.; Yu, B.; Jiao, W.W.; Guo, Y.Z.; Liu, H.M. Synthesis and preliminary biological evaluation of 1,2,3-triazole-Jaspine B hybrids as potential cytotoxic agents. Eur. J. Med. Chem., 2014, 80, 593-604. [http://dx.doi.org/10.1016/j.ejmech.2014.03.022]. [PMID: 24835817].
[54]
Fürst, R.; Zupkó, I.; Berényi, A.; Ecker, G.F.; Rinner, U. Synthesis and antitumor-evaluation of cyclopropyl-containing combretastatin analogs. Bioorg. Med. Chem. Lett., 2009, 19(24), 6948-6951. [http://dx.doi.org/10.1016/j.bmcl.2009.10.064]. [PMID: 19879758].
[55]
Hadfield, J.A.; Gaukroger, K.; Hirst, N.; Weston, A.P.; Lawrence, N.J.; McGown, A.T. Synthesis and evaluation of double bond substituted combretastatins. Eur. J. Med. Chem., 2005, 40(6), 529-541. [http://dx.doi.org/10.1016/j.ejmech.2004.12.008]. [PMID: 15922837].
[56]
Greene, T.F.; Wang, S.; Greene, L.M.; Nathwani, S.M.; Pollock, J.K.; Malebari, A.M.; McCabe, T.; Twamley, B.; O’Boyle, N.M.; Zisterer, D.M.; Meegan, M.J. Synthesis and biochemical evaluation of 3-phenoxy-1,4-diarylazetidin-2-ones as tubulin-targeting antitumor agents. J. Med. Chem., 2016, 59(1), 90-113. [http://dx.doi.org/10.1021/acs.jmedchem.5b01086]. [PMID: 26680364].
[57]
Tripodi, F.; Pagliarin, R.; Fumagalli, G.; Bigi, A.; Fusi, P.; Orsini, F.; Frattini, M.; Coccetti, P. Synthesis and biological evaluation of 1,4-diaryl-2-azetidinones as specific anticancer agents: activation of adenosine monophosphate activated protein kinase and induction of apoptosis. J. Med. Chem., 2012, 55(5), 2112-2124. [http://dx.doi.org/10.1021/jm201344a]. [PMID: 22329561].
[58]
Zhou, P.; Liu, Y.; Zhou, L.; Zhu, K.; Feng, K.; Zhang, H.; Liang, Y.; Jiang, H.; Luo, C.; Liu, M.; Wang, Y. Potent antitumor activities and structure basis of the chiral β-lactam bridged analogue of combretastatin A-4 binding to tubulin. J. Med. Chem., 2016, 59(22), 10329-10334. [http://dx.doi.org/10.1021/acs.jmedchem.6b01268]. [PMID: 27805821].
[59]
Lee, L.; Davis, R.; Vanderham, J.; Hills, P.; Mackay, H.; Brown, T.; Mooberry, S.L.; Lee, M. 1,2,3,4-tetrahydro-2-thioxopyrimidine analogs of combretastatin-A4. Eur. J. Med. Chem., 2008, 43(9), 2011-2015. [http://dx.doi.org/10.1016/j.ejmech.2007.11.030]. [PMID: 18226429].
[60]
Rasolofonjatovo, E.; Provot, O.; Hamze, A.; Rodrigo, J.; Bignon, J.; Wdzieczak-Bakala, J.; Lenoir, C.; Desravines, D.; Dubois, J.; Brion, J.D.; Alami, M. Design, synthesis and anticancer properties of 5-arylbenzoxepins as conformationally restricted isocombretastatin A-4 analogs. Eur. J. Med. Chem., 2013, 62, 28-39. [http://dx.doi.org/10.1016/j.ejmech.2012.12.042]. [PMID: 23353744].
[61]
Yan, J.; Pang, Y.; Sheng, J.; Wang, Y.; Chen, J.; Hu, J.; Huang, L.; Li, X. A novel synthetic compound exerts effective anti-tumour activity in vivo via the inhibition of tubulin polymerisation in A549 cells. Biochem. Pharmacol., 2015, 97(1), 51-61. [http://dx.doi.org/10.1016/j.bcp.2015.07.008]. [PMID: 26212540].
[62]
Hu, Y.; Lu, X.; Chen, K.; Yan, R.; Li, Q.S.; Zhu, H.L. Design, synthesis, biological evaluation and molecular modeling of 1,3,4-oxadiazoline analogs of combretastatin-A4 as novel antitubulin agents. Bioorg. Med. Chem., 2012, 20(2), 903-909. [http://dx.doi.org/10.1016/j.bmc.2011.11.057]. [PMID: 22192936].
[63]
dos Santos, E. A.; Hamel, E.; Bai, R.; Burnett, J.C.; Tozatti, C.S.; Bogo, D.; Perdomo, R.T.; Antunes, A.M.; Marques, M.M.; Matos, Mde.F.; de Lima, D.P. Synthesis and evaluation of diaryl sulfides and diaryl selenide compounds for antitubulin and cytotoxic activity. Bioorg. Med. Chem. Lett., 2013, 23(16), 4669-4673. [http://dx.doi.org/10.1016/j.bmcl.2013.06.009]. [PMID: 23810282].
[64]
Nakamura, M.; Kajita, D.; Matsumoto, Y.; Hashimoto, Y. Design and synthesis of silicon-containing tubulin polymerization inhibitors: replacement of the ethylene moiety of combretastatin A-4 with a silicon linker. Bioorg. Med. Chem., 2013, 21(23), 7381-7391. [http://dx.doi.org/10.1016/j.bmc.2013.09.046]. [PMID: 24139940].
[65]
Soussi, M.A.; Provot, O.; Bernadat, G.; Bignon, J.; Wdzieczak-Bakala, J.; Desravines, D.; Dubois, J.; Brion, J.D.; Messaoudi, S.; Alami, M. Discovery of azaisoerianin derivatives as potential antitumors agents. Eur. J. Med. Chem., 2014, 78, 178-189. [http://dx.doi.org/10.1016/j.ejmech.2014.03.032]. [PMID: 24681982].
[66]
Patil, S.A.; Patil, R.; Miller, D.D. Indole molecules as inhibitors of tubulin polymerization: potential new anticancer agents. Future Med. Chem., 2012, 4(16), 2085-2115. [http://dx.doi.org/10.4155/fmc.12.141]. [PMID: 23157240].
[67]
Cacchi, S.; Fabrizi, G. Update 1 of: Synthesis and functionalization of indoles through palladium-catalyzed reactions. Chem. Rev., 2011, 111(5), PR215-PR283. [http://dx.doi.org/10.1021/cr100403z]. [PMID: 21557620].
[68]
Kim, M.; Park, J.; Sharma, S.; Han, S.; Han, S.H.; Kwak, J.H.; Jung, Y.H.; Kim, I.S. Synthesis and C2-functionalization of indoles with allylic acetates under rhodium catalysis. Org. Biomol. Chem., 2013, 11(42), 7427-7434. [http://dx.doi.org/10.1039/c3ob41828f]. [PMID: 24081311].
[69]
Matcha, K.; Antonchick, A.P. Cascade multicomponent synthesis of indoles, pyrazoles, and pyridazinones by functionalization of alkenes. Angew. Chem. Int. Ed. Engl., 2014, 53(44), 11960-11964. [http://dx.doi.org/10.1002/anie.201406464]. [PMID: 25287788].
[70]
Liou, J.P.; Chang, Y.L.; Kuo, F.M.; Chang, C.W.; Tseng, H.Y.; Wang, C.C.; Yang, Y.N.; Chang, J.Y.; Lee, S.J.; Hsieh, H.P. Concise synthesis and structure-activity relationships of combretastatin A-4 analogues, 1-aroylindoles and 3-aroylindoles, as novel classes of potent antitubulin agents. J. Med. Chem., 2004, 47(17), 4247-4257. [http://dx.doi.org/10.1021/jm049802l]. [PMID: 15293996].
[71]
Alvarez, R.; Alvarez, C.; Mollinedo, F.; Sierra, B.G.; Medarde, M.; Peláez, R. Isocombretastatins A: 1,1-diarylethenes as potent inhibitors of tubulin polymerization and cytotoxic compounds. Bioorg. Med. Chem., 2009, 17(17), 6422-6431. [http://dx.doi.org/10.1016/j.bmc.2009.07.012]. [PMID: 19647439].
[72]
Baek, D.J.; MacRitchie, N.; Anthony, N.G.; Mackay, S.P.; Pyne, S.; Pyne, N.J.; Bittman, R. Structure-activity relationships and molecular modeling of sphingosine kinase inhibitors. J. Med. Chem., 2013, 56(22), 9310-9327. [http://dx.doi.org/10.1021/jm401399c]. [PMID: 24164513].
[73]
De Martino, G.; Edler, M.C.; La Regina, G.; Coluccia, A.; Barbera, M.C.; Barrow, D.; Nicholson, R.I.; Chiosis, G.; Brancale, A.; Hamel, E.; Artico, M.; Silvestri, R. New arylthioindoles: potent inhibitors of tubulin polymerization. 2. Structure-activity relationships and molecular modeling studies. J. Med. Chem., 2006, 49(3), 947-954. [http://dx.doi.org/10.1021/jm050809s]. [PMID: 16451061].
[74]
De Martino, G.; La Regina, G.; Coluccia, A.; Edler, M.C.; Barbera, M.C.; Brancale, A.; Wilcox, E.; Hamel, E.; Artico, M.; Silvestri, R. Arylthioindoles, potent inhibitors of tubulin polymerization. J. Med. Chem., 2004, 47(25), 6120-6123. [http://dx.doi.org/10.1021/jm049360d]. [PMID: 15566282].
[75]
Yan, J.; Chen, J.; Zhang, S.; Hu, J.; Huang, L.; Li, X. Synthesis, evaluation, and mechanism study of novel indole-chalcone derivatives exerting effective antitumor activity through microtubule destabilization in vitro and in vivo. J. Med. Chem., 2016, 59(11), 5264-5283. [http://dx.doi.org/10.1021/acs.jmedchem.6b00021]. [PMID: 27149641].
[76]
Lu, Y.; Chen, J.; Wang, J.; Li, C.M.; Ahn, S.; Barrett, C.M.; Dalton, J.T.; Li, W.; Miller, D.D. Design, synthesis, and biological evaluation of stable colchicine binding site tubulin inhibitors as potential anticancer agents. J. Med. Chem., 2014, 57(17), 7355-7366. [http://dx.doi.org/10.1021/jm500764v]. [PMID: 25122533].
[77]
Hwang, D.J.; Wang, J.; Li, W.; Miller, D.D. Structural optimization of indole derivatives acting at colchicine binding site as potential anticancer agents. ACS Med. Chem. Lett., 2015, 6(9), 993-997. [http://dx.doi.org/10.1021/acsmedchemlett.5b00208]. [PMID: 26396686].
[78]
Arthuis, M.; Pontikis, R.; Chabot, G.G.; Quentin, L.; Scherman, D.; Florent, J.C. Domino approach to 2-aroyltrimethoxyindoles as novel heterocyclic combretastatin A4 analogues. Eur. J. Med. Chem., 2011, 46(1), 95-100. [http://dx.doi.org/10.1016/j.ejmech.2010.10.018]. [PMID: 21112130].
[79]
Lai, M.J.; Chang, J.Y.; Lee, H.Y.; Kuo, C.C.; Lin, M.H.; Hsieh, H.P.; Chang, C.Y.; Wu, J.S.; Wu, S.Y.; Shey, K.S.; Liou, J.P. Synthesis and biological evaluation of 1-(4′-Indolyl and 6′-Quinolinyl) indoles as a new class of potent anticancer agents. Eur. J. Med. Chem., 2011, 46(9), 3623-3629. [http://dx.doi.org/10.1016/j.ejmech.2011.04.065]. [PMID: 21641700].
[80]
Lai, M.J.; Kuo, C.C.; Yeh, T.K.; Hsieh, H.P.; Chen, L.T.; Pan, W.Y.; Hsu, K.Y.; Chang, J.Y.; Liou, J.P. Synthesis and structure-activity relationships of 1-benzyl-4,5,6-trimethoxyindoles as a novel class of potent antimitotic agents. ChemMedChem, 2009, 4(4), 588-593. [http://dx.doi.org/10.1002/cmdc.200800405]. [PMID: 19266513].
[81]
Gaukroger, K.; Hadfield, J.A.; Lawrence, N.J.; Nolan, S.; McGown, A.T. Structural requirements for the interaction of combretastatins with tubulin: how important is the trimethoxy unit? Org. Biomol. Chem., 2003, 1(17), 3033-3037. [http://dx.doi.org/10.1039/B306878A]. [PMID: 14518125].
[82]
Duan, Y.T.; Man, R.J.; Tang, D.J.; Yao, Y.F.; Tao, X.X.; Yu, C.; Liang, X.Y.; Makawana, J.A.; Zou, M.J.; Wang, Z.C.; Zhu, H.L. Design, synthesis and antitumor activity of novel link-bridge and b-ring modified combretastatin A-4 (CA-4) analogues as potent antitubulin agents. Sci. Rep., 2016, 6, 25387. [http://dx.doi.org/10.1038/srep25387]. [PMID: 27138035].
[83]
Yao, Y.F.; Wang, Z.C.; Wu, S.Y.; Li, Q.F.; Yu, C.; Liang, X.Y.; Lv, P.C.; Duan, Y.T.; Zhu, H.L. Identification of novel 1-indolyl acetate-5-nitroimidazole derivatives of combretastatin A-4 as potential tubulin polymerization inhibitors. Biochem. Pharmacol., 2017, 137, 10-28. [http://dx.doi.org/10.1016/j.bcp.2017.04.026]. [PMID: 28456516].
[84]
Gastpar, R.; Goldbrunner, M.; Marko, D.; von Angerer, E. Methoxy-substituted 3-formyl-2-phenylindoles inhibit tubulin polymerization. J. Med. Chem., 1998, 41(25), 4965-4972. [http://dx.doi.org/10.1021/jm980228l]. [PMID: 9836614].
[85]
Banerjee, S.; Arnst, K.E.; Wang, Y.; Kumar, G.; Deng, S.; Yang, L.; Li, G-B.; Yang, J.; White, S.W.; Li, W.; Miller, D.D. Heterocyclic-fused pyrimidines as novel tubulin polymerization inhibitors targeting the colchicine binding site: structural basis and antitumor efficacy. J. Med. Chem., 2018, 61(4), 1704-1718. [http://dx.doi.org/10.1021/acs.jmedchem.7b01858]. [PMID: 29406710].
[86]
Shetty, R.S.; Lee, Y.; Liu, B.; Husain, A.; Joseph, R.W.; Lu, Y.; Nelson, D.; Mihelcic, J.; Chao, W.; Moffett, K.K.; Schumacher, A.; Flubacher, D.; Stojanovic, A.; Bukhtiyarova, M.; Williams, K.; Lee, K.J.; Ochman, A.R.; Saporito, M.S.; Moore, W.R.; Flynn, G.A.; Dorsey, B.D.; Springman, E.B.; Fujimoto, T.; Kelly, M.J. Synthesis and pharmacological evaluation of N-(3-(1H-indol-4-yl)-5-(2-methoxyisonicotinoyl)phenyl)methanesulfonamide (LP-261), a potent antimitotic agent. J. Med. Chem., 2011, 54(1), 179-200. [http://dx.doi.org/10.1021/jm100659v]. [PMID: 21126027].
[87]
Duan, Y.T.; Sang, Y.L.; Makawana, J.A.; Teraiya, S.B.; Yao, Y.F.; Tang, D.J.; Tao, X.X.; Zhu, H.L. Discovery and molecular modeling of novel 1-indolyl acetate--5-nitroimidazole targeting tubulin polymerization as antiproliferative agents. Eur. J. Med. Chem., 2014, 85, 341-351. [http://dx.doi.org/10.1016/j.ejmech.2014.07.082]. [PMID: 25105922].
[88]
Ducki, S.; Forrest, R.; Hadfield, J.A.; Kendall, A.; Lawrence, N.J.; McGown, A.T.; Rennison, D. Potent antimitotic and cell growth inhibitory properties of substituted chalcones. Bioorg. Med. Chem. Lett., 1998, 8(9), 1051-1056. [http://dx.doi.org/10.1016/S0960-894X(98)00162-0]. [PMID: 9871706].
[89]
Ducki, S.; Rennison, D.; Woo, M.; Kendall, A.; Chabert, J.F.; McGown, A.T.; Lawrence, N.J. Combretastatin-like chalcones as inhibitors of microtubule polymerization. Part 1: synthesis and biological evaluation of antivascular activity. Bioorg. Med. Chem., 2009, 17(22), 7698-7710. [http://dx.doi.org/10.1016/j.bmc.2009.09.039]. [PMID: 19837593].
[90]
Lawrence, N.J.; Patterson, R.P.; Ooi, L.L.; Cook, D.; Ducki, S. Effects of alpha-substitutions on structure and biological activity of anticancer chalcones. Bioorg. Med. Chem. Lett., 2006, 16(22), 5844-5848. [http://dx.doi.org/10.1016/j.bmcl.2006.08.065]. [PMID: 16949281].
[91]
Li, W.; Yin, Y.; Yao, H.; Shuai, W.; Sun, H.; Xu, S.; Liu, J.; Yao, H.; Zhu, Z.; Xu, J. Discovery of novel vinyl sulfone derivatives as anti-tumor agents with microtubule polymerization inhibitory and vascular disrupting activities. Eur. J. Med. Chem., 2018, 157, 1068-1080. [http://dx.doi.org/10.1016/j.ejmech.2018.08.074]. [PMID: 30176537].
[92]
Cao, D.; Liu, Y.; Yan, W.; Wang, C.; Bai, P.; Wang, T.; Tang, M.; Wang, X.; Yang, Z.; Ma, B.; Ma, L.; Lei, L.; Wang, F.; Xu, B.; Zhou, Y.; Yang, T.; Chen, L. Design, Synthesis, and Evaluation of in Vitro and in Vivo Anticancer activity of 4-substituted coumarins: a novel class of potent tubulin polymerization inhibitors. J. Med. Chem., 2016, 59(12), 5721-5739. [http://dx.doi.org/10.1021/acs.jmedchem.6b00158]. [PMID: 27213819].
[93]
Pettit, G.R.; Anderson, C.R.; Herald, D.L.; Jung, M.K.; Lee, D.J.; Hamel, E.; Pettit, R.K. Antineoplastic agents. 487. Synthesis and biological evaluation of the antineoplastic agent 3,4-methylenedioxy-5,4′-dimethoxy-3′-amino-Z-stilbene and derived amino acid amides. J. Med. Chem., 2003, 46(4), 525-531. [http://dx.doi.org/10.1021/jm020204l]. [PMID: 12570374].
[94]
Wang, G.; Peng, Z.; Zhang, J.; Qiu, J.; Xie, Z.; Gong, Z. Synthesis, biological evaluation and molecular docking studies of aminochalcone derivatives as potential anticancer agents by targeting tubulin colchicine binding site. Bioorg. Chem., 2018, 78, 332-340. [http://dx.doi.org/10.1016/j.bioorg.2018.03.028]. [PMID: 29627654].
[95]
Xu, Q.; Sun, M.; Bai, Z.; Wang, Y.; Wu, Y.; Tian, H.; Zuo, D.; Guan, Q.; Bao, K.; Wu, Y.; Zhang, W. Design, synthesis and bioevaluation of antitubulin agents carrying diaryl-5,5-fused-heterocycle scaffold. Eur. J. Med. Chem., 2017, 139, 242-249. [http://dx.doi.org/10.1016/j.ejmech.2017.05.065]. [PMID: 28802124].
[96]
Zhang, M.; Liang, Y.R.; Li, H.; Liu, M.M.; Wang, Y. Design, synthesis, and biological evaluation of hydantoin bridged analogues of combretastatin A-4 as potential anticancer agents. Bioorg. Med. Chem., 2017, 25(24), 6623-6634. [http://dx.doi.org/10.1016/j.bmc.2017.10.045]. [PMID: 29126741].
[97]
Canela, M.D.; Noppen, S.; Bueno, O.; Prota, A.E.; Bargsten, K.; Sáez-Calvo, G.; Jimeno, M.L.; Benkheil, M.; Ribatti, D.; Velázquez, S.; Camarasa, M.J.; Díaz, J.F.; Steinmetz, M.O.; Priego, E.M.; Pérez-Pérez, M.J.; Liekens, S. Antivascular and antitumor properties of the tubulin-binding chalcone TUB091. Oncotarget, 2017, 8(9), 14325-14342. [http://dx.doi.org/10.18632/oncotarget.9527]. [PMID: 27224920].
[98]
Kamal, A.; Balakrishna, M.; Nayak, V.L.; Shaik, T.B.; Faazil, S.; Nimbarte, V.D. Design and synthesis of imidazo[2,1-b]thiazole-chalcone conjugates: microtubule-destabilizing agents. ChemMedChem, 2014, 9(12), 2766-2780. [http://dx.doi.org/10.1002/cmdc.201402310]. [PMID: 25313981].
[99]
Kamal, A.; Kumar, G.B.; Vishnuvardhan, M.V.; Shaik, A.B.; Reddy, V.S.; Mahesh, R.; Sayeeda, I.B.; Kapure, J.S. Synthesis of phenstatin/isocombretastatin-chalcone conjugates as potent tubulin polymerization inhibitors and mitochondrial apoptotic inducers. Org. Biomol. Chem., 2015, 13(13), 3963-3981. [http://dx.doi.org/10.1039/C4OB02606C]. [PMID: 25721862].
[100]
Martel-Frachet, V.; Keramidas, M.; Nurisso, A.; DeBonis, S.; Rome, C.; Coll, J.L.; Boumendjel, A.; Skoufias, D.A.; Ronot, X. IPP51, a chalcone acting as a microtubule inhibitor with in vivo antitumor activity against bladder carcinoma. Oncotarget, 2015, 6(16), 14669-14686. [http://dx.doi.org/10.18632/oncotarget.4144]. [PMID: 26036640].
[101]
Mirzaei, H.; Emami, S. Recent advances of cytotoxic chalconoids targeting tubulin polymerization: Synthesis and biological activity. Eur. J. Med. Chem., 2016, 121, 610-639. [http://dx.doi.org/10.1016/j.ejmech.2016.05.067]. [PMID: 27318983].
[102]
Sharma, S.; Kaur, C.; Budhiraja, A.; Nepali, K.; Gupta, M.K.; Saxena, A.K.; Bedi, P.M. Chalcone based azacarboline analogues as novel antitubulin agents: design, synthesis, biological evaluation and molecular modelling studies. Eur. J. Med. Chem., 2014, 85, 648-660. [http://dx.doi.org/10.1016/j.ejmech.2014.08.005]. [PMID: 25128667].
[103]
Vitorović-Todorović, M.D.; Erić-Nikolić, A.; Kolundžija, B.; Hamel, E.; Ristić, S.; Juranić, I.O.; Drakulić, B.J. (E)-4-aryl-4-oxo-2-butenoic acid amides, chalcone-aroylacrylic acid chimeras: design, antiproliferative activity and inhibition of tubulin polymerization. Eur. J. Med. Chem., 2013, 62, 40-50. [http://dx.doi.org/10.1016/j.ejmech.2013.01.006]. [PMID: 23353745].
[104]
Wang, G.; Li, C.; He, L.; Lei, K.; Wang, F.; Pu, Y.; Yang, Z.; Cao, D.; Ma, L.; Chen, J.; Sang, Y.; Liang, X.; Xiang, M.; Peng, A.; Wei, Y.; Chen, L. Design, synthesis and biological evaluation of a series of pyrano chalcone derivatives containing indole moiety as novel anti-tubulin agents. Bioorg. Med. Chem., 2014, 22(7), 2060-2079. [http://dx.doi.org/10.1016/j.bmc.2014.02.028]. [PMID: 24629450].
[105]
Zhang, H.; Liu, J.J.; Sun, J.; Yang, X.H.; Zhao, T.T.; Lu, X.; Gong, H.B.; Zhu, H.L. Design, synthesis and biological evaluation of novel chalcone derivatives as antitubulin agents. Bioorg. Med. Chem., 2012, 20(10), 3212-3218. [http://dx.doi.org/10.1016/j.bmc.2012.03.055]. [PMID: 22503741].
[106]
Cosentino, L.; Redondo-Horcajo, M.; Zhao, Y.; Santos, A.R.; Chowdury, K.F.; Vinader, V.; Abdallah, Q.M.; Abdel-Rahman, H.; Fournier-Dit-Chabert, J.; Shnyder, S.D.; Loadman, P.M.; Fang, W.S.; Díaz, J.F.; Barasoain, I.; Burns, P.A.; Pors, K. Synthesis and biological evaluation of colchicine B-ring analogues tethered with halogenated benzyl moieties. J. Med. Chem., 2012, 55(24), 11062-11066. [http://dx.doi.org/10.1021/jm301151t]. [PMID: 23176628].
[107]
Crielaard, B.J.; van der Wal, S.; Lammers, T.; Le, H.T.; Hennink, W.E.; Schiffelers, R.M.; Storm, G.; Fens, M.H. A polymeric colchicinoid prodrug with reduced toxicity and improved efficacy for vascular disruption in cancer therapy. Int. J. Nanomedicine, 2011, 6, 2697-2703. [http://dx.doi.org/10.2147/IJN.S24450]. [PMID: 22114500].
[108]
Crielaard, B.J.; van der Wal, S.; Le, H.T.; Bode, A.T.; Lammers, T.; Hennink, W.E.; Schiffelers, R.M.; Fens, M.H.; Storm, G. Liposomes as carriers for colchicine-derived prodrugs: vascular disrupting nanomedicines with tailorable drug release kinetics. Eur. J. Pharm. Sci., 2012, 45(4), 429-435. [http://dx.doi.org/10.1016/j.ejps.2011.08.027]. [PMID: 21907797].
[109]
Lu, Y.; Li, C.M.; Wang, Z.; Ross, C.R., II; Chen, J.; Dalton, J.T.; Li, W.; Miller, D.D. Discovery of 4-substituted methoxybenzoyl-aryl-thiazole as novel anticancer agents: synthesis, biological evaluation, and structure-activity relationships. J. Med. Chem., 2009, 52(6), 1701-1711. [http://dx.doi.org/10.1021/jm801449a]. [PMID: 19243174].
[110]
Rubenstein, S.M.; Baichwal, V.; Beckmann, H.; Clark, D.L.; Frankmoelle, W.; Roche, D.; Santha, E.; Schwender, S.; Thoolen, M.; Ye, Q.; Jaen, J.C. Hydrophilic, pro-drug analogues of T138067 are efficacious in controlling tumor growth in vivo and show a decreased ability to cross the blood brain barrier. J. Med. Chem., 2001, 44(22), 3599-3605. [http://dx.doi.org/10.1021/jm000478d]. [PMID: 11606124].
[111]
Thomopoulou, P.; Sachs, J.; Teusch, N.; Mariappan, A.; Gopalakrishnan, J.; Schmalz, H.G. New colchicine-derived triazoles and their influence on cytotoxicity and microtubule morphology. ACS Med. Chem. Lett., 2015, 7(2), 188-191. [http://dx.doi.org/10.1021/acsmedchemlett.5b00418]. [PMID: 26985296].
[112]
Vilanova, C.; Díaz-Oltra, S.; Murga, J.; Falomir, E.; Carda, M.; Redondo-Horcajo, M.; Díaz, J.F.; Barasoain, I.; Marco, J.A. Design and synthesis of pironetin analogue/colchicine hybrids and study of their cytotoxic activity and mechanisms of interaction with tubulin. J. Med. Chem., 2014, 57(24), 10391-10403. [http://dx.doi.org/10.1021/jm501112q]. [PMID: 25426924].
[113]
Zhang, X.; Kong, Y.; Zhang, J.; Su, M.; Zhou, Y.; Zang, Y.; Li, J.; Chen, Y.; Fang, Y.; Zhang, X.; Lu, W. Design, synthesis and biological evaluation of colchicine derivatives as novel tubulin and histone deacetylase dual inhibitors. Eur. J. Med. Chem., 2015, 95, 127-135. [http://dx.doi.org/10.1016/j.ejmech.2015.03.035]. [PMID: 25805446].
[114]
Anderson, H.L.; Yap, J.T.; Miller, M.P.; Robbins, A.; Jones, T.; Price, P.M. Assessment of pharmacodynamic vascular response in a phase I trial of combretastatin A4 phosphate. J. Clin. Oncol., 2003, 21(15), 2823-2830. [http://dx.doi.org/10.1200/JCO.2003.05.186]. [PMID: 12807935].
[115]
Bilenker, J.H.; Flaherty, K.T.; Rosen, M.; Davis, L.; Gallagher, M.; Stevenson, J.P.; Sun, W.; Vaughn, D.; Giantonio, B.; Zimmer, R.; Schnall, M.; O’Dwyer, P.J. Phase I trial of combretastatin a-4 phosphate with carboplatin. Clin. Cancer Res., 2005, 11(4), 1527-1533. [http://dx.doi.org/10.1158/1078-0432.CCR-04-1434]. [PMID: 15746056].
[116]
Dowlati, A.; Robertson, K.; Cooney, M.; Petros, W.P.; Stratford, M.; Jesberger, J.; Rafie, N.; Overmoyer, B.; Makkar, V.; Stambler, B.; Taylor, A.; Waas, J.; Lewin, J.S.; McCrae, K.R.; Remick, S.C. A phase I pharmacokinetic and translational study of the novel vascular targeting agent combretastatin a-4 phosphate on a single-dose intravenous schedule in patients with advanced cancer. Cancer Res., 2002, 62(12), 3408-3416. [PMID: 12067983].
[117]
Nathan, P.; Zweifel, M.; Padhani, A.R.; Koh, D.M.; Ng, M.; Collins, D.J.; Harris, A.; Carden, C.; Smythe, J.; Fisher, N.; Taylor, N.J.; Stirling, J.J.; Lu, S.P.; Leach, M.O.; Rustin, G.J.; Judson, I. Phase I trial of combretastatin A4 phosphate (CA4P) in combination with bevacizumab in patients with advanced cancer. Clin. Cancer Res., 2012, 18(12), 3428-3439. [http://dx.doi.org/10.1158/1078-0432.CCR-11-3376]. [PMID: 22645052].
[118]
Stevenson, J.P.; Rosen, M.; Sun, W.; Gallagher, M.; Haller, D.G.; Vaughn, D.; Giantonio, B.; Zimmer, R.; Petros, W.P.; Stratford, M.; Chaplin, D.; Young, S.L.; Schnall, M.; O’Dwyer, P.J. Phase I trial of the antivascular agent combretastatin A4 phosphate on a 5-day schedule to patients with cancer: magnetic resonance imaging evidence for altered tumor blood flow. J. Clin. Oncol., 2003, 21(23), 4428-4438. [http://dx.doi.org/10.1200/JCO.2003.12.986]. [PMID: 14645433].
[119]
Patterson, D.M.; Zweifel, M.; Middleton, M.R.; Price, P.M.; Folkes, L.K.; Stratford, M.R.; Ross, P.; Halford, S.; Peters, J.; Balkissoon, J.; Chaplin, D.J.; Padhani, A.R.; Rustin, G.J. Phase I clinical and pharmacokinetic evaluation of the vascular-disrupting agent OXi4503 in patients with advanced solid tumors. Clin. Cancer Res., 2012, 18(5), 1415-1425. [http://dx.doi.org/10.1158/1078-0432.CCR-11-2414]. [PMID: 22235096].
[120]
Hori, K.; Saito, S. Microvascular mechanisms by which the combretastatin A-4 derivative AC7700 (AVE8062) induces tumour blood flow stasis. Br. J. Cancer, 2003, 89(7), 1334-1344. [PMID: 14520469].
[121]
Carlson, D.M.; Steinberg, J.L.; Gordon, G. Targeting the unmet medical need: The abbott laboratories oncology approach. Clin. Adv. Hematol. Oncol., 2005, 3(9), 703-710. [PMID: 16224444].
[122]
Yarian, F.; Alibakhshi, A.; Eyvazi, S.; Arezumand, R.; Ahangarzadeh, S. Antibody-drug therapeutic conjugates: Potential of antibody-siRNAs in cancer therapy. J. Cell. Physiol., 2019, 25, 28490. [http://dx.doi.org/10.1002/jcp.28490]. [PMID: 30908646].
[123]
Chen, H.; Lin, Z.; Arnst, K.E.; Miller, D.D.; Li, W. Tubulin inhibitor-based antibody-drug conjugates for cancer therapy. Molecules, 2017, 22(8), 22. [http://dx.doi.org/10.3390/molecules22081281]. [PMID: 28763044].
[125]
Newman, D.J.; Cragg, G.M. Current status of marine-derived compounds as warheads in anti-tumor drug candidates. Mar. Drugs, 2017, 15(4), 15. [http://dx.doi.org/10.3390/md15040099]. [PMID: 28353637].
[126]
Sapra, P.; Betts, A.; Boni, J. Preclinical and clinical pharmacokinetic/pharmacodynamic considerations for antibody-drug conjugates. Expert Rev. Clin. Pharmacol., 2013, 6(5), 541-555. [http://dx.doi.org/10.1586/17512433.2013.827405]. [PMID: 23978126].
[127]
Klute, K.; Nackos, E.; Tasaki, S.; Nguyen, D.P.; Bander, N.H.; Tagawa, S.T. Microtubule inhibitor-based antibody-drug conjugates for cancer therapy. OncoTargets Ther., 2014, 7, 2227-2236. [PMID: 25506226].
[128]
Baron, J.M.; Boster, B.L.; Barnett, C.M. Ado-trastuzumab emtansine (T-DM1): A novel antibody-drug conjugate for the treatment of HER2-positive metastatic breast cancer. J. Oncol. Pharm. Pract., 2015, 21(2), 132-142. [http://dx.doi.org/10.1177/1078155214527144]. [PMID: 24682654].
[129]
Schumacher, D.; Hackenberger, C.P.; Leonhardt, H.; Helma, J. Current status: Site-specific antibody drug conjugates. J. Clin. Immunol., 2016, 36(Suppl. 1), 100-107. [http://dx.doi.org/10.1007/s10875-016-0265-6]. [PMID: 27003914].
[130]
Almhanna, K.; Prithviraj, G.K.; Veiby, P.; Kalebic, T. Antibody-drug conjugate directed against the guanylyl cyclase antigen for the treatment of gastrointestinal malignancies. Pharmacol. Ther., 2017, 170, 8-13. [http://dx.doi.org/10.1016/j.pharmthera.2016.10.007]. [PMID: 27765652].
[131]
Erickson, H.K.; Lambert, J.M. ADME of antibody-maytansinoid conjugates. AAPS J., 2012, 14(4), 799-805. [http://dx.doi.org/10.1208/s12248-012-9386-x]. [PMID: 22875610].
[132]
Stack, G.D.; Walsh, J.J. Optimising the delivery of tubulin targeting agents through antibody conjugation. Pharm. Res., 2012, 29(11), 2972-2984. [http://dx.doi.org/10.1007/s11095-012-0810-9]. [PMID: 22777294].
[133]
Lambert, J.M. Drug-conjugated antibodies for the treatment of cancer. Br. J. Clin. Pharmacol., 2013, 76(2), 248-262. [http://dx.doi.org/10.1111/bcp.12044]. [PMID: 23173552].
[134]
Salami, J.; Crews, C.M. Waste disposal-An attractive strategy for cancer therapy. Science, 2017, 355(6330), 1163-1167. [http://dx.doi.org/10.1126/science.aam7340]. [PMID: 28302825].
[135]
An, Z.; Lv, W.; Su, S.; Wu, W.; Rao, Y. Developing potent PROTACs tools for selective degradation of HDAC6 protein. Protein Cell, 2019, 10(8), 606-609. [http://dx.doi.org/10.1007/s13238-018-0602-z].
[136]
Sakamoto, K.M.; Kim, K.B.; Kumagai, A.; Mercurio, F.; Crews, C.M.; Deshaies, R.J. Protacs: Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl. Acad. Sci. USA, 2001, 98(15), 8554-8559. [http://dx.doi.org/10.1073/pnas.141230798]. [PMID: 11438690].
[137]
Schneekloth, A.R.; Pucheault, M.; Tae, H.S.; Crews, C.M. Targeted intracellular protein degradation induced by a small molecule: En route to chemical proteomics. Bioorg. Med. Chem. Lett., 2008, 18(22), 5904-5908. [http://dx.doi.org/10.1016/j.bmcl.2008.07.114]. [PMID: 18752944].
[138]
Zengerle, M.; Chan, K.H.; Ciulli, A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem. Biol., 2015, 10(8), 1770-1777. [http://dx.doi.org/10.1021/acschembio.5b00216]. [PMID: 26035625].
[139]
Neklesa, T.K.; Winkler, J.D.; Crews, C.M. Targeted protein degradation by PROTACs. Pharmacol. Ther., 2017, 174, 138-144. [http://dx.doi.org/10.1016/j.pharmthera.2017.02.027]. [PMID: 28223226].
[140]
Churcher, I. Protac-induced protein degradation in drug discovery: Breaking the rules or just making new ones? J. Med. Chem., 2018, 61(2), 444-452. [http://dx.doi.org/10.1021/acs.jmedchem.7b01272]. [PMID: 29144739].
[141]
Gu, S.; Cui, D.; Chen, X.; Xiong, X.; Zhao, Y. PROTACs: An emerging targeting technique for protein degradation in drug discovery. BioEssays, 2018, 40(4), e1700247. [http://dx.doi.org/10.1002/bies.201700247]. [PMID: 29473971].
[142]
Itoh, Y. Chemical protein degradation approach and its application to epigenetic targets. Chem. Rec., 2018, 18(12), 1681-1700. [http://dx.doi.org/10.1002/tcr.201800032]. [PMID: 29893461].
[143]
Salami, J.; Alabi, S.; Willard, R. R.; Vitale, N. J.; Wang, J.; Dong, H.; Jin, M.; McDonnell, D. P.; Crew, A. P.; Neklesa, T. K.; Crews, C. M. Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Commun Biol, 2018, 1, 018-0105.
[144]
Sun, Y.; Zhao, X.; Ding, N.; Gao, H.; Wu, Y.; Yang, Y.; Zhao, M.; Hwang, J.; Song, Y.; Liu, W.; Rao, Y. PROTAC-induced BTK degradation as a novel therapy for mutated BTK C481S induced ibrutinib-resistant B-cell malignancies. Cell Res., 2018, 28(7), 779-781. [http://dx.doi.org/10.1038/s41422-018-0055-1]. [PMID: 29875397].
[145]
Zhang, X.; Lee, H.C.; Shirazi, F.; Baladandayuthapani, V.; Lin, H.; Kuiatse, I.; Wang, H.; Jones, R.J.; Berkova, Z.; Singh, R.K.; Lu, J.; Qian, Y.; Raina, K.; Coleman, K.G.; Crews, C.M.; Li, B.; Wang, H.; Hailemichael, Y.; Thomas, S.K.; Wang, Z.; Davis, R.E.; Orlowski, R.Z. Protein targeting chimeric molecules specific for bromodomain and extra-terminal motif family proteins are active against pre-clinical models of multiple myeloma. Leukemia, 2018, 32(10), 2224-2239. [http://dx.doi.org/10.1038/s41375-018-0044-x]. [PMID: 29581547].
[146]
Han, X.; Wang, C.; Qin, C.; Xiang, W.; Fernandez-Salas, E. yang, c-y.; wang, m.; zhao, l.; xu, t.; chinnaswamy, k.; delproposto, j.; stuckey, j.; wang, s. discovery of ard-69 as a highly potent proteolysis targeting chimera (protac) degrader of androgen receptor (AR) for the treatment of prostate cancer. J. Med. Chem., 2019, 62(2), 941-964. [http://dx.doi.org/10.1021/acs.jmedchem.8b01631]. [PMID: 30629437].
[147]
Hines, J.; Lartigue, S.; Dong, H.; Qian, Y.; Crews, C.M. MDM2-Recruiting PROTAC offers superior, synergistic antiproliferative activity via simultaneous degradation of brd4 and stabilization of p53. Cancer Res., 2019, 79(1), 251-262. [http://dx.doi.org/10.1158/0008-5472.CAN-18-2918]. [PMID: 30385614].
[149]
Tinworth, C.P.; Lithgow, H.; Dittus, L.; Bassi, Z.I.; Hughes, S.E.; Muelbaier, M.; Dai, H.; Smith, I.E.D.; Kerr, W.J.; Burley, G.A.; Bantscheff, M.; Harling, J.D. PROTAC-mediated degradation of bruton’s tyrosine kinase is inhibited by covalent binding. ACS Chem. Biol., 2019, 14(3), 342-347. [http://dx.doi.org/10.1021/acschembio.8b01094]. [PMID: 30807093].
[150]
Zou, Y.; Ma, D.; Wang, Y. The PROTAC technology in drug development. Cell Biochem. Funct., 2019, 37(1), 21-30. [http://dx.doi.org/10.1002/cbf.3369]. [PMID: 30604499].
[151]
Mi, L.; Gan, N.; Cheema, A.; Dakshanamurthy, S.; Wang, X.; Yang, D.C.; Chung, F.L. Cancer preventive isothiocyanates induce selective degradation of cellular alpha- and beta-tubulins by proteasomes. J. Biol. Chem., 2009, 284(25), 17039-17051. [http://dx.doi.org/10.1074/jbc.M901789200]. [PMID: 19339240].
[152]
Harris, G.; Schaefer, K.L. The microtubule-targeting agent T0070907 induces proteasomal degradation of tubulin. Biochem. Biophys. Res. Commun., 2009, 388(2), 345-349. [http://dx.doi.org/10.1016/j.bbrc.2009.08.009]. [PMID: 19665001].
[153]
Alhosin, M.; Ibrahim, A.; Boukhari, A.; Sharif, T.; Gies, J.P.; Auger, C.; Schini-Kerth, V.B. Anti-neoplastic agent thymoquinone induces degradation of α and β tubulin proteins in human cancer cells without affecting their level in normal human fibroblasts. Invest. New Drugs, 2012, 30(5), 1813-1819. [http://dx.doi.org/10.1007/s10637-011-9734-1]. [PMID: 21881916].
[154]
Ren, Y.; Zhao, J.; Feng, J. Parkin binds to alpha/beta tubulin and increases their ubiquitination and degradation. J. Neurosci., 2003, 23(8), 3316-3324. [http://dx.doi.org/10.1523/JNEUROSCI.23-08-03316.2003]. [PMID: 12716939].