Current Topics in Medicinal Chemistry

Author(s): Puvvada Kalpana Murthy*

DOI: 10.2174/1568026619666190618110613

Strategies to Control Human Lymphatic Filarial Infection: Tweaking Host’s Immune System

Page: [1226 - 1240] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Human lymphatic filariasis (LF), a parasitic infection caused by the nematodes Wuchereria bancrofti, Brugia malayi and B. timori, and transmitted by mosquito, results in a debilitating disease commonly identified as ‘elephantiasis’. LF affects millions of people in India and several other tropical and sub-tropical countries imposing a huge economic burden on governments due to disability associated loss of man-hours and for disease management. Efforts to control the infection by WHO’s mass drug administration (MDA) strategy using three antifilarials diethylcarbamazine, albendazole and ivermectin are only partly successful and therefore, there is an immediate need for alternative strategies. Some of the alternative strategies being explored in laboratories are: enhancing the immune competence of host by immunomodulation, combining immunomodulation with antifilarials, identifying immunoprophylactic parasite molecules (vaccine candidates) and identifying parasite molecules that can be potential drug targets. This review focuses on the advances made in this direction.

Keywords: Lymphatic filariasis, Antifilarials, Host's immune responses, Immunomodulation, Infection control, Parasite molecules.

Graphical Abstract

[1]
WHO. Global Programme to Eliminate Lymphatic Filariasis: Progress report. WHO Wkly Epidemiol. Rec., 2014, 90, 489-504.
[2]
WHO. Progress report 2000-2009 and strategic plan 2010-2020 of the global programme to eliminate lymphatic filariasis: halfway towards eliminating lymphatic filariasis; WHO Press: Geneva, Switzerland, 2010, p. 79.
[3]
Molyneux, D. Lymphatic Filariasis (Elephantiasis) Elimination: A public health success and development opportunity. Filaria J., 2003, 2(1), 13.
[http://dx.doi.org/10.1186/1475-2883-2-13] [PMID: 13129436]
[4]
WHO. Global programme to eliminate lymphatic filariasis: progress report, 2016. Wkly. Epidemiol. Rec., 2017, 92(40), 594-607.
[PMID: 28984121]
[5]
Raju, K.; Jambulingam, P.; Sabesan, S.; Vanamail, P. Lymphatic filariasis in India: Epidemiology and control measures. J. Postgrad. Med., 2010, 56(3), 232-238.
[http://dx.doi.org/10.4103/0022-3859.68650] [PMID: 20739779]
[6]
Hotez, P.J.; Remme, J.H.; Buss, P.; Alleyne, G.; Morel, C.; Breman, J.G. Combating tropical infectious diseases: report of the disease control priorities in developing countries project. Clin. Infect. Dis., 2004, 38(6), 871-878.
[http://dx.doi.org/10.1086/382077] [PMID: 14999633]
[7]
John, D.T.; Petri, W. Markell and Voge’s Medical Parasitology, 9th ed; Saunders Elsevier: St. Louis, Missouri, 2006.
[8]
Dreyer, G.; Norões, J.; Figueredo-Silva, J.; Piessens, W.F. Pathogenesis of lymphatic disease in bancroftian filariasis: A clinical perspective.Parasitol. Today (Regul. Ed.); , 2000, 16, pp. (12)544-548.
[http://dx.doi.org/10.1016/S0169-4758(00)01778-6] [PMID: 11121854]
[9]
Figueredo-Silva, J.; Norões, J.; Cedenho, A.; Dreyer, G. The histopathology of bancroftian filariasis revisited: The role of the adult worm in the lymphatic-vessel disease. Ann. Trop. Med. Parasitol., 2002, 96(6), 531-541.
[http://dx.doi.org/10.1179/000349802125001348] [PMID: 12396316]
[10]
Dreyer, G.; Medeiros, Z.; Netto, M.J.; Leal, N.C.; de Castro, L.G.; Piessens, W.F. Acute attacks in the extremities of persons living in an area endemic for bancroftian filariasis: Differentiation of two syndromes. Trans. R. Soc. Trop. Med. Hyg., 1999, 93(4), 413-417.
[http://dx.doi.org/10.1016/S0035-9203(99)90140-2] [PMID: 10674092]
[11]
Olszewski, W.L. Episodic dermatolymphangioadenitis (DLA) in patients with lymphedema of the lower extremities before and after administration of benzathine penicillin: A preliminary study. Lymphology, 1996, 29(3), 126-131.
[PMID: 8897357]
[12]
Olszewski, W.L.; Jamal, S.; Manokaran, G.; Tripathi, F.M.; Zaleska, M.; Stelmach, E. The effectiveness of long-acting penicillin (penidur) in preventing recurrences of dermatolymphangioadenitis(DLA) and controlling skin, deep tissues, and lymph bacterial flora in patients with “filarial” lymphedema. Lymphology, 2005, 38(2), 66-80.
[PMID: 16184816]
[13]
Pfarr, K.M.; Debrah, A.Y.; Specht, S.; Hoerauf, A. Filariasis and lymphoedema. Parasite Immunol., 2009, 31(11), 664-672.
[http://dx.doi.org/10.1111/j.1365-3024.2009.01133.x] [PMID: 19825106]
[14]
Lawrence, R.A.; Devaney, E. Lymphatic filariasis: parallels between the immunology of infection in humans and mice. Parasite Immunol., 2001, 23(7), 353-361.
[http://dx.doi.org/10.1046/j.1365-3024.2001.00396.x] [PMID: 11472555]
[15]
Kazura, J.W.; Bockarie, M.; Alexander, N.; Perry, R.; Bockarie, F.; Dagoro, H.; Dimber, Z.; Hyun, P.; Alpers, M.P. Transmission intensity and its relationship to infection and disease due to Wuchereria bancrofti in Papua New Guinea. J. Infect. Dis., 1997, 176(1), 242-246.
[http://dx.doi.org/10.1086/514030] [PMID: 9207373]
[16]
Murthy, P.K.; Khan, M.A.; Rajani, H.B.; Srivastava, V.M. Preadult stage parasites and multiple timed exposure to infective larvae are involved in development of limb edema in Brugia malayi-infected Indian leaf monkeys (Presbytis entellus). Clin. Diagn. Lab. Immunol., 2002, 9(4), 913-918.
[http://dx.doi.org/10.1128/CDLI.9.4.913-918.2002] [PMID: 12093695]
[17]
Joseph, S.K.; Verma, S.K.; Sahoo, M.K.; Sharma, A.; Srivastava, M.; Reddy, M.V.R.; Murthy, P.K. IgG subclass responses to proinflammatory fraction of Brugia malayi in human filariasis. Indian J. Med. Res., 2012, 135(5), 650-655.
[PMID: 22771594]
[18]
Satapathy, A.K.; Sartono, E.; Sahoo, P.K.; Dentener, M.A.; Michael, E.; Yazdanbakhsh, M.; Ravindran, B. Human bancroftian filariasis: Immunological markers of morbidity and infection. Microbes Infect., 2006, 8(9-10), 2414-2423.
[http://dx.doi.org/10.1016/j.micinf.2006.05.003] [PMID: 16839794]
[19]
Dissanayake, S.; Watawana, L.; Piessens, W.F. Lymphatic pathology in Wuchereria bancrofti microfilaraemic infections. Trans. R. Soc. Trop. Med. Hyg., 1995, 89(5), 517-521.
[http://dx.doi.org/10.1016/0035-9203(95)90092-6] [PMID: 8560529]
[20]
Dreyer, G.; Santos, A.; Norões, J.; Rocha, A.; Addiss, D. Amicrofilaraemic carriers of adult Wuchereria bancrofti. Trans. R. Soc. Trop. Med. Hyg., 1996, 90(3), 288-289.
[http://dx.doi.org/10.1016/S0035-9203(96)90253-9] [PMID: 8758079]
[21]
Dreyer, G.; Addiss, D.; Noroes, J.; Amaral, F.; Rocha, A.; Coutinho, A. Ultrasonographic assessment of the adulticidal efficacy of repeat high-dose ivermectin in bancroftian filariasis. Trop. Med. Int. Health, 1996, 1(4), 427-432.
[http://dx.doi.org/10.1046/j.1365-3156.1996.d01-79.x] [PMID: 8765448]
[22]
Maizels, R.M.; Sartono, E.; Kurniawan, A.; Partono, F.; Selkirk, M.E.; Yazdanbakhsh, M. T-cell activation and the balance of antibody isotypes in human lymphatic filariasis.Parasitol. Today (Regul. Ed.); , 1995, 11, pp. (2)50-56.
[http://dx.doi.org/10.1016/0169-4758(95)80116-2] [PMID: 15275373]
[23]
Ottesen, E.A.; Skvaril, F.; Tripathy, S.P.; Poindexter, R.W.; Hussain, R. Prominence of IgG4 in the IgG antibody response to human filariasis. J. Immunol., 1985, 134(4), 2707-2712.
[PMID: 2579154]
[24]
Kurniawan, A.; Yazdanbakhsh, M.; van Ree, R.; Aalberse, R.; Selkirk, M.E.; Partono, F.; Maizels, R.M. Differential expression of IgE and IgG4 specific antibody responses in asymptomatic and chronic human filariasis. J. Immunol., 1993, 150(9), 3941-3950.
[PMID: 8473742]
[25]
King, C.L.; Kumaraswami, V.; Poindexter, R.W.; Kumari, S.; Jayaraman, K.; Alling, D.W.; Ottesen, E.A.; Nutman, T.B. Immunologic tolerance in lymphatic filariasis. Diminished parasite-specific T and B lymphocyte precursor frequency in the microfilaremic state. J. Clin. Invest., 1992, 89(5), 1403-1410.
[http://dx.doi.org/10.1172/JCI115729] [PMID: 1569183]
[26]
Mahanty, S.; Nutman, T.B. Immunoregulation in human lymphatic filariasis: the role of interleukin 10. Parasite Immunol., 1995, 17(8), 385-392.
[http://dx.doi.org/10.1111/j.1365-3024.1995.tb00906.x] [PMID: 7501419]
[27]
King, C.L.; Mahanty, S.; Kumaraswami, V.; Abrams, J.S.; Regunathan, J.; Jayaraman, K.; Ottesen, E.A.; Nutman, T.B. Cytokine control of parasite-specific anergy in human lymphatic filariasis. Preferential induction of a regulatory T helper type 2 lymphocyte subset. J. Clin. Invest., 1993, 92(4), 1667-1673.
[http://dx.doi.org/10.1172/JCI116752] [PMID: 8408619]
[28]
Hoerauf, A. Immune effectors important in protective resistance.The Filaria; Klei, T.R; Rajan, T.V., Ed.; Kluwer Academic Publishers: London, 2006.
[29]
Amaral, F.; Dreyer, G.; Figueredo-Silva, J.; Noroes, J.; Cavalcanti, A.; Samico, S.C.; Santos, A.; Coutinho, A. Live adult worms detected by ultrasonography in human Bancroftian filariasis. Am. J. Trop. Med. Hyg., 1994, 50(6), 753-757.
[http://dx.doi.org/10.4269/ajtmh.1994.50.753] [PMID: 8024070]
[30]
Freedman, D.O.; de Almeida Filho, P.J.; Besh, S.; Maia e Silva, M.C.; Braga, C.; Maciel, A. Lymphoscintigraphic analysis of lymphatic abnormalities in symptomatic and asymptomatic human filariasis. J. Infect. Dis., 1994, 170(4), 927-933.
[http://dx.doi.org/10.1093/infdis/170.4.927] [PMID: 7523538]
[31]
Freedman, D.O.; de Almeido Filho, P.J.; Besh, S.; Maia e Silva, M.C.; Braga, C.; Maciel, A.; Furtado, A.F. Abnormal lymphatic function in presymptomatic bancroftian filariasis. J. Infect. Dis., 1995, 171(4), 997-1001.
[http://dx.doi.org/10.1093/infdis/171.4.997] [PMID: 7706830]
[32]
Freedman, D.O. Immune dynamics in the pathogenesis of human lymphatic filariasis. Parasitol. Today (Regul. Ed.); , 1998, 14(6), pp. 229-234.
[http://dx.doi.org/10.1016/S0169-4758(98)01244-7] [PMID: 17040766]
[33]
Olszewski, W.L.; Jamal, S.; Manokaran, G.; Pani, S.; Kumaraswami, V.; Kubicka, U.; Lukomska, B.; Dworczynski, A.; Swoboda, E.; Meisel-Mikolajczyk, F. Bacteriologic studies of skin, tissue fluid, lymph, and lymph nodes in patients with filarial lymphedema. Am. J. Trop. Med. Hyg., 1997, 57(1), 7-15.
[http://dx.doi.org/10.4269/ajtmh.1997.57.7] [PMID: 9242310]
[34]
Moreno, Y.; Geary, T.G. Stage- and gender-specific proteomic analysis of Brugia malayi excretory-secretory products. PLoS Negl. Trop. Dis., 2008, 2(10)e326
[http://dx.doi.org/10.1371/journal.pntd.0000326] [PMID: 18958170]
[35]
Rao, U.R.; Zometa, C.S.; Vickery, A.C.; Kwa, B.H.; Nayar, J.K.; Sutton, E.T. Effect of Brugia malayi on the growth and proliferation of endothelial cells in vitro. J. Parasitol., 1996, 82(4), 550-556.
[http://dx.doi.org/10.2307/3283779] [PMID: 8691362]
[36]
Babu, S.; Nutman, T.B. Immunology of lymphatic filariasis. Parasite Immunol., 2014, 36(8), 338-346.
[http://dx.doi.org/10.1111/pim.12081] [PMID: 24134686]
[37]
Olszewski, W.L.; Jamal, S.; Manokaran, G.; Lukomska, B.; Kubicka, U. Skin changes in filarial and non-filarial lymphoedema of the lower extremities. Trop. Med. Parasitol., 1993, 44(1), 40-44.
[PMID: 8516632]
[38]
Shenoy, R.K.; Sandhya, K.; Suma, T.K.; Kumaraswami, V. A preliminary study of filariasis related acute adenolymphangitis with special reference to precipitating factors and treatment modalities. Southeast Asian J. Trop. Med. Public Health, 1995, 26(2), 301-305.
[PMID: 8629065]
[39]
Olszewski, W.L. Recurrent bacterial dermatolymphangioadenitis (DLA) is responsible for progression of lymphedema. Lymphology, 1996, 29, 331-334.
[40]
Shenoy, R.K.; Kumaraswami, V.; Suma, T.K.; Rajan, K.; Radhakuttyamma, G. A double-blind, placebo-controlled study of the efficacy of oral penicillin, diethylcarbamazine or local treatment of the affected limb in preventing acute adenolymphangitis in lymphoedema caused by brugian filariasis. Ann. Trop. Med. Parasitol., 1999, 93(4), 367-377.
[http://dx.doi.org/10.1080/00034983.1999.11813433] [PMID: 10656038]
[41]
Dennis, V.A.; Lasater, B.L.; Blanchard, J.L.; Lowrie, R.C., Jr; Campeau, R.J. Histopathological, lymphoscintigraphical, and immunological changes in the inguinal lymph nodes of rhesus monkeys during the early course of infection with Brugia malayi. Exp. Parasitol., 1998, 89(2), 143-152.
[http://dx.doi.org/10.1006/expr.1998.4300] [PMID: 9635437]
[42]
Dreyer, G.; Piessens, W.F. Worms and Microorganisms can cause lymphatic disease in residents of filariasis endemic areas. Lymphatic Filariasis. Edition, London Edn; Imperial College Press, 2000.
[http://dx.doi.org/10.1142/9781848160866_0010]
[43]
Taylor, M.J.; Cross, H.F.; Bilo, K. Inflammatory responses induced by the filarial nematode Brugia malayi are mediated by lipopolysaccharide-like activity from endosymbiotic Wolbachia bacteria. J. Exp. Med., 2000, 191(8), 1429-1436.
[http://dx.doi.org/10.1084/jem.191.8.1429] [PMID: 10770808]
[44]
Hise, A.G.; Daehnel, K.; Gillette-Ferguson, I.; Cho, E.; McGarry, H.F.; Taylor, M.J.; Golenbock, D.T.; Fitzgerald, K.A.; Kazura, J.W.; Pearlman, E. Innate immune responses to endosymbiotic Wolbachia bacteria in Brugia malayi and Onchocerca volvulus are dependent on TLR2, TLR6, MyD88, and Mal, but not TLR4, TRIF, or TRAM. J. Immunol., 2007, 178(2), 1068-1076.
[http://dx.doi.org/10.4049/jimmunol.178.2.1068] [PMID: 17202370]
[45]
Brattig, N.W.; Rathjens, U.; Ernst, M.; Geisinger, F.; Renz, A.; Tischendorf, F.W. Lipopolysaccharide-like molecules derived from Wolbachia endobacteria of the filaria Onchocerca volvulus are candidate mediators in the sequence of inflammatory and antiinflammatory responses of human monocytes. Microbes Infect., 2000, 2(10), 1147-1157.
[http://dx.doi.org/10.1016/S1286-4579(00)01269-7] [PMID: 11008105]
[46]
Ottesen, E.A.; Ramachandran, C.P. Lymphatic filariasis infection and disease: Control strategies. Parasitol. Today, 1995, 11, 129-131.
[http://dx.doi.org/10.1016/0169-4758(95)80128-6]
[47]
Kazura, J.W.; Nutman, T.; Greene, B. Filariasis: Immunology and Molecular Biology of Parasitic Infections Ed. Kenneth S. Warren, 3rd edition.. Blackwell Scientific Publications, Boston, M.A, 1993.
[48]
Weil, G.J.; Ramzy, R.M.; Chandrashekar, R.; Gad, A.M.; Lowrie, R.C., Jr; Faris, R. Parasite antigenemia without microfilaremia in bancroftian filariasis. Am. J. Trop. Med. Hyg., 1996, 55(3), 333-337.
[http://dx.doi.org/10.4269/ajtmh.1996.55.333] [PMID: 8842125]
[49]
Suresh, S.; Kumaraswami, V.; Suresh, I.; Rajesh, K.; Suguna, G.; Vijayasekaran, V.; Ruckmani, A.; Rajamanickam, M.G. Ultrasonographic diagnosis of subclinical filariasis. J. Ultrasound Med., 1997, 16(1), 45-49.
[http://dx.doi.org/10.7863/jum.1997.16.1.45] [PMID: 8979226]
[50]
Day, K.P.; Grenfell, B.; Spark, R.; Kazura, J.W.; Alpers, M.P. Age specific patterns of change in the dynamics of Wuchereria bancrofti infection in Papua New Guinea. Am. J. Trop. Med. Hyg., 1991, 44(5), 518-527.
[http://dx.doi.org/10.4269/ajtmh.1991.44.518] [PMID: 2063955]
[51]
Dimock, K.A.; Eberhard, M.L.; Lammie, P.J. Th1-like antifilarial immune responses predominate in antigen-negative persons. Infect. Immun., 1996, 64(8), 2962-2967.
[PMID: 8757821]
[52]
Elson, L.H.; Calvopiña, M.; Paredes, W.; Araujo, E.; Bradley, J.E.; Guderian, R.H.; Nutman, T.B. Immunity to onchocerciasis: putative immune persons produce a Th1-like response to Onchocerca volvulus. J. Infect. Dis., 1995, 171(3), 652-658.
[http://dx.doi.org/10.1093/infdis/171.3.652] [PMID: 7876612]
[53]
Cook, J.A.; Steel, C.; Ottesen, E.A. Towards a vaccine for onchocerciasis. Trends Parasitol., 2001, 17(12), 555-558.
[http://dx.doi.org/10.1016/S1471-4922(01)02115-8] [PMID: 11756017]
[54]
Vikas, K.; Tewari, P.; Mandal, P.; Tripathi, A.; Murthy, P. Kalpana. Troponin 1 of human filarial parasite Brugia malayi: cDNA cloning, expression, purification and its immunoprophylactic potential. Parasitol. Res., 2019, 118(6), 1849-1863.
[http://dx.doi.org/10.1007/s00436-019-06316-8] [PMID: 31055672]
[55]
Sim, B.K.; Kwa, B.H.; Mak, J.W. Immune responses in human Brugia malayi infections: serum dependent cell-mediated destruction of infective larvae in vitro. Trans. R. Soc. Trop. Med. Hyg., 1982, 76(3), 362-370.
[http://dx.doi.org/10.1016/0035-9203(82)90191-2] [PMID: 7112659]
[56]
Narayanan, K.; Krishnamoorthy, B.; Ezhilarasan, R.; Miyamoto, S.; Balakrishnan, A. Targeting apoptotic signalling pathway and pro-inflammatory cytokine expression as therapeutic intervention in TPE induced lung damage. Cell Biol. Int., 2003, 27(4), 375-382.
[http://dx.doi.org/10.1016/S1065-6995(03)00014-3] [PMID: 12788054]
[57]
McCarthy, J.S.; Guinea, A.; Weil, G.J.; Ottesen, E.A. Clearance of circulating filarial antigen as a measure of the macrofilaricidal activity of diethylcarbamazine in Wuchereria bancrofti infection. J. Infect. Dis., 1995, 172(2), 521-526.
[http://dx.doi.org/10.1093/infdis/172.2.521] [PMID: 7622896]
[58]
WHO. The Work of WHO in the Eastern Mediterranean Region: Annual Report of the Regional Director 1 January - 31 December 2007Available at:, http://www.emro.who.int/rd/annualreports/2007/chapter1_1.htm
[59]
Taylor, M.J.; Hoerauf, A.; Bockarie, M. Lymphatic filariasis and onchocerciasis. Lancet, 2010, 376(9747), 1175-1185.
[http://dx.doi.org/10.1016/S0140-6736(10)60586-7] [PMID: 20739055]
[60]
Simonsen, P.E.; Fischer, P.U.; Hoerauf, A.; Weil, G.J. The Filariases In: Manson’s Tropical Diseases; Farrar, J.; Hotez, P.J.; Junghanss, T.; Kang, G.J.; Lalloo, D.,; White, N.J.; 23 edition. Landon, Elsevier Saunders, 2014, pp. 737-765.
[http://dx.doi.org/10.1016/B978-0-7020-5101-2.00055-8]
[61]
Molyneux, D.H.; Savioli, L.; Engels, D. Neglected tropical diseases: Progress towards addressing the chronic pandemic. Lancet, 2017, 389(10066), 312-325.
[http://dx.doi.org/10.1016/S0140-6736(16)30171-4] [PMID: 27639954]
[62]
W.H.O. Three more countries eliminate lymphatic filariasis 2018.( Available at:, https://www.who.int/westernpacific/news/detail/08-10-2018-three-more-countries-eliminate-lymphatic-filariasis
[63]
King, C.L.; Suamani, J.; Sanuku, N.; Cheng, Y.C.; Satofan, S.; Mancuso, B.; Goss, C.W.; Robinson, L.J.; Siba, P.M.; Weil, G.J.; Kazura, J.W. A Trial of a triple-drug treatment for lymphatic filariasis. N. Engl. J. Med., 2018, 379(19), 1801-1810.
[http://dx.doi.org/10.1056/NEJMoa1706854] [PMID: 30403937]
[64]
Rao, R.U.; Samarasekera, S.D.; Nagodavithana, K.C.; Dassanayaka, T.D.M.; Punchihewa, M.W.; Ranasinghe, U.S.B.; Weil, G.J. Reassessment of areas with persistent Lymphatic Filariasis nine years after cessation of mass drug administration in Sri Lanka. PLoS Negl. Trop. Dis., 2017, 11(10)e0006066
[http://dx.doi.org/10.1371/journal.pntd.0006066] [PMID: 29084213]
[65]
Taylor, M.J.; Hoerauf, A. Wolbachia bacteria of filarial nematodes. Parasitol. Today (Regul. Ed.) , 1999; 15(11), pp. 437-442.
[http://dx.doi.org/10.1016/S0169-4758(99)01533-1] [PMID: 10511685]
[66]
Rao, R.U. Endosymbiotic Wolbachia of parasitic filarial nematodes as drug targets. Indian J. Med. Res., 2005, 122(3), 199-204.
[PMID: 16251775]
[67]
Smith, H.L.; Rajan, T.V. Tetracycline inhibits development of the infective-stage larvae of filarial nematodes in vitro. Exp. Parasitol., 2000, 95(4), 265-270.
[http://dx.doi.org/10.1006/expr.2000.4525] [PMID: 11038309]
[68]
Bandi, C.; McCall, J.W.; Genchi, C.; Corona, S.; Venco, L.; Sacchi, L. Effects of tetracycline on the filarial worms Brugia pahangi and Dirofilaria immitis and their bacterial endosymbionts Wolbachia. Int. J. Parasitol., 1999, 29(2), 357-364.
[http://dx.doi.org/10.1016/S0020-7519(98)00200-8] [PMID: 10221636]
[69]
Rao, R.; Well, G.J. In vitro effects of antibiotics on Brugia malayi worm survival and reproduction. J. Parasitol., 2002, 88(3), 605-611.
[http://dx.doi.org/10.1645/0022- 3395(2002)088[0605:IVEOAO]2.0.CO;2] [PMID: 12099435]
[70]
Chirgwin, S.R.; Nowling, J.M.; Coleman, S.U.; Klei, T.R. Brugia pahangi and Wolbachia: the kinetics of bacteria elimination, worm viability, and host responses following tetracycline treatment. Exp. Parasitol., 2003, 103(1-2), 16-26.
[http://dx.doi.org/10.1016/S0014-4894(03)00063-8] [PMID: 12810042]
[71]
Turner, J.D.; Mand, S.; Debrah, A.Y.; Muehlfeld, J.; Pfarr, K.; McGarry, H.F.; Adjei, O.; Taylor, M.J.; Hoerauf, A. A randomized, double-blind clinical trial of a 3-week course of doxycycline plus albendazole and ivermectin for the treatment of Wuchereria bancrofti infection. Clin. Infect. Dis., 2006, 42(8), 1081-1089.
[http://dx.doi.org/10.1086/501351] [PMID: 16575724]
[72]
Supali, T.; Djuardi, Y.; Pfarr, K.M.; Wibowo, H.; Taylor, M.J.; Hoerauf, A.; Houwing-Duistermaat, J.J.; Yazdanbakhsh, M.; Sartono, E. Doxycycline treatment of Brugia malayi-infected persons reduces microfilaremia and adverse reactions after diethylcarbamazine and albendazole treatment. Clin. Infect. Dis., 2008, 46(9), 1385-1393.
[http://dx.doi.org/10.1086/586753] [PMID: 18419441]
[73]
Taylor, M.J.; von Geldern, T.W.; Ford, L.; Hübner, M.P.; Marsh, K.; Johnston, K.L.; Sjoberg, H.T.; Specht, S.; Pionnier, N.; Tyrer, H.E.; Clare, R.H.; Cook, D.A.N.; Murphy, E.; Steven, A.; Archer, J.; Bloemker, D.; Lenz, F.; Koschel, M.; Ehrens, A.; Metuge, H.M.; Chunda, V.C.; Ndongmo Chounna, P.W.; Njouendou, A.J.; Fombad, F.F.; Carr, R.; Morton, H.E.; Aljayyoussi, G.; Hoerauf, A.; Wanji, S.; Kempf, D.J.; Turner, J.D.; Ward, S.A. Preclinical development of an oral anti-Wolbachia macrolide drug for the treatment of lymphatic filariasis and onchocerciasis. Sci. Transl. Med., 2019, 11(483)eaau2086
[http://dx.doi.org/10.1126/scitranslmed.aau2086] [PMID: 30867321]
[74]
Mand, S.; Debrah, A.Y.; Klarmann, U.; Batsa, L.; Marfo-Debrekyei, Y.; Kwarteng, A.; Specht, S.; Belda-Domene, A.; Fimmers, R.; Taylor, M.; Adjei, O.; Hoerauf, A. Doxycycline improves filarial lymphedema independent of active filarial infection: a randomized controlled trial. Clin. Infect. Dis., 2012, 55(5), 621-630.
[http://dx.doi.org/10.1093/cid/cis486] [PMID: 22610930]
[75]
Piessens, W.F.; Beldekas, M. Diethylcarbamazine enhances antibody-mediated cellular adherence to Brugia malayi microfilariae. Nature, 1979, 282(5741), 845-847.
[http://dx.doi.org/10.1038/282845a0] [PMID: 514361]
[76]
Florêncio, M.S.; Peixoto, C.A. The effects of diethylcarbamazine on the ultrastructure of microfilariae of Wuchereria bancrofti. Parasitology, 2003, 126(Pt 6), 551-554.
[PMID: 12866792]
[77]
Peixoto, C.A.; Silva, B.S. Anti-inflammatory effects of diethylcarbamazine: A review. Eur. J. Pharmacol., 2014, 734, 35-41.
[http://dx.doi.org/10.1016/j.ejphar.2014.03.046] [PMID: 24726556]
[78]
Geary, T.G.; Woo, K.; McCarthy, J.S.; Mackenzie, C.D.; Horton, J.; Prichard, R.K.; de Silva, N.R.; Olliaro, P.L.; Lazdins-Helds, J.K.; Engels, D.A.; Bundy, D.A. Unresolved issues in anthelmintic pharmacology for helminthiases of humans. Int. J. Parasitol., 2010, 40(1), 1-13.
[http://dx.doi.org/10.1016/j.ijpara.2009.11.001] [PMID: 19932111]
[79]
Tyagi, K.; Murthy, P.K.; Sen, A.B. Effect of some known antifilarials on the immune responses of Mastomys natalensis infected with Brugia malayi. Indian J. Med. Res., 1986, 83, 155-161.
[PMID: 3710542]
[80]
Figueredo-Silva, J.; Jungmann, P.; Norões, J.; Piessens, W.F.; Coutinho, A.; Brito, C.; Rocha, A.; Dreyer, G. Histological evidence for adulticidal effect of low doses of diethylcarbamazine in bancroftian filariasis. Trans. R. Soc. Trop. Med. Hyg., 1996, 90(2), 192-194.
[http://dx.doi.org/10.1016/S0035-9203(96)90138-8] [PMID: 8761588]
[81]
Norões, J.; Dreyer, G.; Santos, A.; Mendes, V.G.; Medeiros, Z.; Addiss, D. Assessment of the efficacy of diethylcarbamazine on adult Wuchereria bancrofti in vivo. Trans. R. Soc. Trop. Med. Hyg., 1997, 91(1), 78-81.
[http://dx.doi.org/10.1016/S0035-9203(97)90405-3] [PMID: 9093637]
[82]
Freedman, D.O.; Plier, D.A.; De Almeida, A.B.; De Oliveira, A.L.; Miranda, J.; Braga, C. Effect of aggressive prolonged diethylcarbamazine therapy on circulating antigen levels in bancroftian filariasis. Trop. Med. Int. Health, 2001, 6(1), 37-41.
[http://dx.doi.org/10.1046/j.1365-3156.2001.00666.x] [PMID: 11251894]
[83]
Dreyer, G.; Pires, M.L.; de Andrade, L.D.; Lopes, E.; Medeiros, Z.; Tenorio, J.; Coutinho, A.; Noroes, J.; Figueredo-Silva, J. Tolerance of diethylcarbamazine by microfilaraemic and amicrofilaraemic individuals in an endemic area of Bancroftian filariasis, Recife, Brazil. Trans. R. Soc. Trop. Med. Hyg., 1994, 88(2), 232-236.
[http://dx.doi.org/10.1016/0035-9203(94)90311-5] [PMID: 8036686]
[84]
Geary, T.G.; Moreno, Y. Macrocyclic lactone anthelmintics: spectrum of activity and mechanism of action. Curr. Pharm. Biotechnol., 2012, 13(6), 866-872.
[http://dx.doi.org/10.2174/138920112800399077] [PMID: 22039785]
[85]
Moreno, Y.; Nabhan, J.F.; Solomon, J.; Mackenzie, C.D.; Geary, T.G. Ivermectin disrupts the function of the excretory-secretory apparatus in microfilariae of Brugia malayi. Proc. Natl. Acad. Sci. USA, 2010, 107(46), 20120-20125.
[http://dx.doi.org/10.1073/pnas.1011983107] [PMID: 21041637]
[86]
Hennesy, D.R.A.M.R. Pharmacokinetics of the macrocyclic lactones: conventional wisdom and new paradigms. Macrocyclic Lactones in Antiparasite Therapy edn; CABI Publishing: NY, USA, 2002.
[http://dx.doi.org/10.1079/9780851996172.0097]
[87]
Horton, J. Albendazole: A review of anthelmintic efficacy and safety in humans. Parasitology, 2000, 121(Suppl.), S113-S132.
[http://dx.doi.org/10.1017/S0031182000007290]
[88]
Lacey, E. The role of the cytoskeletal protein, tubulin, in the mode of action and mechanism of drug resistance to benzimidazoles. Int. J. Parasitol., 1988, 18(7), 885-936.
[http://dx.doi.org/10.1016/0020-7519(88)90175-0] [PMID: 3066771]
[89]
Cline, B.L.; Hernandez, J.L.; Mather, F.J.; Bartholomew, R.; De Maza, S.N.; Rodulfo, S.; Welborn, C.A.; Eberhard, M.L.; Convit, J. Albendazole in the treatment of onchocerciasis: Double-blind clinical trial in Venezuela. Am. J. Trop. Med. Hyg., 1992, 47(4), 512-520.
[http://dx.doi.org/10.4269/ajtmh.1992.47.512] [PMID: 1443350]
[90]
Shenoy, R.K.; Dalia, S.; John, A.; Suma, T.K.; Kumaraswami, V. Treatment of the microfilaraemia of asymptomatic brugian filariasis with single doses of ivermectin, diethylcarbamazine or albendazole, in various combinations. Ann. Trop. Med. Parasitol., 1999, 93(6), 643-651.
[http://dx.doi.org/10.1080/00034983.1999.11813467] [PMID: 10707109]
[91]
Addiss, D.; Critchley, J.; Ejere, H.; Garner, P.; Gelband, H.; Gamble, C. Albendazole for lymphatic filariasis. Cochrane Database Syst. Rev., 2004, 4CD003753
[PMID: 14974034]
[92]
Budge, P.J.; Herbert, C.; Andersen, B.J.; Weil, G.J. Adverse events following single dose treatment of lymphatic filariasis: Observations from a review of the literature. PLoS Negl. Trop. Dis., 2018, 12(5)e0006454
[http://dx.doi.org/10.1371/journal.pntd.0006454] [PMID: 29768412]
[93]
Marriner, S.E.; Morris, D.L.; Dickson, B.; Bogan, J.A. Pharmacokinetics of albendazole in man. Eur. J. Clin. Pharmacol., 1986, 30(6), 705-708.
[http://dx.doi.org/10.1007/BF00608219] [PMID: 3770064]
[94]
Tracy, J.W.; Webster, L.T.J. Drugs used in the chemotherapy of helminthiasis.Goodman and Gilman’s The Pharmacological Basis of Therapeutics; Harman, J.G.; Limbird, L.E., Gilman, A.G. 10, International edition; McGraw-Hill: New York, 2001, pp. 1131-1133.
[95]
Gaur, R.L.; Dixit, S.; Sahoo, M.K.; Khanna, M.; Singh, S.; Murthy, P.K. Anti-filarial activity of novel formulations of albendazole against experimental brugian filariasis. Parasitology, 2007, 134(Pt 4), 537-544.
[http://dx.doi.org/10.1017/S0031182006001612] [PMID: 17078904]
[96]
Khan, M.A.; Gaur, R.L.; Dixit, S.; Saleemuddin, M.; Murthy, P.K. Responses of Mastomys coucha, that have been infected with Brugia malayi and treated with diethylcarbamazine or albendazole, to re-exposure to infection. Ann. Trop. Med. Parasitol., 2004, 98(8), 817-830.
[http://dx.doi.org/10.1179/136485904X12386] [PMID: 15667714]
[97]
Abuzar, S.; Sharma, S.; Fatma, N.; Gupta, S.; Murthy, P.K.; Katiyar, J.C.; Chatterjee, R.K.; Sen, A.B. Studies in potential filaricides. 18. Synthesis of 2,2′-disubstituted 5,5′-dibenzimidazolyl ketones and related compounds as potential anthelmintics. J. Med. Chem., 1986, 29(7), 1296-1299.
[http://dx.doi.org/10.1021/jm00157a032] [PMID: 3543360]
[98]
Murthy, P.K.K. S.; Murthy, P.S.R. Responses of Brugia malayi – Indian leaf monkey (Presbytis entellus), a non-human primate model of filariasis, to diethylcarbamazine, ivermectin and CDRI compound 82-437. Curr. Sci., 2004, 86, 432-439.
[99]
Piessens, W.F.; da Silva, W.D. Complement-mediated adherence of cells to microfilariae of Brugia malayi. Am. J. Trop. Med. Hyg., 1982, 31(2), 297-301.
[http://dx.doi.org/10.4269/ajtmh.1982.31.297] [PMID: 7072893]
[100]
Piessens, W.F.; McGreevy, P.B.; Piessens, P.W.; McGreevy, M.; Koiman, I.; Saroso, J.S.; Dennis, D.T. Immune responses in human infections with Brugia malayi: specific cellular unresponsiveness to filarial antigens. J. Clin. Invest., 1980, 65(1), 172-179.
[http://dx.doi.org/10.1172/JCI109648] [PMID: 7350196]
[101]
Piessens, W.F.; Ratiwayanto, S.; Tuti, S.; Palmieri, J.H.; Piessens, P.W.; Koiman, I.; Dennis, D.T. Antigen-specific suppressor cells and suppressor factors in human filariasis with Brugia malayi. N. Engl. J. Med., 1980, 302(15), 833-837.
[http://dx.doi.org/10.1056/NEJM198004103021503] [PMID: 6444695]
[102]
Tyagi, K.; Murthy, P.K.; Chatterjee, R.K. Brugia malayi in Mastomys coucha: Establishment in immunosuppressed animals. Acta Trop., 1998, 70(2), 157-162.
[http://dx.doi.org/10.1016/S0001-706X(98)00015-1] [PMID: 9698261]
[103]
Parker, J.C. Effect of cortisone on the resistance of the guinea pig to infection with the rat nematode, Nippostrongylus brasiliensis. Exp. Parasitol., 1961, 11, 380-390.
[http://dx.doi.org/10.1016/0014-4894(61)90042-X] [PMID: 14483921]
[104]
Briggs, N.T. The effects of cortisone treatment on natural resistance and acquired responses of the white rat to infection with Litomosoides carinii. J. Parasitol., 1963, 49, 225-230.
[http://dx.doi.org/10.2307/3275988] [PMID: 14015454]
[105]
Joseph, S.K.; Verma, S.K.; Sahoo, M.K.; Dixit, S.; Verma, A.K.; Kushwaha, V.; Saxena, K.; Sharma, A.; Saxena, J.K.; Murthy, P.K. Sensitization with anti-inflammatory BmAFI of Brugia malayi allows L3 development in the hostile peritoneal cavity of Mastomys coucha. Acta Trop., 2011, 120(3), 191-205.
[http://dx.doi.org/10.1016/j.actatropica.2011.08.005] [PMID: 21875568]
[106]
Lee, T.D.; Wakelin, D. Cortisone-induced immunotolerance to nematode infection in CBA/Ca mice. I. Investigation of the defect in the protective response. Immunology, 1982, 47(2), 227-232.
[PMID: 7118164]
[107]
Doetze, A.; Satoguina, J.; Burchard, G.; Rau, T.; Löliger, C.; Fleischer, B.; Hoerauf, A. Antigen-specific cellular hyporesponsiveness in a chronic human helminth infection is mediated by T(h)3/T(r)1-type cytokines IL-10 and transforming growth factor-beta but not by a T(h)1 to T(h)2 shift. Int. Immunol., 2000, 12(5), 623-630.
[http://dx.doi.org/10.1093/intimm/12.5.623] [PMID: 10784608]
[108]
Harnett, W.; Harnett, M.M. Molecular basis of worm-induced immunomodulation. Parasite Immunol., 2006, 28(10), 535-543.
[http://dx.doi.org/10.1111/j.1365-3024.2006.00893.x] [PMID: 16965289]
[109]
Harnett, W.; Harnett, M.M. Lymphocyte hyporesponsiveness during filarial nematode infection. Parasite Immunol., 2008, 30(9), 447-453.
[http://dx.doi.org/10.1111/j.1365-3024.2008.01045.x] [PMID: 18761488]
[110]
Plier, D.A.; Awadzi, K.; Freedman, D.O. Immunoregulation in onchocerciasis: persons with ocular inflammatory disease produce a Th2-like response to Onchocerca volvulus antigen. J. Infect. Dis., 1996, 174(2), 380-386.
[http://dx.doi.org/10.1093/infdis/174.2.380] [PMID: 8699070]
[111]
Satoguina, J.; Mempel, M.; Larbi, J.; Badusche, M.; Löliger, C.; Adjei, O.; Gachelin, G.; Fleischer, B.; Hoerauf, A. Antigen-specific T regulatory-1 cells are associated with immunosuppression in a chronic helminth infection (onchocerciasis). Microbes Infect., 2002, 4(13), 1291-1300.
[http://dx.doi.org/10.1016/S1286-4579(02)00014-X] [PMID: 12443893]
[112]
Battaglia, M.; Gregori, S.; Bacchetta, R.; Roncarolo, M.G. Tr1 cells: from discovery to their clinical application. Semin. Immunol., 2006, 18(2), 120-127.
[http://dx.doi.org/10.1016/j.smim.2006.01.007] [PMID: 16464609]
[113]
Haq, W.; Puri, A.; Kundu, B.; Saxena, R.P.; Kapil, A.; Mathur, K.B.; Saxena, K.C. A process for the synthesisof N-glycyl, N-(Lalanyl- D-isoglutaminyl)-L-lysyl-N-alkylamides possessing high immunostimulating activity. India Patent applicatiion filed 434/DEL/90, 1990.
[114]
Haq, W.; Rizwi, S.Y.; Kapil, A.; Kundu, B.; Mathur, K.B. Synthesis and immunoadjuvant activity of MDP derivatives: Part I. Synthesis of N-substituted amides of MDP and their stimulatory effect on humoral immune response. Indian J. Chem., 1990, 29B, 263-267.
[115]
Murthy, P.K.; Haq, W.; Tyagi, K.; Mathur, K.B.; Chatterjee, R.K. Brugia malayi in Mastomys natalensis: Effect of immunostimulators on establishment and course of infection. Trop. Med., 1992, 34, 63-69.
[116]
Misra, S.; Singh, D.P.; Gupta, C.M.; Chatterjee, R.K.; Anand, N. Acanthocheilonema viteae in Mastomys natalensis: immunostimulators on establishment and course of infection. Med. Sci. Res., 1991, 19, 53-55.
[117]
Fatma, N.; Mathur, K.B.; Chatterjee, R.K. Chemotherapy of experimental filariasis: enhancement of activity profile of ivermectin with immunomodulators. Acta Trop., 1994, 57(1), 55-67.
[http://dx.doi.org/10.1016/0001-706X(94)90093-0] [PMID: 7942355]
[118]
Maurya, S.K.; Singh, A.K.; Seth, A. Potential medicinal plants for lymphatic filariasis: a review. J. Crit. Rev., 2015, 2, 1-6.
[119]
Holland, B.K. Prospecting for drugs in ancient texts. Nature, 1994, 369(6483), 702.
[http://dx.doi.org/10.1038/369702a0] [PMID: 8008059]
[120]
Newman, D.J.; Cragg, G.M.; Snader, K.M. The influence of natural products upon drug discovery. Nat. Prod. Rep., 2000, 17(3), 215-234.
[http://dx.doi.org/10.1039/a902202c] [PMID: 10888010]
[121]
Ganju, L.; Karan, D.; Chanda, S.; Srivastava, K.K.; Sawhney, R.C.; Selvamurthy, W. Immunomodulatory effects of agents of plant origin. Biomed. Pharmacother., 2003, 57(7), 296-300.
[http://dx.doi.org/10.1016/S0753-3322(03)00095-7] [PMID: 14499177]
[122]
Barua, C.C.; Gupta, P.P.; Patnaik, G.K.; Misra-Bhattacharya, S.; Goel, R.K.; Kulshrestha, D.K.; Dubey, M.P.; Dhawan, B.N. Immunomodulatory effect of albizzia lebbeck. Pharm. Biol., 2000, 38(3), 161-166.
[http://dx.doi.org/10.1076/1388-0209(200007)3831-SFT161] [PMID: 21214455]
[123]
Singh, M.; Shakya, S.; Soni, V.K.; Dangi, A.; Kumar, N.; Bhattacharya, S.M. The n-hexane and chloroform fractions of Piper betle L. trigger different arms of immune responses in BALB/c mice and exhibit antifilarial activity against human lymphatic filarid Brugia malayi. Int. Immunopharmacol., 2009, 9(6), 716-728.
[http://dx.doi.org/10.1016/j.intimp.2009.02.012] [PMID: 19281872]
[124]
Puri, A.; Saxena, R.P. Sumati, Guru P.Y.; Kulshrestha, D.K.; Saxena, K.C.; Dhawan, B.N. Immunostimulant activity of P. kurroa and protection against L. donovani infection in hamsters. Planta Med., 1992, 58, 519-524.
[http://dx.doi.org/10.1055/s-2006-961542]
[125]
Rajaram, D. A preliminary trial of Picrorhiza kurroa in bronchial asthma. Bombay Hosp. J., 1975, 18, 66-69.
[126]
Dahanukar, S.A.; Kulkarni, R.A.; Rege, N.N. Pharmacology of medicinal plants and natural products. Indian J. Pharmacol., 2000, 32, S81-S118.
[127]
Jayathirtha, M.G.; Mishra, S.H. Preliminary immunomodulatory activities of methanol extracts of Eclipta alba and Centella asiatica. Phytomedicine, 2004, 11(4), 361-365.
[http://dx.doi.org/10.1078/0944711041495236] [PMID: 15185851]
[128]
Brekhman, I.I.; Dardymov, I.V. New substances of plant origin which increase nonspecific resistance. Annu. Rev. Pharmacol., 1969, 9, 419-430.
[http://dx.doi.org/10.1146/annurev.pa.09.040169.002223] [PMID: 4892434]
[129]
Saxena, K.C.; Puri, A. Sumati; Saxena, R.; Saxena, R.P. Macrophage migration as an index of immune status. Immunol. Invest., 1991, 20(5-6), 431-440.
[http://dx.doi.org/10.3109/08820139109082624] [PMID: 1665145]
[130]
Tyagi, K.; Murthy, P.K.; Chatterjee, R.K. Brugia malayi in Mastomys natalensis: influence of immunostimulators on exertion of antifilarial activity of diethylcarbamazine. Trop. Med. Parasitol., 1994, 45(1), 24-26.
[PMID: 8066377]
[131]
Chatterjee, R.K.; Fatma, N.; Jain, R.K.; Gupta, C.M.; Anand, N. Litomosoides carinii in rodents: immunomodulation in potentiating action of diethylcarbamazine. Jpn. J. Exp. Med., 1988, 58(6), 243-248.
[PMID: 3075985]
[132]
Owais, M.; Misra-Bhattacharya, S.; Haq, W.; Gupta, C.M. Immunomodulator tuftsin augments antifilarial activity of diethylcarbamazine against experimental brugian filariasis. J. Drug Target., 2003, 11(4), 247-251.
[http://dx.doi.org/10.1080/10611860310001620707] [PMID: 14578113]
[133]
Kubo, S.; Rodriguez, T., Jr; Roh, M.S.; Oyedeji, C.; Romsdahl, M.M.; Nishioka, K. Stimulation of phagocytic activity of murine Kupffer cells by tuftsin. Hepatology, 1994, 19(4), 1044-1049.
[http://dx.doi.org/10.1002/hep.1840190433] [PMID: 8138244]
[134]
Nishioka, K.; Wagle, J.R.; Rodriguez, T., Jr; Maeta, M.; Kubo, S.; Dessens, S.E. Studies of human granulocyte phagocytosis stimulation by tuftsin. J. Surg. Res., 1994, 56(1), 94-101.
[http://dx.doi.org/10.1006/jsre.1994.1016] [PMID: 8277776]
[135]
Murthy, P.K.; Tyagi, K.; Chatterjee, R.K. Brugia malayi in Mastomys natalensis: efficacy of mebendazole in combination with Freund’s complete adjuvant. Folia Parasitol. (Praha), 1992, 39(1), 51-59.
[PMID: 1644349]
[136]
Pineda, M.A.; Al-Riyami, L.; Harnett, W.; Harnett, M.M. Lessons from helminth infections: ES-62 highlights new interventional approaches in rheumatoid arthritis. Clin. Exp. Immunol., 2014, 177(1), 13-23.
[http://dx.doi.org/10.1111/cei.12252] [PMID: 24666108]
[137]
Houston, K.M.; Wilson, E.H.; Eyres, L.; Brombacher, F.; Harnett, M.M.; Alexander, J.; Harnett, W. Presence of phosphorylcholine on a filarial nematode protein influences immunoglobulin G subclass response to the molecule by an interleukin-10-dependent mechanism. Infect. Immun., 2000, 68(9), 5466-5468.
[http://dx.doi.org/10.1128/IAI.68.9.5466-5468.2000] [PMID: 10948186]
[138]
Hewitson, J.P.; Grainger, J.R.; Maizels, R.M. Helminth immunoregulation: the role of parasite secreted proteins in modulating host immunity. Mol. Biochem. Parasitol., 2009, 167(1), 1-11.
[http://dx.doi.org/10.1016/j.molbiopara.2009.04.008] [PMID: 19406170]
[139]
Allen, J.E.; MacDonald, A.S. Profound suppression of cellular proliferation mediated by the secretions of nematodes. Parasite Immunol., 1998, 20(5), 241-247.
[http://dx.doi.org/10.1046/j.1365-3024.1998.00151.x] [PMID: 9651925]
[140]
Whelan, M.; Harnett, M.M.; Houston, K.M.; Patel, V.; Harnett, W.; Rigley, K.P. A filarial nematode-secreted product signals dendritic cells to acquire a phenotype that drives development of Th2 cells. J. Immunol., 2000, 164(12), 6453-6460.
[http://dx.doi.org/10.4049/jimmunol.164.12.6453] [PMID: 10843701]
[141]
Harnett, W.; McInnes, I.B.; Harnett, M.M. ES-62, a filarial nematode-derived immunomodulator with anti-inflammatory potential. Immunol. Lett., 2004, 94(1-2), 27-33.
[http://dx.doi.org/10.1016/j.imlet.2004.04.008] [PMID: 15234531]
[142]
Harnett, M.M.; Kean, D.E.; Boitelle, A.; McGuiness, S.; Thalhamer, T.; Steiger, C.N.; Egan, C.; Al-Riyami, L.; Alcocer, M.J.; Houston, K.M.; Gracie, J.A.; McInnes, I.B.; Harnett, W. The phosphorycholine moiety of the filarial nematode immunomodulator ES-62 is responsible for its anti-inflammatory action in arthritis. Ann. Rheum. Dis., 2008, 67(4), 518-523.
[http://dx.doi.org/10.1136/ard.2007.073502] [PMID: 17704067]
[143]
McInnes, I.B.; Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol., 2007, 7(6), 429-442.
[http://dx.doi.org/10.1038/nri2094] [PMID: 17525752]
[144]
Doonan, J.; Lumb, F.E.; Pineda, M.A.; Tarafdar, A.; Crowe, J.; Khan, A.M.; Suckling, C.J.; Harnett, M.M.; Harnett, W. Protection against arthritis by the parasitic worm product ES-62, and its drug-like small molecule analogues. Front. Immunol., 2018, 9, 1016.
[http://dx.doi.org/10.3389/fimmu.2018.01016] [PMID: 29867986]
[145]
Panda, A.K.; Ravindran, B.; Das, B.K. Rheumatoid arthritis patients are free of filarial infection in an area where filariasis is endemic: comment on the article by Pineda et al. Arthritis Rheum., 2013, 65(5), 1402-1403.
[http://dx.doi.org/10.1002/art.37883] [PMID: 23400937]
[146]
Harnett, M.M.; Melendez, A.J.; Harnett, W. The therapeutic potential of the filarial nematode-derived immunodulator, ES-62 in inflammatory disease. Clin. Exp. Immunol., 2010, 159(3), 256-267.
[http://dx.doi.org/10.1111/j.1365-2249.2009.04064.x] [PMID: 19968663]
[147]
Chauhan, N.; Banerjee, P.; Khatri, V.K.; Canciamille, A.; Gilles, J.; Kalyanasundaram, R. Improving the efficacy of a prophylactic vaccine formulation against lymphatic filariasis. Parasitol. Res., 2017, 116(10), 2821-2830.
[http://dx.doi.org/10.1007/s00436-017-5593-9] [PMID: 28828575]
[148]
Gupta, J.; Misra, S.; Misra-Bhattacharya, S. Immunization with Brugia malayi myosin as heterologous DNA prime protein boost induces protective immunity against B. malayi infection in mastomys coucha. PLoS One, 2016, 11(11)e0164991
[http://dx.doi.org/10.1371/journal.pone.0164991] [PMID: 27828973]
[149]
Chauhan, N.; Khatri, V.; Banerjee, P.; Kalyanasundaram, R. Evaluating the vaccine potential of a tetravalent fusion protein (rBmHAXT) vaccine antigen against lymphatic filariasis in a mouse model. Front. Immunol., 2018, 9, 1520.
[http://dx.doi.org/10.3389/fimmu.2018.01520] [PMID: 30013570]
[150]
Singh, P.K.; Kushwaha, S.; Rana, A.K.; Misra-Bhattacharya, S. Cofactor independent phosphoglycerate mutase of Brugia malayi induces a mixed Th1/Th2 type immune response and inhibits larval development in the host. BioMed Res. Int., 2014, 2014590281
[http://dx.doi.org/10.1155/2014/590281] [PMID: 25061608]
[151]
Verma, S.K.; Arora, A.; Murthy, P.K. Recombinant Calponin of human filariid Brugia malayi: Secondary structure and immunoprophylactic potential. Vaccine, 2017, 35(38), 5201-5208.
[http://dx.doi.org/10.1016/j.vaccine.2017.07.105] [PMID: 28789852]
[152]
Dixit, S.; Gaur, R.L.; Khan, M.A.; Saxena, J.K.; Murthy, P.S.; Murthy, P.K. Inflammatory antigens of Brugia malayi and their effect on rodent host Mastomys coucha. Parasite Immunol., 2004, 26(10), 397-407.
[http://dx.doi.org/10.1111/j.0141-9838.2004.00725.x] [PMID: 15752117]
[153]
Dixit, S.; Gaur, R.L.; Sahoo, M.K.; Joseph, S.K.; Murthy, P.S.; Murthy, P.K. Protection against L3 induced Brugia malayi infection in Mastomys coucha pre-immunized with BmAFII fraction of the filarial adult worm. Vaccine, 2006, 24(31-32), 5824-5831.
[http://dx.doi.org/10.1016/j.vaccine.2006.05.003] [PMID: 16757067]
[154]
Joseph, S.K.; Verma, S.K.; Verma, R.; Saxena, J.K.; Srivastava, M.; Murthy, P.K. Anti-inflammatory BmAFI of Brugia malayi modulates IgE, histamine and histamine receptor responses in Mastomys coucha. Acta Trop., 2013, 127(2), 82-86.
[http://dx.doi.org/10.1016/j.actatropica.2013.04.006] [PMID: 23603670]
[155]
Sahoo, M.K.; Sisodia, B.S.; Dixit, S.; Joseph, S.K.; Gaur, R.L.; Verma, S.K.; Verma, A.K.; Shasany, A.K.; Dowle, A.A.; Murthy, P.K. Immunization with inflammatory proteome of Brugia malayi adult worm induces a Th1/Th2-immune response and confers protection against the filarial infection. Vaccine, 2009, 27(32), 4263-4271.
[http://dx.doi.org/10.1016/j.vaccine.2009.05.015] [PMID: 19450648]
[156]
Misra, R.C.; Verma, A.K.; Verma, S.K.; Kumar, V.; Siddiqui, W.A.; Siddiqi, M.I.; Murthy, P.K. Heat shock protein 60 of filarial parasite Brugia malayi: cDNA cloning, expression, purification and in silico modeling and analysis of its ATP binding site. Exp. Parasitol., 2012, 132(2), 257-266.
[http://dx.doi.org/10.1016/j.exppara.2012.07.012] [PMID: 22890156]
[157]
Verma, A.K.; Verma, S.K.; Kushwaha, V.; Verma, R.; Siddiqui, W.A.; Murthy, P.K. Modulation of host’s immune responses and parasite load in Mastomys coucha immunized with recombinant mitochondrial HSP60 of human lymphatic filarial parasite Brugia malayi. JEAAS, 2013, 1(1), 10-151.
[http://dx.doi.org/10.20454/jeaas.2013.727]
[158]
Kushwaha, V.; Kumar, V.; Verma, S.K.; Sharma, R.; Siddiqi, M.I.; Murthy, P.K. Disorganized muscle protein-1 (DIM-1) of filarial parasite Brugia malayi: cDNA cloning, expression, purification, structural modeling and its potential as vaccine candidate for human filarial infection. Vaccine, 2014, 32(15), 1693-1699.
[http://dx.doi.org/10.1016/j.vaccine.2014.01.064] [PMID: 24513011]
[159]
Verma, S.K.; Joseph, S.K.; Verma, R.; Kushwaha, V.; Parmar, N.; Yadav, P.K.; Thota, J.R.; Kar, S.; Murthy, P.K. Protection against filarial infection by 45-49 kDa molecules of Brugia malayi via IFN-γ-mediated iNOS induction. Vaccine, 2015, 33(4), 527-534.
[http://dx.doi.org/10.1016/j.vaccine.2014.11.041] [PMID: 25454090]
[160]
Díaz, A.; Allen, J.E. Mapping immune response profiles: the emerging scenario from helminth immunology. Eur. J. Immunol., 2007, 37(12), 3319-3326.
[http://dx.doi.org/10.1002/eji.200737765] [PMID: 18000958]