Phytochemical Constituents, HPLC-PDA-ESI-MS/MS Profile and Bioactivities of Roots and Rhizomes of Prosopis farcta (Banks & Sol.) J. F. Macbr.

Page: [411 - 428] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Background: The literature survey revealed that there are no sufficient phytochemical and biological studies on the roots and rhizomes of Prosopis farcta (Banks & Sol.) J. F. Macbr., therefore, the present work is concerned with the phytochemical and biological evaluation of this plant.

Methods: The shade-dried roots and rhizomes were powdered together, extracted by 85% ethanol and subjected to phytochemical investigation. Biologically, the antioxidant, antidiabetic, cytotoxic, antiallergic and antimicrobial activities were evaluated.

Results: The phytochemical investigation resulted in the isolation of 14 compounds including the fatty acid derivative, threo- methyl 9, 10-dihydroxyoctadecanoate (5), that is isolated for the first time from a natural source, in addition to the identification of 72 compounds by HPLC-PDA-ESIMS/ MS analysis including organic acids and their derivatives, flavonoids, anthraquinones and lignan derivatives. Biologically, threo- methyl 9, 10-dihydroxyoctadecanoate (5) exerted a potent cytotoxic effect against human lung carcinoma (A-549) and human colon carcinoma (HCT-116) cell lines. The total alcoholic extract showed a potent DPPH scavenging activity, a significant decrease in the blood glucose level in alloxan-induced diabetic rats and a mild antibacterial effect against Bacillus subtilis, Staphylococcus aureus (G +ve bacteria) and Escherichia coli (G –ve bacteria).

Conclusion: This is the first report on the isolation and identification of threo- methyl 9, 10- dihydroxyoctadecanoate (5) from a natural source, and this novel compound exhibited potent cytotoxic activities against A-549 and HCT-116 cell lines. Moreover, this is the first HPLC-PDA-ESIMS/ MS profiling for this plant.

Keywords: Prosopis farcta, HPLC-PDA-ESI-MS/MS analysis, antioxidant, antidiabetic, cytotoxic, bioactivities.

Graphical Abstract

[1]
Burkart, A. A monograph of the genus Prosopis (Leguminosae subfam. Mimosoideae). J. Arnold Arbor., 1976, 57(4), 450-525.
[2]
Qasem, J. Chemical control of Prosopis farcta (Banks and Sol.) Macbride in the Jordan valley. Crop Prot., 2007, 26(4), 572-575.
[http://dx.doi.org/10.1016/j.cropro.2006.04.025]
[3]
Pasiecznik, N.; Harris, P.; Smith, S. Identifying tropical Prosopis species: A field guide; HDRA Publishing: Coventry, 2004, p. 29.
[4]
Abd El Halim, A.M.; Azer, S.A. Taxonomic revision of genus Prosopis L. in Egypt. Int. J. Environ., 2015, 4(01), 13-20.
[5]
Saidi, M.R.; Farzaei, M.H.; Miraghaee, S.; Babaei, A.; Mohammadi, B.; Bahrami, M.T.; Bahrami, G. Antihyperlipidemic effect of Syrian Mesquite (Prosopis farcta) root in high cholesterol diet–fed rabbits. J. Evid. Based Complementary Altern. Med., 2016, 21(4), NP62-NP66.
[http://dx.doi.org/10.1177/2156587215627552] [PMID: 26800714]
[6]
El-Sayyad, S.; Mohamed, M.; Kamel, M.; Mohamed, K.; El-Hifnawy, A. Chemical constituents of the fruits and flowers of Lagonychium farctum growing in Egypt. Bull. Pharm. Sci. Assiut Univ., 1999, 22(2), 123-130.
[7]
George, C.; Lochner, A.; Huisamen, B. The efficacy of Prosopis glandulosa as antidiabetic treatment in rat models of diabetes and insulin resistance. J. Ethnopharmacol., 2011, 137(1), 298-304.
[http://dx.doi.org/10.1016/j.jep.2011.05.023] [PMID: 21645608]
[8]
Ezike, A.C.; Akah, P.A.; Okoli, C.O.; Udegbunam, S.; Okwume, N.; Okeke, C.; Iloani, O. Medicinal plants used in wound care: A study of Prosopis africana (Fabaceae) stem bark. Indian J. Pharm. Sci., 2010, 72(3), 334-339.
[http://dx.doi.org/10.4103/0250-474X.70479] [PMID: 21188042]
[9]
Ali-Shtayeh, M.S.; Jamous, R.M.; Al-Shafie’, J.H.; Elgharabah, W.A.; Kherfan, F.A.; Qarariah, K.H.; Khdair, I.S.; Soos, I.M.; Musleh, A.A.; Isa, B.A.; Herzallah, H.M.; Khlaif, R.B.; Aiash, S.M.; Swaiti, G.M.; Abuzahra, M.A.; Haj-Ali, M.M.; Saifi, N.A.; Azem, H.K.; Nasrallah, H.A. Traditional knowledge of wild edible plants used in Palestine (Northern West Bank): A comparative study. J. Ethnobiol. Ethnomed., 2008, 4(1), 13.
[http://dx.doi.org/10.1186/1746-4269-4-13] [PMID: 18474107]
[10]
Asadollahi, K.; Abassi, N.; Afshar, N.; Alipour, M.; Asadollahi, P. Investigation of the effects of Prosopis farcta plant extract on rats aorta. J. Med. Plants Res., 2010, 4(2), 142-147.
[11]
Hamed, A.N.E-S. Pharmacognostical study of Lagonychium farctum Bobr.(Banks & Sol.) family Leguminosae growing in Egypt. . M.D. Thesis, Assiut University: Egypt, 2000.
[12]
Williams, K. Fats, oils, fatty food, their practical examination; Churchill, A., Ed.; , 1967, p. 94.
[13]
Ghosal, S. Steryl glycosides and Acyl steryl glycosides from Musa paradisiaca. Phytochemistry, 1985, 24(8), 1807-1810.
[http://dx.doi.org/10.1016/S0031-9422(00)82556-X]
[14]
Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol., 1999, 299, 152-178.
[http://dx.doi.org/10.1016/S0076-6879(99)99017-1]
[15]
Biglari, F.; AlKarkhi, A.F.; Easa, A.M. Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chem., 2008, 107(4), 1636-1641.
[http://dx.doi.org/10.1016/j.foodchem.2007.10.033]
[16]
Yen, G.C.; Duh, P.D. Scavenging effect of methanolic extracts of peanut hulls on free-radical and active-oxygen species. J. Agric. Food Chem., 1994, 42(3), 629-632.
[http://dx.doi.org/10.1021/jf00039a005]
[17]
Kärber, G. Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Arch. Exp. Pathol. Pharmacol., 1931, 162(4), 480-483.
[http://dx.doi.org/10.1007/BF01863914]
[18]
Eliasson, S.G.; Samet, J.M. Alloxan induced neuropathies: Lipid changes in nerve and root fragments. Life Sci., 1969, 8(9), 493-498.
[http://dx.doi.org/10.1016/0024-3205(69)90442-1] [PMID: 5791702]
[19]
Trinder, P. Estimation of serum glucose and triglycerides by enzymatic method. Ann. Clin. Biochem., 1969, 6, 24-27.
[http://dx.doi.org/10.1177/000456326900600108]
[20]
Al-Enazi, N.M.; Awaad, A.S.; Zain, M.E.; Alqasoumi, S.I. Antimicrobial, antioxidant and anticancer activities of Laurencia catarinensis, Laurencia majuscula and Padina pavonica extracts. Saudi Pharm. J., 2018, 26(1), 44-52.
[http://dx.doi.org/10.1016/j.jsps.2017.11.001] [PMID: 29379332]
[21]
Schleimer, R.P.; Lichtenstein, L.M.; Gillespie, E. Inhibition of basophil histamine release by anti-inflammatory steroids. Nature, 1981, 292(5822), 454-455.
[http://dx.doi.org/10.1038/292454a0] [PMID: 6166866]
[22]
Hindler, J.; Howard, B.; Keiser, J. Antimicrobial agents and antimicrobial susceptibility testing. Clinical and Pathogenic Microbiology, 2nd ed; Mosby: St. Louis, 1994.
[23]
Himratul-Aznita, W.; Mohd-Al-Faisal, N.; Fathilah, A. Determination of the percentage inhibition of diameter growth (PIDG) of Piper betle crude aqueous extract against oral Candida species. J. Med. Plants Res., 2011, 5(6), 878-884.
[24]
Sanjay, B.; Priyanka, B.; Deka, D. Identification of chemical composition of biodiesel from Tabernaemontana divaricata seed oil. J. Chem. Pharm. Res., 2013, 5(1), 172-179.
[25]
Wu, J.; Li, M.; Xiao, Z.; Zhou, Y. Butyrospermol fatty acid esters from the fruit of a Chinese mangrove Xylocarpus granatum. Z. Naturforsch. B, 2006, 61(11), 1447-1449.
[http://dx.doi.org/10.1515/znb-2006-1121]
[26]
Tulloch, A.; Mazurek, M. 13C nuclear magnetic resonance spectroscopy of saturated, unsaturated, and oxygenated fatty acid methyl esters. Lipids, 1976, 11(3), 228-234.
[http://dx.doi.org/10.1007/BF02532862]
[27]
Al Muqarrabun, L.M.R.; Ahmat, N.; Aris, S.R.S.; Norizan, N. Phytochemical investigation of the stem bark of Sapium baccatum (Roxb.). Aust. J. Basic Appl. Sci., 2014, 8(3), 432-438.
[28]
Pierre, L.L.; Moses, M.N. Isolation and characterisation of stigmasterol and β-sitosterol from Odontonema strictum (acanthaceae). J. Innov. Pharm. Biol. Sci, 2015, 2, 88-96.
[29]
Oladosu, I.; Lawson, L.; Aiyelaagbe, O.; Emenyonu, N.; Afieroho, O. Anti-tuberculosis lupane-type isoprenoids from Syzygium guineense Wild DC (Myrtaceae) stem bark. Future J. Pharm. Sci., 2017, 3(2), 148-152.
[http://dx.doi.org/10.1016/j.fjps.2017.05.002]
[30]
Bender, A.D.; Berkoff, C.E.; Groves, W.G.; Sofranko, L.M.; Wellman, G.R.; Liu, J-H.; Begosh, P.P.; Horodniak, J.W. Synthesis and biological properties of some novel heterocyclic homoprostanoids. J. Med. Chem., 1975, 18(11), 1094-1098.
[http://dx.doi.org/10.1021/jm00245a009] [PMID: 1177254]
[31]
Boyer, A.; Lingome, C.E.; Condassamy, O.; Schappacher, M.; Moebs-Sanchez, S.; Queneau, Y.; Gadenne, B.; Alfos, C.; Cramail, H. Glycolipids as a source of polyols for the design of original linear and cross-linked polyurethanes. Polym. Chem., 2013, 4(2), 296-306.
[http://dx.doi.org/10.1039/C2PY20588B]
[32]
Wahyuningsih, T.D.; Kurniawan, Y.S. Green synthesis of some novel dioxolane compounds from Indonesian essential oils as potential biogreases. In: AIP Conference Proceedings; AIP Publishing, 2017; 1823, p. 020081.
[http://dx.doi.org/10.1063/1.4978154]
[33]
Mohamed, K.M. Chemical constituents of Gladiolus segetum Ker-gawl. Bull. Pharm. Sci. Assiut Univ., 2005, 28, 71-78.
[34]
Hernández-Valle, E.; Herrera-Ruiz, M.; Salgado, G.R.; Zamilpa, A.; Ocampo, M.L.A.; Aparicio, A.J.; Tortoriello, J.; Jiménez-Ferrer, E. Anti-inflammatory effect of 3-O-[(6′-O-palmitoyl)-β-D-glucopyranosyl sitosterol] from Agave angustifolia on ear edema in mice. Molecules, 2014, 19(10), 15624-15637.
[http://dx.doi.org/10.3390/molecules191015624] [PMID: 25268718]
[35]
Schlein, H.N. Total synthesis and configuration of 9, 10- dihydroxystearic acid.. PhD Thesis, Boston University: Boston, 1954.
[36]
Awang, R.; Ahmad, S.; Kang, Y.; Ismail, R. Characterization of dihydroxystearic acid from palm oleic acid. J. Am. Oil Chem. Soc., 2001, 78(12), 1249-1252.
[http://dx.doi.org/10.1007/s11745-001-0421-x]
[37]
Zhang, X.; Geoffroy, P.; Miesch, M.; Julien-David, D.; Raul, F.; Aoudé-Werner, D.; Marchioni, E. Gram-scale chromatographic purification of β-sitosterol. Synthesis and characterization of β-sitosterol oxides. Steroids, 2005, 70(13), 886-895.
[http://dx.doi.org/10.1016/j.steroids.2005.06.003] [PMID: 16038957]
[38]
Gu, X.; Bai, B.; Chen, Y.; Wang, M.; Dong, Y.; Yuan, C.; Feng, X. Chemical constituents from the tubers of Kosteletzkya virginica. Chem. Nat. Compd., 2016, 52(2), 356-358.
[http://dx.doi.org/10.1007/s10600-016-1644-1]
[39]
Kim, C.; Ha, H.; Kim, J.S.; Kim, Y.T.; Kwon, S-C.; Park, S.W. Induction of growth hormone by the roots of Astragalus membranaceus in pituitary cell culture. Arch. Pharm. Res., 2003, 26(1), 34-39.
[http://dx.doi.org/10.1007/BF03179928] [PMID: 12568355]
[40]
Ogihara, K.; Kuniyoshi, E.; Suzuka, T.; Higa, M. Flavonoids, isoflavonoids and other constituents from the fresh mature seeds of Sophora tomentosa L. Bull. Fac. Sci. Univ. Ryukyus., 2016, 31(101), 1-7.
[41]
Peshin, T.; Kar, H. Isolation and characterization of beta-Sitosterol-3-O-beta-D-glucoside from the extract of the flowers of Viola odorata. Br. J. Pharm. Res., 2017, 16(4), 1-7.
[http://dx.doi.org/10.9734/BJPR/2017/33160]
[42]
Dewangan, P.; Verma, A.; Kesharwani, D. Isolation of D-Pinitol: A bioactive carbohydrate from the leaves of Bauhinia variegata L. Int. J. Pharm. Sci. Rev. Res., 2014, 24(1), 43-45.
[43]
Zhang, Z.; Wang, D.; Zhao, Y.; Gao, H.; Hu, Y-H.; Hu, J-F. Fructose-derived carbohydrates from Alisma orientalis. Nat. Prod. Res., 2009, 23(11), 1013-1020.
[http://dx.doi.org/10.1080/14786410802391120] [PMID: 19521916]
[44]
Olennikov, D.N.; Tankhaeva, L.M.; Partilkhaev, V.V.; Rokhin, A.V. Chemical constituents of Caragana bungei shoots. Rev. Bras. Farmacogn., 2012, 22(3), 490-496.
[http://dx.doi.org/10.1590/S0102-695X2012005000010]
[45]
Chen, Y-G.; Yang, J-H.; Zhang, Y.; Liu, Y. A new alloside from Neocheiropteris palmatopedata. Chem. Nat. Compd., 2010, 46(2), 173-175.
[http://dx.doi.org/10.1007/s10600-010-9560-2]
[46]
Jones, R.L.; Kerry, P.J.; Poyser, N.L.; Walker, I.C.; Wilson, N.H. The identification of trihydroxyeicosatrienoic acids as products from the incubation of Arachidonic acid with washed blood platelets. Prostaglandins, 1978, 16(4), 583-589.
[http://dx.doi.org/10.1016/0090-6980(78)90188-0] [PMID: 725088]
[47]
Su, Z.; Huang, H.; Li, J.; Zhu, Y.; Huang, R.; Qiu, S.X. Chemical composition and cytotoxic activities of petroleum ether fruit extract of fruits of Brucea javanica (Simarubaceae). Trop. J. Pharm. Res., 2013, 12(5), 735-742.
[http://dx.doi.org/10.4314/tjpr.v12i5.11]
[48]
Mithran, S.; Subbaraman, A. Synthesis of (3Z)-dodecenyl-(E)-2-butenoate, the pheromone of sweet potato weevil. Molecules, 1999, 4(6), 159-164.
[http://dx.doi.org/10.3390/40600159]
[49]
Bondioli, P.; Della Bella, L.; Rivolta, G. Preparation of methyl 9, 10 dihydroxystearic acid using a solid catalyst. Riv. Ital. Sostanze Grasse, 2016, 93(1), 5-10.
[50]
Moser, B.R.; Sharma, B.K.; Doll, K.M.; Erhan, S.Z. Diesters from oleic acid: Synthesis, low temperature properties, and oxidation stability. J. Am. Oil Chem. Soc., 2007, 84(7), 675-680.
[http://dx.doi.org/10.1007/s11746-007-1083-z]
[51]
Ceylan, R.; Katanić, J.; Zengin, G.; Matić, S.; Aktumsek, A.; Boroja, T.; Stanić, S.; Mihailović, V.; Guler, G.O.; Boga, M. Chemical and biological fingerprints of two Fabaceae species (Cytisopsis dorycniifolia and Ebenus hirsuta): Are they novel sources of natural agents for pharmaceutical and food formulations? Ind. Crops Prod., 2016, 84, 254-262.
[http://dx.doi.org/10.1016/j.indcrop.2016.02.019]
[52]
Ibrahim, R.M.; El-Halawany, A.M.; Saleh, D.O.; El Naggar, E.M.B.; El-Shabrawy, A.E-R.O.; El-Hawary, S.S. HPLC-DAD-MS/MS profiling of phenolics from Securigera securidaca flowers and its anti-hyperglycemic and anti-hyperlipidemic activities. Rev. Bras. Farmacogn., 2015, 25(2), 134-141.
[http://dx.doi.org/10.1016/j.bjp.2015.02.008]
[53]
Singh, P.; Bajpai, V.; Gupta, A.; Gaikwad, A.N.; Maurya, R.; Kumar, B. Identification and quantification of secondary metabolites of Pterocarpus marsupium by LC–MS techniques and its in-vitro lipid lowering activity. Ind. Crops Prod., 2019, 127, 26-35.
[http://dx.doi.org/10.1016/j.indcrop.2018.10.047]
[54]
Spínola, V.; Castilho, P.C. Evaluation of Asteraceae herbal extracts in the management of diabetes and obesity. Contribution of caffeoylquinic acids on the inhibition of digestive enzymes activity and formation of advanced glycation end-products (in vitro). Phytochemistry, 2017, 143, 29-35.
[http://dx.doi.org/10.1016/j.phytochem.2017.07.006] [PMID: 28755585]
[55]
Sulaiman, C.; Gopalakrishnan, V. Liquid chromatography coupled with Q-TOF mass spectrometry for the characterization of phenolics from Acacia catechu. Chem. Nat. Compd., 2014, 50(2), 360-362.
[http://dx.doi.org/10.1007/s10600-014-0954-4]
[56]
Stalmach, A.; Mullen, W.; Barron, D.; Uchida, K.; Yokota, T.; Cavin, C.; Steiling, H.; Williamson, G.; Crozier, A. Metabolite profiling of hydroxycinnamate derivatives in plasma and urine after the ingestion of coffee by humans: Identification of biomarkers of coffee consumption. Drug Metab. Dispos., 2009, 37(8), 1749-1758.
[http://dx.doi.org/10.1124/dmd.109.028019] [PMID: 19460943]
[57]
Li, S.; Lin, Z.; Jiang, H.; Tong, L.; Wang, H.; Chen, S. Rapid identification and assignation of the active ingredients in Fufang banbianlian injection using HPLC-DAD-ESI-IT-TOF-MS. J. Chromatogr. Sci., 2016, 54(7), 1225-1237.
[http://dx.doi.org/10.1093/chromsci/bmw055] [PMID: 27107094]
[58]
Ferreres, F.; Gil-Izquierdo, A.; Vinholes, J.; Grosso, C.; Valentão, P.; Andrade, P.B. Approach to the study of C-glycosyl flavones acylated with aliphatic and aromatic acids from Spergularia rubra by high-performance liquid chromatography-photodiode array detection/electrospray ionization multi-stage mass spectrometry. Rapid Commun. Mass Spectrom., 2011, 25(6), 700-712.
[http://dx.doi.org/10.1002/rcm.4910] [PMID: 21337631]
[59]
Ferreres, F.; Silva, B.M.; Andrade, P.B.; Seabra, R.M.; Ferreira, M.A. Approach to the study of C-glycosyl flavones by ion trap HPLC-PAD-ESI/MS/MS: Application to seeds of quince (Cydonia oblonga). Phytochem. Anal., 2003, 14(6), 352-359.
[http://dx.doi.org/10.1002/pca.727] [PMID: 14667061]
[60]
Marín, A.; Ferreres, F.; Tomás-Barberán, F.A.; Gil, M.I. Characterization and quantitation of antioxidant constituents of sweet pepper (Capsicum annuum L.). J. Agric. Food Chem., 2004, 52(12), 3861-3869.
[http://dx.doi.org/10.1021/jf0497915] [PMID: 15186108]
[61]
Vukics, V.; Guttman, A. Structural characterization of flavonoid glycosides by multi-stage mass spectrometry. Mass Spectrom. Rev., 2010, 29(1), 1-16.
[PMID: 19116944]
[62]
Figueirinha, A.; Paranhos, A.; Pérez-Alonso, J.J.; Santos-Buelga, C.; Batista, M.T. Cymbopogon citratus leaves: Characterization of flavonoids by HPLC–PDA–ESI/MS/MS and an approach to their potential as a source of bioactive polyphenols. Food Chem., 2008, 110(3), 718-728.
[http://dx.doi.org/10.1016/j.foodchem.2008.02.045]
[63]
Cuyckens, F.; Claeys, M. Mass spectrometry in the structural analysis of flavonoids. J. Mass Spectrom., 2004, 39(1), 1-15.
[http://dx.doi.org/10.1002/jms.585] [PMID: 14760608]
[64]
de Beer, D.; Schulze, A.E.; Joubert, E.; de Villiers, A.; Malherbe, C.J.; Stander, M.A. Food ingredient extracts of Cyclopia subternata (Honeybush): Variation in phenolic composition and antioxidant capacity. Molecules, 2012, 17(12), 14602-14624.
[http://dx.doi.org/10.3390/molecules171214602] [PMID: 23222906]
[65]
Krasteva, I.; Nikolov, S. Flavonoids in Astragalus corniculatus. Quim. Nova, 2008, 31(1), 59-60.
[http://dx.doi.org/10.1590/S0100-40422008000100012]
[66]
Ablajan, K.; Abliz, Z.; Shang, X.Y.; He, J.M.; Zhang, R.P.; Shi, J.G. Structural characterization of flavonol 3,7-di-O-glycosides and determination of the glycosylation position by using negative ion electrospray ionization tandem mass spectrometry. J. Mass Spectrom., 2006, 41(3), 352-360.
[http://dx.doi.org/10.1002/jms.995] [PMID: 16432803]
[67]
Liu, Y.; Yang, J.; Cai, Z. Chemical investigation on Sijunzi decoction and its two major herbs Panax ginseng and Glycyrrhiza uralensis by LC/MS/MS. J. Pharm. Biomed. Anal., 2006, 41(5), 1642-1647.
[http://dx.doi.org/10.1016/j.jpba.2006.02.033] [PMID: 16574366]
[68]
Brito, A.; Ramirez, J.E.; Areche, C.; Sepúlveda, B.; Simirgiotis, M.J. HPLC-UV-MS profiles of phenolic compounds and antioxidant activity of fruits from three citrus species consumed in Northern Chile. Molecules, 2014, 19(11), 17400-17421.
[http://dx.doi.org/10.3390/molecules191117400] [PMID: 25356563]
[69]
Simirgiotis, M.J.; Benites, J.; Areche, C.; Sepúlveda, B. Antioxidant capacities and analysis of phenolic compounds in three endemic Nolana species by HPLC-PDA-ESI-MS. Molecules, 2015, 20(6), 11490-11507.
[http://dx.doi.org/10.3390/molecules200611490] [PMID: 26111178]
[70]
Parejo, I.; Jauregui, O.; Sánchez-Rabaneda, F.; Viladomat, F.; Bastida, J.; Codina, C. Separation and characterization of phenolic compounds in fennel (Foeniculum vulgare) using liquid chromatography-negative electrospray ionization tandem mass spectrometry. J. Agric. Food Chem., 2004, 52(12), 3679-3687.
[http://dx.doi.org/10.1021/jf030813h] [PMID: 15186082]
[71]
Olennikov, D.N.; Chirikova, N.K.; Kashchenko, N.I.; Gornostai, T.G.; Selyutina, I.Y.; Zilfikarov, I.N. Effect of low temperature cultivation on the phytochemical profile and bioactivity of Arctic plants: A case of Dracocephalum palmatum. Int. J. Mol. Sci., 2017, 18(12), 2579.
[http://dx.doi.org/10.3390/ijms18122579] [PMID: 29189749]
[72]
Zhao, Y.; Zhu, L.; Yu, S.; Zhao, Z. HPLC-UV-ESI-MS methods for flavonoid profiling of sugarcane juice extract. Zuckerindustrie, 2013, 138, 525-531.
[http://dx.doi.org/10.36961/si14371]
[73]
Hassan, W.H.; Abdelaziz, S.; Al Yousef, H.M. Chemical composition and biological activities of the aqueous fraction of Parkinsonea aculeata L. growing in Saudi Arabia. Arab. J. Chem., 2019, 12(3), 377-387.
[74]
Martucci, M.E.P.; De Vos, R.C.; Carollo, C.A.; Gobbo-Neto, L. Metabolomics as a potential chemotaxonomical tool: Application in the genus Vernonia schreb. PLoS One, 2014, 9(4)e93149
[http://dx.doi.org/10.1371/journal.pone.0093149] [PMID: 24736747]
[75]
Zangueu, C.B.; Olounlade, A.P.; Ossokomack, M.; Djouatsa, Y.N.N.; Alowanou, G.G.; Azebaze, A.G.B.; Llorent-Martínez, E.J.; de Córdova, M.L.F.; Dongmo, A.B.; Hounzangbe-Adote, M.S. In vitro effects of aqueous extract from Maytenus senegalensis (Lam.) Exell stem bark on egg hatching, larval migration and adult worms of Haemonchus contortus. BMC Vet. Res., 2018, 14(1), 147.
[http://dx.doi.org/10.1186/s12917-018-1475-3] [PMID: 29716590]
[76]
Kang, J.; Price, W.E.; Ashton, J.; Tapsell, L.C.; Johnson, S. Identification and characterization of phenolic compounds in hydromethanolic extracts of sorghum wholegrains by LC-ESI-MS(n). Food Chem., 2016, 211, 215-226.
[http://dx.doi.org/10.1016/j.foodchem.2016.05.052] [PMID: 27283625]
[77]
Falcão, S.I.; Vale, N.; Gomes, P.; Domingues, M.R.; Freire, C.; Cardoso, S.M.; Vilas-Boas, M. Phenolic profiling of Portuguese propolis by LC-MS spectrometry: Uncommon propolis rich in flavonoid glycosides. Phytochem. Anal., 2013, 24(4), 309-318.
[http://dx.doi.org/10.1002/pca.2412] [PMID: 23172843]
[78]
Slimen, I.B.; Mabrouk, M.; Hanène, C.; Najar, T.; Abderrabba, M. LC-MS analysis of phenolic acids, flavonoids and betanin from spineless Opuntia ficus-indica fruits. J. Cell Biol., 2017, 5, 17-28.
[http://dx.doi.org/10.11648/j.cb.20170502.12]
[79]
El-Sayed, M.A.; Al-Gendy, A.A.; Hamdan, D.I.; El-Shazly, A.M. Phytoconstituents, LC-ESI-MS profile, antioxidant and antimicrobial activities of Citrus x limon L. Burm. f. cultivar variegated pink lemon. Int. J. Pharm. Sci. Res., 2017, 9(4), 375.
[80]
Hanganu, D.; Vlase, L.; Neli, O. Phytochemical analysis of isoflavons from some Fabaceae species extracts. Not. Bot. Horti Agrobot. Cluj-Napoca, 2010, 38(1), 57-60.
[81]
Farag, M.A.; Sakna, S.T.; El-Fiky, N.M.; Shabana, M.M.; Wessjohann, L.A. Phytochemical, antioxidant and antidiabetic evaluation of eight Bauhinia L. species from Egypt using UHPLC-PDA-qTOF-MS and chemometrics. Phytochemistry, 2015, 119, 41-50.
[http://dx.doi.org/10.1016/j.phytochem.2015.09.004] [PMID: 26410474]
[82]
Yu, S.; Fang, N.; Li, Q.; Zhang, J.; Luo, H.; Ronis, M.; Badger, T.M. In vitro actions on human cancer cells and the liquid chromatography-mass spectrometry/mass spectrometry fingerprint of phytochemicals in rice protein isolate. J. Agric. Food Chem., 2006, 54(12), 4482-4492.
[http://dx.doi.org/10.1021/jf0605852] [PMID: 16756384]
[83]
Mncwangi, N.; Viljoen, A. Quantitative variation of amino acids in Sutherlandia frutescens (Cancer bush)-Towards setting parameters for quality control. S. Afr. J. Bot., 2012, 82, 46-52.
[http://dx.doi.org/10.1016/j.sajb.2012.06.009]
[84]
Mahmood, S.; Abdel-Hameed, E.; Bazaid, S.; Al-Shamrani, M.; Mohamed, H. Liquid chromatography-mass spectrometry (LC-MS) method for the determination of sugars in fresh pomegranate fruit juices. Pharma Chem., 2014, 6, 320-333.
[85]
Moco, S.I.A. Metabolomics technologies applied to the identification of compounds in plants: a liquid chromatography-mass spectrometry - Nuclear magnetic resonance perspective over the tomato fruit. S.n. Riv. Ital. Sostanze Grasse, 2007, 93(1), 5-10.
[86]
Sanz, M.; de Simón, B.F.; Cadahía, E.; Esteruelas, E.; Muñoz, A.M.; Hernández, T.; Estrella, I.; Pinto, E. LC-DAD/ESI-MS/MS study of phenolic compounds in ash (Fraxinus excelsior L. and F. americana L.) heartwood. Effect of toasting intensity at cooperage. J. Mass Spectrom., 2012, 47(7), 905-918.
[http://dx.doi.org/10.1002/jms.3040] [PMID: 22791259]
[87]
Blazics, B. Analysis of medicinal plant phenoloids by coupled tandem mass spectrometry. Chromatographia, 2010, 68, S107-S111.
[88]
Xiao, Y.; Liu, L.; Bian, J.; Yan, C.; Ye, L.; Zhao, M.; Huang, Q.; Wang, W.; Liang, K.; Shi, Z. Identification of multiple constituents in shuganjieyu capsule and rat plasma after oral administration by ultra-performance liquid chromatography coupled with electrospray ionization and ion trap mass spectrometry. Acta Chromatogr., 2018, 30(2), 95-102.
[http://dx.doi.org/10.1556/1326.2017.00094]
[89]
Zhao, H-Y.; Fan, M-X.; Wu, X.; Wang, H-J.; Yang, J.; Si, N.; Bian, B-L. Chemical profiling of the Chinese herb formula Xiao-Cheng-Qi decoction using liquid chromatography coupled with electrospray ionization mass spectrometry. J. Chromatogr. Sci., 2013, 51(3), 273-285.
[http://dx.doi.org/10.1093/chromsci/bms138] [PMID: 22977122]
[90]
Karar, M.; Kuhnert, N. UPLC-ESI-Q-TOF-MS/MS characterization of phenolics from Crataegus monogyna and Crataegus laevigata (Hawthorn) leaves, fruits and their herbal derived drops (Crataegutt Tropfen). J. Chem. Biol. Ther., 2015, 1, 102.
[91]
Jia, Y.; Fu, Z.; Li, Z.; Hu, P.; Xue, R.; Chen, M.; Xiang, T.; Huang, C. In-vivo and In-vitro metabolism study of Timosaponin B-II using HPLC-ESI-MSn. Chromatographia, 2015, 78(17-18), 1175-1184.
[http://dx.doi.org/10.1007/s10337-015-2927-6]
[92]
Rhourri-Frih, B.; Chaimbault, P.; Claude, B.; Lamy, C.; André, P.; Lafosse, M. Analysis of pentacyclic triterpenes by LC-MS: A comparative study between APCI and APPI. J. Mass Spectrom., 2009, 44(1), 71-80.
[http://dx.doi.org/10.1002/jms.1472] [PMID: 18946879]
[93]
Salih, E.Y.A.; Fyhrquist, P.; Abdalla, A.M.A.; Abdelgadir, A.Y.; Kanninen, M.; Sipi, M.; Luukkanen, O.; Fahmi, M.K.M.; Elamin, M.H.; Ali, H.A. LC-MS/MS tandem mass spectrometry for analysis of phenolic compounds and pentacyclic triterpenes in antifungal extracts of Terminalia brownii (Fresen). Antibiotics (Basel), 2017, 6(4), 37.
[http://dx.doi.org/10.3390/antibiotics6040037] [PMID: 29236070]
[94]
Xia, B.; Bai, L.; Li, X.; Xiong, J.; Xu, P.; Xue, M. Structural analysis of metabolites of asiatic acid and its analogue Madecassic acid in Zebrafish using LC/IT-MSn. Molecules, 2015, 20(2), 3001-3019.
[http://dx.doi.org/10.3390/molecules20023001] [PMID: 25685908]
[95]
Lau, C.S.; Carrier, D.J.; Beitle, R.R.; Bransby, D.I.; Howard, L.R.; Lay, J.O., Jr; Liyanage, R.; Clausen, E.C. Identification and quantification of glycoside flavonoids in the energy crop Albizia julibrissin. Bioresour. Technol., 2007, 98(2), 429-435.
[http://dx.doi.org/10.1016/j.biortech.2005.12.011] [PMID: 16481160]
[96]
Habib, N.F. Treatment of cancer and other diseases. U.S. Patent, 8,293,726, October 23, 2012
[97]
Ahmed, D.; Kumar, V.; Sharma, M.; Verma, A. Target guided isolation, in vitro antidiabetic, antioxidant activity and molecular docking studies of some flavonoids from Albizzia Lebbeck Benth. bark. BMC Complement. Altern. Med., 2014, 14(1), 155.
[http://dx.doi.org/10.1186/1472-6882-14-155] [PMID: 24886138]
[98]
Gao, Y.; Zhang, M.; Wu, T.; Xu, M.; Cai, H.; Zhang, Z. Effects of D-pinitol on insulin resistance through the PI3K/Akt signaling pathway in type 2 diabetes mellitus rats. J. Agric. Food Chem., 2015, 63(26), 6019-6026.
[http://dx.doi.org/10.1021/acs.jafc.5b01238] [PMID: 26063468]
[99]
Narayanan, C.; Joshi, D.; Mujumdar, A.; Dhekne, V. Pinitol—A new anti-diabetic compound from the leaves of Bougainvillea spectabilis. Curr. Sci., 1987, 56(3), 139-141.
[100]
Sahranavard, S.; Naghibi, F.; Ghffari, S. Cytotoxic activity of extracts and pure compounds of Bryonia aspera. Int. J. Pharm. Pharm. Sci., 2012, 4(3), 541-543.
[101]
Boyd, M.R. The NCI in vitro anticancer drug discovery screen. Anticancer Drug Development Guide; Hurnana Press Inc.: Totowa, NJ, 1997, pp. 23-42.
[http://dx.doi.org/10.1007/978-1-4615-8152-9_2]