Metal-Organic Framework (MOF)-Based Drug Delivery

Page: [5949 - 5969] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Background: Developing a controllable drug delivery system is imperative and important to reduce side effects and enhance the therapeutic efficacy of drugs. Metal-organic frameworks (MOFs) an emerging class of hybrid porous materials built from metal ions or clusters bridged by organic linkers have attracted increasing attention in the recent years owing to the unique physical structures possessed, and the potential for vast applications. The superior properties of MOFs, such as well-defined pore aperture, tailorable composition and structure, tunable size, versatile functionality, high agent loading, and improved biocompatibility, have made them promising candidates as drug delivery hosts. MOFs for drug delivery is of great interest and many very promising results have been found, indicating that these porous solids exhibit several advantages over existing systems.

Objective: This review highlights the latest advances in the synthesis, functionalization, and applications of MOFs in drug delivery, and has classified them using drug loading strategies. Finally, challenges and future perspectives in this research area are also outlined.

Keywords: Drug delivery, Metal-organic framework, nanocarriers, matrix, toxicity, anticancer, conventional drug administration, MOFs.

[1]
Doane, T.L.; Burda, C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem. Soc. Rev., 2012, 41(7), 2885-2911.
[http://dx.doi.org/10.1039/c2cs15260f]
[2]
Wen, J.; Yang, K.; Liu, F.; Li, H.; Xu, Y.; Sun, S. Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chem. Soc. Rev., 2017, 46(19), 6024-6045.
[http://dx.doi.org/10.1039/C7CS00219J]
[3]
Yu, M.; Wu, J.; Shi, J.; Farokhzad, O.C. Nanotechnology for protein delivery: Overview and perspectives. J. Control. Release, 2016, 240, 24-37.
[http://dx.doi.org/10.1016/j.jconrel.2015.10.012]
[4]
Banerjee, A.; Qi, J.; Gogoi, R.; Wong, J.; Mitragotri, S. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J. Control. Release, 2016, 238, 176-185.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.051]
[5]
Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery Adv.Drug Deliv. Rev., 2016, 99(Pt A), 28-51.,
[http://dx.doi.org/10.1016/j.addr.2015.09.012]
[6]
Zhou, Y.; Peng, Z.; Seven, E.S.; Leblanc, R.M. Crossing the blood-brain barrier with nanoparticles. J. Control. Release, 2018, 270, 290-303.
[http://dx.doi.org/10.1016/j.jconrel.2017.12.015]
[7]
Abdelaziz, H.M.; Gaber, M.; Abd-Elwakil, M.M.; Mabrouk, M.T.; Elgohary, M.M.; Kamel, N.M.; Kabary, D.M.; Freag, M.S.; Samaha, M.W.; Mortada, S.M.; Elkhodairy, K.A.; Fang, J.Y.; Elzoghby, A.O. Inhalable particulate drug delivery systems for lung cancer therapy: Nanoparticles, microparticles, nanocomposites and nanoaggregates. J. Control. Release, 2018, 269, 374-392.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.036]
[8]
Wuttke, S.; Lismont, M.; Escudero, A.; Rungtaweevoranit, B.; Parak, W.J. Positioning metal-organic framework nanoparticles within the context of drug delivery - A comparison with mesoporous silica nanoparticles and dendrimers. Biomaterials, 2017, 123, 172-183.
[http://dx.doi.org/10.1016/j.biomaterials.2017.01.025]
[9]
Chen, Y.; Shi, J. Chemistry of Mesoporous Organosilica in Nanotechnology: Molecularly Organic-Inorganic Hybridization into Frameworks. Adv. Mater., 2016, 28(17), 3235-3272.
[http://dx.doi.org/10.1002/adma.201505147]
[10]
Li, Z.; Ye, E.; David, R.; Lakshminarayanan, R.; Loh, X.J. Recent Advances of Using Hybrid Nanocarriers in Remotely Controlled Therapeutic Delivery. Small, 2016, 12(35), 4782-4806.
[http://dx.doi.org/10.1002/smll.201601129]
[11]
Chen, H.; Zhang, W.; Zhu, G.; Xie, J.; Chen, X. Rethinking cancer nanotheranostics. Nat. Rev. Mater., 2017, 2, 18.
[http://dx.doi.org/10.1038/natrevmats.2017.24]
[12]
Jahangirian, H.; Lemraski, E.G.; Webster, T.J.; Rafiee-Moghaddam, R.; Abdollahi, Y. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int. J. Nanomedicine, 2017, 12, 2957-2978.
[http://dx.doi.org/10.2147/IJN.S127683]
[13]
Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J.M.; Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun., 2018, 9(1), 1410.
[http://dx.doi.org/10.1038/s41467-018-03705-y]
[14]
Aftab, S.; Shah, A.; Nadhman, A.; Kurbanoglu, S.; Aysıl Ozkan, S.; Dionysiou, D.D.; Shukla, S.S.; Aminabhavi, T.M. Nanomedicine: An effective tool in cancer therapy. Int. J. Pharm., 2018, 540(1-2), 132-149.
[http://dx.doi.org/10.1016/j.ijpharm.2018.02.007]
[15]
Cardoso, V.F.; Francesko, A.; Ribeiro, C.; Bañobre-López, M.; Martins, P.; Lanceros-Mendez, S. Advances in Magnetic Nanoparticles for Biomedical Applications. Adv. Healthc. Mater., 2018, 7(5), 35.
[http://dx.doi.org/10.1002/adhm.201700845]
[16]
Guo, P.; Liu, D.; Subramanyam, K.; Wang, B.; Yang, J.; Huang, J.; Auguste, D.T.; Moses, M.A. Nanoparticle elasticity directs tumor uptake. Nat. Commun., 2018, 9(1), 130.
[http://dx.doi.org/10.1038/s41467-017-02588-9]
[17]
He, C.; Liu, D.; Lin, W. Nanomedicine Applications of Hybrid Nanomaterials Built from Metal-Ligand Coordination Bonds: Nanoscale Metal-Organic Frameworks and Nanoscale Coordination Polymers. Chem. Rev., 2015, 115(19), 11079-11108.
[http://dx.doi.org/10.1021/acs.chemrev.5b00125]
[18]
Falcaro, P.; Ricco, R.; Doherty, C.M.; Liang, K.; Hill, A.J.; Styles, M.J. MOF positioning technology and device fabrication. Chem. Soc. Rev., 2014, 43(16), 5513-5560.
[http://dx.doi.org/10.1039/C4CS00089G]
[19]
Zhang, W.; Xiong, R-G. Ferroelectric metal-organic frameworks. Chem. Rev., 2012, 112(2), 1163-1195.
[http://dx.doi.org/10.1021/cr200174w]
[20]
Bai, Y.; Dou, Y.; Xie, L-H.; Rutledge, W.; Li, J-R.; Zhou, H-C. Zr-based metal-organic frameworks: design, synthesis, structure, and applications. Chem. Soc. Rev., 2016, 45(8), 2327-2367.
[http://dx.doi.org/10.1039/C5CS00837A]
[21]
Lu, W.; Wei, Z.; Gu, Z-Y.; Liu, T-F.; Park, J.; Park, J.; Tian, J.; Zhang, M.; Zhang, Q.; Gentle, T., III; Bosch, M.; Zhou, H-C. Tuning the structure and function of metal-organic frameworks via linker design. Chem. Soc. Rev., 2014, 43(16), 5561-5593.
[http://dx.doi.org/10.1039/C4CS00003J]
[22]
Cook, T.R.; Zheng, Y-R.; Stang, P.J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem. Rev., 2013, 113(1), 734-777.
[http://dx.doi.org/10.1021/cr3002824]
[23]
Zhou, H-C.; Long, J.R.; Yaghi, O.M. Introduction to metal-organic frameworks. Chem. Rev., 2012, 112(2), 673-674.
[http://dx.doi.org/10.1021/cr300014x]
[24]
Zhou, H-C.J.; Kitagawa, S. Metal-organic frameworks (MOFs). Chem. Soc. Rev., 2014, 43(16), 5415-5418.
[http://dx.doi.org/10.1039/C4CS90059F]
[25]
Li, B.; Chrzanowski, M.; Zhang, Y.; Ma, S. Applications of metal-organic frameworks featuring multi-functional sites. Coord. Chem. Rev., 2016, 307, 106-129.
[http://dx.doi.org/10.1016/j.ccr.2015.05.005]
[26]
Yaghi, O.M.; Li, G.; Li, H. Selective binding and removal of guests in a microporous metal-organic framework. Nature, 1995, 378, 703-706.
[http://dx.doi.org/10.1038/378703a0]
[27]
Chui, S.S-Y.; Lo, S.M-F.; Charmant, J.P.H.; Orpen, A.G.; Williams, I.D. A chemically functionalizable nanoporous material. Science, 1999, 283(5405), 1148-1150.
[http://dx.doi.org/10.1126/science.283.5405.1148]
[28]
Giménez-Marqués, M.; Hidalgo, T.; Serre, C.; Horcajada, P. Nanostructured metal–organic frameworks and their bio-related applications. Coord. Chem. Rev., 2016, 307, 342-360.
[http://dx.doi.org/10.1016/j.ccr.2015.08.008]
[29]
Cai, W.; Chu, C-C.; Liu, G.; Wáng, Y-X.J. Metal-Organic Framework-Based Nanomedicine Platforms for Drug Delivery and Molecular Imaging. Small, 2015, 11(37), 4806-4822.
[http://dx.doi.org/10.1002/smll.201500802]
[30]
Horcajada, P.; Gref, R.; Baati, T.; Allan, P.K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R.E.; Serre, C. Metal-organic frameworks in biomedicine. Chem. Rev., 2012, 112(2), 1232-1268.
[http://dx.doi.org/10.1021/cr200256v]
[31]
Wu, M-X.; Yang, Y-W. Metal-Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy. Adv. Mater., 2017, 29(23)1606134
[http://dx.doi.org/10.1002/adma.201606134]
[32]
Lian, X.; Huang, Y.; Zhu, Y.; Fang, Y.; Zhao, R.; Joseph, E.; Li, J.; Pellois, J.P.; Zhou, H.C. Enzyme-MOF Nanoreactor Activates Nontoxic Paracetamol for Cancer Therapy. Angew. Chem. Int. Ed. Engl., 2018, 57(20), 5725-5730.
[http://dx.doi.org/10.1002/anie.201801378]
[33]
Wang, L.; Zheng, M.; Xie, Z. Nanoscale metal-organic frameworks for drug delivery: a conventional platform with new promise. J. Mater. Chem. B Mater. Biol. Med., 2018, 6, 707-717.
[http://dx.doi.org/10.1039/C7TB02970E]
[34]
Luo, Z.; Fan, S.; Gu, C.; Liu, W.; Li, B.; Liu, J. Metal-organic framework (MOF)-based nanomaterials for biomedical applications. Curr. Med. Chem., 2018.
[35]
Liu, X-Y.; Zhang, F.; Goh, T-W.; Li, Y.; Shao, Y-C.; Luo, L.; Huang, W.; Long, Y-T.; Chou, L-Y.; Tsung, C-K. Using a Multi-Shelled Hollow Metal-Organic Framework as a Host to Switch the Guest-to-Host and Guest-to-Guest Interactions. Angew. Chem. Int. Ed. Engl., 2018, 57(8), 2110-2114.
[http://dx.doi.org/10.1002/anie.201711600]
[36]
Lestari, W.W.; Arvinawati, M.; Martien, R.; Kusumaningsih, T. Green and facile synthesis of MOF and nano MOF containing zinc(II) and benzen 1,3,5-tri carboxylate and its study in ibuprofen slow-release. Mater. Chem. Phys., 2018, 204, 141-146.
[http://dx.doi.org/10.1016/j.matchemphys.2017.10.034]
[37]
Abánades Lázaro, I.; Haddad, S.; Rodrigo-Muñoz, J.M.; Orellana-Tavra, C.; Del Pozo, V.; Fairen-Jimenez, D.; Forgan, R.S. Mechanistic Investigation into the Selective Anticancer Cytotoxicity and Immune System Response of Surface-Functionalized, Dichloroacetate-Loaded, UiO-66 Nanoparticles. ACS Appl. Mater. Interfaces, 2018, 10(6), 5255-5268.
[http://dx.doi.org/10.1021/acsami.7b17756]
[38]
Kim, K.S.; Suzuki, K.; Cho, H.; Youn, Y.S.; Bae, Y.H. Oral Nanoparticles Exhibit Specific High-Efficiency Intestinal Uptake and Lymphatic Transport. ACS Nano, 2018, 12(9), 8893-8900.
[http://dx.doi.org/10.1021/acsnano.8b04315]
[39]
Jia, X.; Yang, Z.; Wang, Y.; Chen, Y.; Yuan, H.; Chen, H.; Xu, X.; Gao, X.; Liang, Z.; Sun, Y.; Li, J-R.; Zheng, H.; Cao, R. Hollow Mesoporous Silica@Metal-Organic Framework and Applications for pH-Responsive Drug Delivery. ChemMedChem, 2018, 13(5), 400-405.
[http://dx.doi.org/10.1002/cmdc.201800019]
[40]
Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J.F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J-S.; Hwang, Y.K.; Marsaud, V.; Bories, P-N.; Cynober, L.; Gil, S.; Férey, G.; Couvreur, P.; Gref, R. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater., 2010, 9(2), 172-178.
[http://dx.doi.org/10.1038/nmat2608]
[41]
Farha, O.K.; Hupp, J.T. Rational design, synthesis, purification, and activation of metal-organic framework materials. Acc. Chem. Res., 2010, 43(8), 1166-1175.
[http://dx.doi.org/10.1021/ar1000617]
[42]
Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P.; Wang, Q.; Zou, L.; Zhang, Y.; Zhang, L.; Fang, Y.; Li, J.; Zhou, H.C. Stable Metal-Organic Frameworks: Design, Synthesis, and Applications. Adv. Mater., 2018, 30(37)e1704303
[http://dx.doi.org/10.1002/adma.201704303]
[43]
Abánades Lázaro, I.; Haddad, S.; Sacca, S.; Orellana-Tavra, C.; Fairen-Jimenez, D.; Forgan, R.S. Selective Surface PEGylation of UiO-66 Nanoparticles for Enhanced Stability, Cell Uptake, and pH-Responsive Drug Delivery. Chem, 2017, 2(4), 561-578.
[http://dx.doi.org/10.1016/j.chempr.2017.02.005]
[44]
Li, X.; Lachmanski, L.; Safi, S.; Sene, S.; Serre, C.; Grenèche, J.M.; Zhang, J.; Gref, R. New insights into the degradation mechanism of metal-organic frameworks drug carriers. Sci. Rep., 2017, 7(1), 13142.
[http://dx.doi.org/10.1038/s41598-017-13323-1]
[45]
Park, J.; Jiang, Q.; Feng, D.; Mao, L.; Zhou, H-C. Size-Controlled Synthesis of Porphyrinic Metal-Organic Framework and Functionalization for Targeted Photodynamic Therapy. J. Am. Chem. Soc., 2016, 138(10), 3518-3525.
[http://dx.doi.org/10.1021/jacs.6b00007]
[46]
Hu, G.; Yang, L.; Li, Y.; Wang, L. Continuous and scalable fabrication of stable and biocompatible MOF@SiO2 nanoparticles for drug loading. J. Mater. Chem. B Mater. Biol. Med., 2018, 6, 7936-7942.
[http://dx.doi.org/10.1039/C8TB02308E]
[47]
Jiang, K.; Zhang, L.; Hu, Q.; Zhang, X.; Zhang, J.; Cui, Y.; Yang, Y.; Li, B.; Qian, G. A zirconium-based metal-organic framework with encapsulated anionic drug for uncommonly controlled oral drug delivery. Microporous Mesoporous Mater., 2019, 275, 229-234.
[http://dx.doi.org/10.1016/j.micromeso.2018.08.030]
[48]
Su, F.; Jia, Q.; Li, Z.; Wang, M.; He, L.; Peng, D.; Song, Y.; Zhang, Z.; Fang, S. Aptamer-templated silver nanoclusters embedded in zirconium metal-organic framework for targeted antitumor drug delivery. Microporous Mesoporous Mater., 2019, 275, 152-162.
[http://dx.doi.org/10.1016/j.micromeso.2018.08.026]
[49]
Yuan, Z.; Zhang, L.; Li, S.; Zhang, W.; Lu, M.; Pan, Y.; Xie, X.; Huang, L.; Huang, W. Paving Metal-Organic Frameworks with Upconversion Nanoparticles via Self-Assembly. J. Am. Chem. Soc., 2018, 140(45), 15507-15515.
[http://dx.doi.org/10.1021/jacs.8b10122]
[50]
Chen, W.; Wu, C. Synthesis, functionalization, and applications of metal-organic frameworks in biomedicine. Dalton Trans., 2018, 47(7), 2114-2133.
[http://dx.doi.org/10.1039/C7DT04116K]
[51]
Rojas, S.; Devic, T.; Horcajada, P. Metal organic frameworks based on bioactive components. J. Mater. Chem. B Mater. Biol. Med., 2017, 5, 2560-2573.
[http://dx.doi.org/10.1039/C6TB03217F]
[52]
Ruyra, À.; Yazdi, A.; Espín, J.; Carné-Sánchez, A.; Roher, N.; Lorenzo, J.; Imaz, I.; Maspoch, D. Synthesis, culture medium stability, and in vitro and in vivo zebrafish embryo toxicity of metal-organic framework nanoparticles. Chemistry, 2015, 21(6), 2508-2518.
[http://dx.doi.org/10.1002/chem.201405380]
[53]
Nel, A.E.; Parak, W.J.; Chan, W.C.W.; Xia, T.; Hersam, M.C.; Brinker, C.J.; Zink, J.I.; Pinkerton, K.E.; Baer, D.R.; Weiss, P.S. Where Are We Heading in Nanotechnology Environmental Health and Safety and Materials Characterization? ACS Nano, 2015, 9(6), 5627-5630.
[http://dx.doi.org/10.1021/acsnano.5b03496]
[54]
Furukawa, Y.; Ishiwata, T.; Sugikawa, K.; Kokado, K.; Sada, K. Nano- and microsized cubic gel particles from cyclodextrin metal-organic frameworks. Angew. Chem. Int. Ed. Engl., 2012, 51(42), 10566-10569.
[http://dx.doi.org/10.1002/anie.201204919]
[55]
Serre, C.; Surblé, S.; Mellot-Draznieks, C.; Filinchuk, Y.; Férey, G. Evidence of flexibility in the nanoporous iron(iii) carboxylate MIL-89; Dalton T., 2008, pp. 5462-5464.
[56]
An, J.; Geib, S.J.; Rosi, N.L. Cation-triggered drug release from a porous zinc-adeninate metal-organic framework. J. Am. Chem. Soc., 2009, 131(24), 8376-8377.
[http://dx.doi.org/10.1021/ja902972w]
[57]
Wu, S-P.; Lee, C-H. Infinite chiral single-helical structures formed by the self-assembly of Cu(ii)-N-(2-pyridylmethyl)-aspartate complexes. CrystEngComm, 2009, 11, 219-222.
[http://dx.doi.org/10.1039/B817157M]
[58]
Wuttke, S.; Zimpel, A.; Bein, T.; Braig, S.; Stoiber, K.; Vollmar, A.; Müller, D.; Haastert-Talini, K.; Schaeske, J.; Stiesch, M.; Zahn, G.; Mohmeyer, A.; Behrens, P.; Eickelberg, O.; Bölükbas, D.A.; Meiners, S. Validating Metal-Organic Framework Nanoparticles for Their Nanosafety in Diverse Biomedical Applications. Adv. Healthc. Mater., 2017, 6(2)1600818
[http://dx.doi.org/10.1002/adhm.201600818]
[59]
Dietzel, P.D.C.; Blom, R.; Fjellvåg, H. Base-Induced Formation of Two Magnesium Metal-Organic Framework Compounds with a Bifunctional Tetratopic Ligand. Eur. J. Inorg. Chem., 2008, 2008, 3624-3632.
[http://dx.doi.org/10.1002/ejic.200701284]
[60]
Wei, L.Q.; Lu, J.Y.; Li, Q.Q.; Zhou, Y.L.; Tang, L.L.; Li, F.Y. A porous Ca-MOF with nano-sized Ca-11 as building unit: Structure, drug loading and release properties. Inorg. Chem. Commun., 2017, 78, 43-47.
[http://dx.doi.org/10.1016/j.inoche.2017.02.010]
[61]
Singco, B.; Liu, L-H.; Chen, Y-T.; Shih, Y-H.; Huang, H-Y.; Lin, C-H. Approaches to drug delivery: Confinement of aspirin in MIL-100(Fe) and aspirin in the de novo synthesis of metal-organic frameworks. Microporous Mesoporous Mater., 2016, 223, 254-260.
[http://dx.doi.org/10.1016/j.micromeso.2015.08.017]
[62]
Orellana-Tavra, C.; Baxter, E.F.; Tian, T.; Bennett, T.D.; Slater, N.K.H.; Cheetham, A.K.; Fairen-Jimenez, D. Amorphous metal-organic frameworks for drug delivery. Chem. Commun. (Camb.), 2015, 51(73), 13878-13881.
[http://dx.doi.org/10.1039/C5CC05237H]
[63]
Jiang, K.; Zhang, L.; Hu, Q.; Yang, Y.; Lin, W.; Cui, Y.; Yang, Y.; Qian, G. A Biocompatible Ti-based metal-organic framework for pH responsive drug delivery. Mater. Lett., 2018, 225, 142-144.
[http://dx.doi.org/10.1016/j.matlet.2018.05.006]
[64]
Baati, T.; Njim, L.; Neffati, F.; Kerkeni, A.; Bouttemi, M.; Gref, R.; Najjar, M.F.; Zakhama, A.; Couvreur, P.; Serre, C.; Horcajada, P. In depth analysis of the in vivo toxicity of nanoparticles of porous iron(iii) metal–organic frameworks. Chem. Sci. (Camb.), 2013, 4, 1597-1607.
[http://dx.doi.org/10.1039/c3sc22116d]
[65]
Tamames-Tabar, C.; Cunha, D.; Imbuluzqueta, E.; Ragon, F.; Serre, C.; Blanco-Prieto, M.J.; Horcajada, P. Cytotoxicity of nanoscaled metal–organic frameworks. J. Mater. Chem. B Mater. Biol. Med., 2014, 2, 262-271.
[http://dx.doi.org/10.1039/C3TB20832J]
[66]
Larsen, K.L. Large Cyclodextrins. J. Incl. Phenom. Macro., 2002, 43, 1-13.
[http://dx.doi.org/10.1023/A:1020494503684]
[67]
Ueda, H. Physicochemical Properties and Complex Formation Abilities of Large-Ring Cyclodextrins. J. Incl. Phenom. Macro., 2002, 44, 53-56.
[http://dx.doi.org/10.1023/A:1023055516398]
[68]
Liu, B.; Li, H.; Xu, X.; Li, X.; Lv, N.; Singh, V.; Stoddart, J.F.; York, P.; Xu, X.; Gref, R.; Zhang, J. Optimized synthesis and crystalline stability of γ-cyclodextrin metal-organic frameworks for drug adsorption. Int. J. Pharm., 2016, 514(1), 212-219.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.029]
[69]
Sha, J-Q.; Zhong, X-H.; Wu, L-H.; Liu, G-D.; Sheng, N. Nontoxic and renewable metal–organic framework based on α-cyclodextrin with efficient drug delivery. RSC Advances, 2016, 6, 82977-82983.
[http://dx.doi.org/10.1039/C6RA16549D]
[70]
Horcajada, P.; Serre, C.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Metal-organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. Engl., 2006, 45(36), 5974-5978.
[http://dx.doi.org/10.1002/anie.200601878]
[71]
Tan, L-L.; Li, H.; Zhou, Y.; Zhang, Y.; Feng, X.; Wang, B.; Yang, Y-W. Zn(2+)-Triggered Drug Release from Biocompatible Zirconium MOFs Equipped with Supramolecular Gates. Small, 2015, 11(31), 3807-3813.
[http://dx.doi.org/10.1002/smll.201500155]
[72]
Tan, L-L.; Song, N.; Zhang, S.X-A.; Li, H.; Wang, B.; Yang, Y-W. Ca2+, pH and thermo triple-responsive mechanized Zr-based MOFs for on-command drug release in bone diseases. J. Mater. Chem. B Mater. Biol. Med., 2016, 4, 135-140.
[http://dx.doi.org/10.1039/C5TB01789K]
[73]
Lian, X.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H.C. Enzyme-MOF (metal-organic framework) composites. Chem. Soc. Rev., 2017, 46(11), 3386-3401.
[http://dx.doi.org/10.1039/C7CS00058H]
[74]
Zhang, H.; Jiang, W.; Liu, R.; Zhang, J.; Zhang, D.; Li, Z.; Luan, Y. Rational Design of Metal Organic Framework Nanocarrier-Based Codelivery System of Doxorubicin Hydrochloride/Verapamil Hydrochloride for Overcoming Multidrug Resistance with Efficient Targeted Cancer Therapy. ACS Appl. Mater. Interfaces, 2017, 9(23), 19687-19697.
[http://dx.doi.org/10.1021/acsami.7b05142]
[75]
Teplensky, M.H.; Fantham, M.; Li, P.; Wang, T.C.; Mehta, J.P.; Young, L.J.; Moghadam, P.Z.; Hupp, J.T.; Farha, O.K.; Kaminski, C.F.; Fairen-Jimenez, D. Temperature Treatment of Highly Porous Zirconium-Containing Metal-Organic Frameworks Extends Drug Delivery Release. J. Am. Chem. Soc., 2017, 139(22), 7522-7532.
[http://dx.doi.org/10.1021/jacs.7b01451]
[76]
Bhattacharjee, A.; Gumma, S.; Purkait, M.K. Fe3O4 promoted metal organic framework MIL-100(Fe) for the controlled release of doxorubicin hydrochloride. Microporous Mesoporous Mater., 2018, 259, 203-210.
[http://dx.doi.org/10.1016/j.micromeso.2017.10.020]
[77]
Yang, Y.; Xia, F.; Yang, Y.; Gong, B.; Xie, A.; Shen, Y.; Zhu, M. Litchi-like Fe3O4@Fe-MOF capped with HAp gatekeepers for pH-triggered drug release and anticancer effect. J. Mater. Chem. B Mater. Biol. Med., 2017, 5, 8600-8606.
[http://dx.doi.org/10.1039/C7TB01680H]
[78]
Bellusci, M.; Guglielmi, P.; Masi, A.; Padella, F.; Singh, G.; Yaacoub, N.; Peddis, D.; Secci, D. Magnetic Metal-Organic Framework Composite by Fast and Facile Mechanochemical Process. Inorg. Chem., 2018, 57(4), 1806-1814.
[http://dx.doi.org/10.1021/acs.inorgchem.7b02697]
[79]
Zhu, X.; Gu, J.; Wang, Y.; Li, B.; Li, Y.; Zhao, W.; Shi, J. Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated release. Chem. Commun. (Camb.), 2014, 50(63), 8779-8782.
[http://dx.doi.org/10.1039/C4CC02570A]
[80]
Ibrahim, M.; Sabouni, R.; Husseini, G.A. Anti-cancer Drug Delivery Using Metal Organic Frameworks (MOFs). Curr. Med. Chem., 2017, 24(2), 193-214.
[http://dx.doi.org/10.2174/0929867323666160926151216]
[81]
Li, S.; Wang, K.; Shi, Y.; Cui, Y.; Chen, B.; He, B.; Dai, W.; Zhang, H.; Wang, X.; Zhong, C.; Wu, H.; Yang, Q.; Zhang, Q. Novel Biological Functions of ZIF-NP as a Delivery Vehicle: High Pulmonary Accumulation, Favorable Biocompatibility, and Improved Therapeutic Outcome. Adv. Funct. Mater., 2016, 26, 2715-2727.
[http://dx.doi.org/10.1002/adfm.201504998]
[82]
Abazari, R.; Reza Mahjoub, A.; Slawin, A.M.Z.; Carpenter-Warren, C.L. Morphology- and size-controlled synthesis of a metal-organic framework under ultrasound irradiation: An efficient carrier for pH responsive release of anti-cancer drugs and their applicability for adsorption of amoxicillin from aqueous solution. Ultrason. Sonochem., 2018, 42, 594-608.
[http://dx.doi.org/10.1016/j.ultsonch.2017.12.032]
[83]
Liu, B.; He, Y.; Han, L.; Singh, V.; Xu, X.; Guo, T.; Meng, F.; Xu, X.; York, P.; Liu, Z.; Zhang, J. Microwave-Assisted Rapid Synthesis of gamma-Cyclodextrin Metal-Organic Frameworks for Size Control and Efficient Drug Loading. Cryst. Growth Des., 2017, 17, 1654-1660.
[http://dx.doi.org/10.1021/acs.cgd.6b01658]
[84]
Chen, X.; Tong, R.; Shi, Z.; Yang, B.; Liu, H.; Ding, S.; Wang, X.; Lei, Q.; Wu, J.; Fang, W. MOF Nanoparticles with Encapsulated Autophagy Inhibitor in Controlled Drug Delivery System for Antitumor. ACS Appl. Mater. Interfaces, 2018, 10(3), 2328-2337.
[http://dx.doi.org/10.1021/acsami.7b16522]
[85]
Deng, J.; Wang, K.; Wang, M.; Yu, P.; Mao, L. Mitochondria Targeted Nanoscale Zeolitic Imidazole Framework-90 for ATP Imaging in Live Cells. J. Am. Chem. Soc., 2017, 139(16), 5877-5882.
[http://dx.doi.org/10.1021/jacs.7b01229]
[86]
Abuçafy, M.P.; Caetano, B.L.; Chiari-Andréo, B.G.; Fonseca-Santos, B.; do Santos, A.M.; Chorilli, M.; Chiavacci, L.A. Supramolecular cyclodextrin-based metal-organic frameworks as efficient carrier for anti-inflammatory drugs. Eur. J. Pharm. Biopharm., 2018, 127, 112-119.
[http://dx.doi.org/10.1016/j.ejpb.2018.02.009]
[87]
Liu, J.; Bao, T-Y.; Yang, X-Y.; Zhu, P-P.; Wu, L-H.; Sha, J-Q.; Zhang, L.; Dong, L-Z.; Cao, X-L.; Lan, Y-Q. Controllable porosity conversion of metal-organic frameworks composed of natural ingredients for drug delivery. Chem. Commun. (Camb.), 2017, 53(55), 7804-7807.
[http://dx.doi.org/10.1039/C7CC03673F]
[88]
Gao, X.; Cui, R.; Zhang, M.; Liu, Z. Metal-organic framework nanosheets that exhibit pH-controlled drug release. Mater. Lett., 2017, 197, 217-220.
[http://dx.doi.org/10.1016/j.matlet.2017.02.082]
[89]
Dong, Z.; Sun, Y.; Chu, J.; Zhang, X.; Deng, H. Multivariate Metal-Organic Frameworks for Dialing-in the Binding and Programming the Release of Drug Molecules. J. Am. Chem. Soc., 2017, 139(40), 14209-14216.
[http://dx.doi.org/10.1021/jacs.7b07392]
[90]
Al Haydar, M.; Abid, H.R.; Sunderland, B.; Wang, S. Metal organic frameworks as a drug delivery system for flurbiprofen. Drug Des. Devel. Ther., 2017, 11, 2685-2695.
[http://dx.doi.org/10.2147/DDDT.S145716]
[91]
Bagshawe, K.D.; Sharma, S.K.; Begent, R.H.J. Antibody-directed enzyme prodrug therapy (ADEPT) for cancer. Expert Opin. Biol. Ther., 2004, 4(11), 1777-1789.
[http://dx.doi.org/10.1517/14712598.4.11.1777]
[92]
Bagshawe, K.D.; Sharma, S.K.; Springer, C.J.; Rogers, G.T. Antibody directed enzyme prodrug therapy (ADEPT). A review of some theoretical, experimental and clinical aspects. Ann. Oncol., 1994, 5(10), 879-891.
[http://dx.doi.org/10.1093/oxfordjournals.annonc.a058725]
[93]
Li, X.; Guo, T.; Lachmanski, L.; Manoli, F.; Menendez-Miranda, M.; Manet, I.; Guo, Z.; Wu, L.; Zhang, J.; Gref, R. Cyclodextrin-based metal-organic frameworks particles as efficient carriers for lansoprazole: Study of morphology and chemical composition of individual particles. Int. J. Pharm., 2017, 531(2), 424-432.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.056]
[94]
Liu, D.; Kramer, S.A.; Huxford-Phillips, R.C.; Wang, S.; Della Rocca, J.; Lin, W. Coercing bisphosphonates to kill cancer cells with nanoscale coordination polymers. Chem. Commun. (Camb.), 2012, 48(21), 2668-2670.
[http://dx.doi.org/10.1039/c2cc17635a]
[95]
Lu, K.; He, C.; Lin, W. A Chlorin-Based Nanoscale Metal-Organic Framework for Photodynamic Therapy of Colon Cancers. J. Am. Chem. Soc., 2015, 137(24), 7600-7603.
[http://dx.doi.org/10.1021/jacs.5b04069]
[96]
Yang, Y.; Liu, J.; Liang, C.; Feng, L.; Fu, T.; Dong, Z.; Chao, Y.; Li, Y.; Lu, G.; Chen, M.; Liu, Z. Nanoscale Metal-Organic Particles with Rapid Clearance for Magnetic Resonance Imaging-Guided Photothermal Therapy. ACS Nano, 2016, 10(2), 2774-2781.
[http://dx.doi.org/10.1021/acsnano.5b07882]
[97]
Adarsh, N.N.; Frias, C.; Lohidakshan, T.M.P.; Lorenzo, J.; Novio, F.; Garcia-Pardo, J.; Ruiz-Molina, D. Pt(IV)-based nanoscale coordination polymers: Antitumor activity, cellular uptake and interactions with nuclear DNA. Chem. Eng. J., 2018, 340, 94-102.
[http://dx.doi.org/10.1016/j.cej.2018.01.058]
[98]
Huxford, R.C.; Dekrafft, K.E.; Boyle, W.S.; Liu, D.; Lin, W. Lipid-coated nanoscale coordination polymers for targeted delivery of antifolates to cancer cells. Chem. Sci. (Camb.), 2012, 3(1), 198-204.
[http://dx.doi.org/10.1039/C1SC00499A]
[99]
Liu, D.; Poon, C.; Lu, K.; He, C.; Lin, W. Self-assembled nanoscale coordination polymers with trigger release properties for effective anticancer therapy. Nat. Commun., 2014, 5, 4182.
[http://dx.doi.org/10.1038/ncomms5182]
[100]
Lu, K.; He, C.; Lin, W. Nanoscale metal-organic framework for highly effective photodynamic therapy of resistant head and neck cancer. J. Am. Chem. Soc., 2014, 136(48), 16712-16715.
[http://dx.doi.org/10.1021/ja508679h]
[101]
Yang, Y.; Chao, Y.; Liu, J.; Dong, Z.; He, W.; Zhang, R.; Yang, K.; Chen, M.; Liu, Z. Core-shell and co-doped nanoscale metal-organic particles (NMOPs) obtained via post-synthesis cation exchange for multimodal imaging and synergistic thermo-radiotherapy. NPG Asia Mater., 2017, 9-344.
[102]
He, C.; Lu, K.; Lin, W. Nanoscale metal-organic frameworks for real-time intracellular pH sensing in live cells. J. Am. Chem. Soc., 2014, 136(35), 12253-12256.
[http://dx.doi.org/10.1021/ja507333c]
[103]
Wang, W.; Wang, L.; Li, Z.; Xie, Z. BODIPY-containing nanoscale metal-organic frameworks for photodynamic therapy. Chem. Commun. (Camb.), 2016, 52(31), 5402-5405.
[http://dx.doi.org/10.1039/C6CC01048B]
[104]
Röder, R.; Preiß, T.; Hirschle, P.; Steinborn, B.; Zimpel, A.; Höhn, M.; Rädler, J.O.; Bein, T.; Wagner, E.; Wuttke, S.; Lächelt, U. Multifunctional Nanoparticles by Coordinative Self-Assembly of His-Tagged Units with Metal-Organic Frameworks. J. Am. Chem. Soc., 2017, 139(6), 2359-2368.
[http://dx.doi.org/10.1021/jacs.6b11934]
[105]
Wang, S.; McGuirk, C.M.; Ross, M.B.; Wang, S.; Chen, P.; Xing, H.; Liu, Y.; Mirkin, C.A. General and Direct Method for Preparing Oligonucleotide-Functionalized Metal-Organic Framework Nanoparticles. J. Am. Chem. Soc., 2017, 139(29), 9827-9830.
[http://dx.doi.org/10.1021/jacs.7b05633]
[106]
Zhang, T.; Wang, L.; Ma, C.; Wang, W.; Ding, J.; Liu, S.; Zhang, X.; Xie, Z. BODIPY-containing nanoscale metal–organic frameworks as contrast agents for computed tomography. J. Mater. Chem., 2017, 5, 2330-2336.
[http://dx.doi.org/10.1039/C7TB00392G]
[107]
Hong, D-Y.; Hwang, Y.K.; Serre, C.; Férey, G.; Chang, J-S. Porous Chromium Terephthalate MIL-101 with Coordinatively Unsaturated Sites: Surface Functionalization, Encapsulation, Sorption and Catalysis. Adv. Funct. Mater., 2009, 19, 1537-1552.
[http://dx.doi.org/10.1002/adfm.200801130]
[108]
Morris, W.; Briley, W.E.; Auyeung, E.; Cabezas, M.D.; Mirkin, C.A. Nucleic acid-metal organic framework (MOF) nanoparticle conjugates. J. Am. Chem. Soc., 2014, 136(20), 7261-7264.
[http://dx.doi.org/10.1021/ja503215w]
[109]
Taylor-Pashow, K.M.L.; Della Rocca, J.; Xie, Z.; Tran, S.; Lin, W. Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. J. Am. Chem. Soc., 2009, 131(40), 14261-14263.
[http://dx.doi.org/10.1021/ja906198y]
[110]
Win, K.Y.; Feng, S-S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials, 2005, 26(15), 2713-2722.
[http://dx.doi.org/10.1016/j.biomaterials.2004.07.050]
[111]
Gao, X.; Zhai, M.; Guan, W.; Liu, J.; Liu, Z.; Damirin, A. Controllable Synthesis of a Smart Multifunctional Nanoscale Metal-Organic Framework for Magnetic Resonance/Optical Imaging and Targeted Drug Delivery. ACS Appl. Mater. Interfaces, 2017, 9(4), 3455-3462.
[http://dx.doi.org/10.1021/acsami.6b14795]
[112]
Zhang, F-M.; Dong, H.; Zhang, X.; Sun, X-J.; Liu, M.; Yang, D-D.; Liu, X.; Wei, J-Z. Postsynthetic Modification of ZIF-90 for Potential Targeted Codelivery of Two Anticancer Drugs. ACS Appl. Mater. Interfaces, 2017, 9(32), 27332-27337.
[http://dx.doi.org/10.1021/acsami.7b08451]
[113]
Abánades Lázaro, I.; Abánades Lázaro, S.; Forgan, R.S. Enhancing anticancer cytotoxicity through bimodal drug delivery from ultrasmall Zr MOF nanoparticles. Chem. Commun. (Camb.), 2018, 54(22), 2792-2795.
[http://dx.doi.org/10.1039/C7CC09739E]
[114]
Lu, K.; He, C.; Guo, N.; Chan, C.; Ni, K.; Weichselbaum, R.R.; Lin, W. Chlorin-Based Nanoscale Metal-Organic Framework Systemically Rejects Colorectal Cancers via Synergistic Photodynamic Therapy and Checkpoint Blockade Immunotherapy. J. Am. Chem. Soc., 2016, 138(38), 12502-12510.
[http://dx.doi.org/10.1021/jacs.6b06663]
[115]
Chen, W-H.; Yu, X.; Liao, W-C.; Sohn, Y.S.; Cecconello, A.; Kozell, A.; Nechushtai, R.; Willner, I. ATP-Responsive Aptamer-Based Metal-Organic Framework Nanoparticles (NMOFs) for the Controlled Release of Loads and Drugs. Adv. Funct. Mater., 2017, •••271702102.
[http://dx.doi.org/10.1002/adfm.201702102]
[116]
Levine, D.J.; Runčevski, T.; Kapelewski, M.T.; Keitz, B.K.; Oktawiec, J.; Reed, D.A.; Mason, J.A.; Jiang, H.Z.H.; Colwell, K.A.; Legendre, C.M.; FitzGerald, S.A.; Long, J.R. Olsalazine-Based Metal-Organic Frameworks as Biocompatible Platforms for H2 Adsorption and Drug Delivery. J. Am. Chem. Soc., 2016, 138(32), 10143-10150.
[http://dx.doi.org/10.1021/jacs.6b03523]
[117]
Nejadshafiee, V.; Naeimi, H.; Goliaei, B.; Bigdeli, B.; Sadighi, A.; Dehghani, S.; Lotfabadi, A.; Hosseini, M.; Nezamtaheri, M.S.; Amanlou, M.; Sharifzadeh, M.; Khoobi, M. Magnetic bio-metal-organic framework nanocomposites decorated with folic acid conjugated chitosan as a promising biocompatible targeted theranostic system for cancer treatment. Mater. Sci. Eng. C, 2019, 99, 805-815.
[http://dx.doi.org/10.1016/j.msec.2019.02.017]
[118]
Chen, L.; Zhang, J.; Zhou, X.; Yang, S.; Zhang, Q.; Wang, W.; You, Z.; Peng, C.; He, C. Merging metal organic framework with hollow organosilica nanoparticles as a versatile nanoplatform for cancer theranostics. Acta Biomater., 2019, 86, 406-415.
[http://dx.doi.org/10.1016/j.actbio.2019.01.005]
[119]
Dong, K.; Zhang, Y.; Zhang, L.; Wang, Z.; Ren, J.; Qu, X. Facile preparation of metal-organic frameworks-based hydrophobic anticancer drug delivery nanoplatform for targeted and enhanced cancer treatment. Talanta, 2019, 194, 703-708.
[http://dx.doi.org/10.1016/j.talanta.2018.10.101]
[120]
Sava Gallis, D.F.; Butler, K.S.; Agola, J.O.; Pearce, C.J.; McBride, A.A. Antibacterial Countermeasures via Metal-Organic Framework-Supported Sustained Therapeutic Release. ACS Appl. Mater. Interfaces, 2019, 11(8), 7782-7791.
[http://dx.doi.org/10.1021/acsami.8b21698]
[121]
Min, H.; Wang, J.; Qi, Y.; Zhang, Y.; Han, X.; Xu, Y.; Xu, J.; Li, Y.; Chen, L.; Cheng, K.; Liu, G.; Yang, N.; Li, Y.; Nie, G. Biomimetic Metal-Organic Framework Nanoparticles for Cooperative Combination of Antiangiogenesis and Photodynamic Therapy for Enhanced Efficacy. Adv. Mater., 2019, 31(15), e1808200-e1808200.
[http://dx.doi.org/10.1002/adma.201808200]
[122]
Zhao, X.; Zhang, Z.; Cai, X.; Ding, B.; Sun, C.; Liu, G.; Hu, C.; Shao, S.; Pang, M. Postsynthetic Ligand Exchange of Metal-Organic Framework for Photodynamic Therapy. ACS Appl. Mater. Interfaces, 2019, 11(8), 7884-7892.
[http://dx.doi.org/10.1021/acsami.9b00740]
[123]
Liu, R.; Yu, T.; Shi, Z.; Wang, Z. The preparation of metal-organic frameworks and their biomedical application. Int. J. Nanomedicine, 2016, 11, 1187-1200.
[http://dx.doi.org/10.2147/IJN.S100877]